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Organelle morphogenesis by active membrane remodeling†

N. Ramakrishnan,a,b,1 John H. Ipsen,c,2 Madan Rao, d,e,3 and P. B. Sunil Kumar∗a,4

Received Xth XXXXXXXXXX 201X, Accepted Xth XXXXXXXXX 201X
First published on the web Xth XXXXXXXXXX 201X
DOI: 10.1039/b000000x

Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport
processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes,
which both sense and generate local membrane curvature. Here we investigate, through Dynamical Triangulation
Monte Carlo simulations, the role that these active processes play in determining the morphology and composition
segregation in closed membranes. We find that the steady state shapes obtained as a result of such active pro-
cesses, bear a striking resemblance to the ramified morphologies of organelles in-vivo, pointing to the relevance of
nonequilibrium fission-fusion in organelle morphogenesis.

A characteristic feature of eukaryotic cells is the va-
riety of membrane bound organelles, distinguished by
their unique morphology and chemical composition.
These internal organelles emerge in the face of a steady
flux of material (lipids/proteins) in the form of mem-
brane bound vesicles which fuse into and fission off
from them. A central issue in cell biology is to ex-
plain the morphology of organelles as a consequence of
the molecular processes and physical forces involved in
this transport1–3. While there is detailed knowledge of
the molecular processes involved in membrane remod-
eling at short scales, our understanding of the underly-
ing physical principles governing large scale morpho-
genesis is still rudimentary4.

A possible indication of these underlying principles,
might be obtained by noting that despite the differences
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in membrane composition across organelles, ramified,
tubular or sheet-like shapes are generic large scale mor-
phologies observed in internal membranes, both in the
secretory (e.g., Golgi) and the endocytic (e.g., endo-
somes) pathways, suggesting the involvement of com-
mon features shared by these organelles.

The most striking common aspect of organelles in
the trafficking pathways, is that they are dynamic mem-
branous structures, subject to and driven by a continu-
ous flux of membrane bound material5. Several stud-
ies have shown that the time scales of material flux via
vesicle fission and fusion onto a compartment6 are at
least comparable to membrane relaxation times, which
for a micron sized compartment, in the highly viscous
environment of the cell7, is of the order of tens of sec-
onds. The large scale morphology of the membrane
bound compartments could be influenced by the active
out-of-equilibrium processes of fission and fusion of
material.

The other common aspect is that organelles are sub-
ject to the action of curvature sensing and curvature
generating proteins which modulate local membrane
shape — such proteins now include a variety of bar-
domain proteins8, coat-proteins9 and GTPases10–13

and are found on most membrane bound organelles
and the plasma membrane. In particular, proteins
complexes such as Rabs-Snare and the Arf-Coatamer
that promote fusion and fission, respectively14, shut-
tle between membrane bound and unbound states. The
mechanochemistry of these bound complexes suggest
that they respond to and drive changes in the local cur-
vature of the membrane upon energy consumption15,
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see Fig. 1 for a schematic.
In this manuscript, we take these two common fea-

tures, namely nonequilibrium fission-fusion effected
by curvature generating proteins, as the primary driver
of membrane shape in internal organelles in the traf-
ficking pathway. Our coarse-grained modeling ap-
proach incorporates the basic elements of transport
and membrane physics, with minimal molecular de-
tail. This is definitely an oversimplification, and we
will not be able to comment on the shapes of specific
organelles, which might require the addition of spe-
cific molecular aspects13,16 on top of this basic com-
mon model. We hope, however, to capture the broad
features of organelle morphogenesis by our model.

In general, the stochastic fission-fusion of vesicles
from-onto the organelle membrane, produce changes
in both local membrane curvature and membrane
area17–21. In this manuscript, for simplicity, we con-
sider a perfectly balanced membrane where the rates
of fission and fusion are the same. In this limit, there
are no fluctuations in the lipid number. We study the
morphological changes in a closed membrane induced
by active curvature fluctuations arising from fission-
fusion, using a Dynamic Triangulation Monte Carlo
(DTMC) simulation. This ignores the effects of hy-
drodynamics and treats the membrane within a Rouse
description. We display the steady state membrane
shapes as a function of activity rate and the extent of
curvature generation per active event and show how
membrane activity manifests as a dynamical pressure.
We conclude with a discussion on the significance of
such actively driven membrane remodeling in describ-
ing the shapes of intracellular membrane organelles in-
vivo.

1 Model

Since we are interested in shape changes of a closed
membrane over large spatiotemporal scales (size
of organelle, 10µm � size of transport vesicle,
100 nm; membrane relaxation time scales, 1 − 10 s�
inverse rate of material flux), it is appropriate to use
a coarse-grained dynamical description of the mem-
brane, governed by membrane elasticity, relaxational
dynamics and activity.

Membrane Elasticity: To be able to describe the rami-
fied, strongly non-axisymmetric shapes of membrane
organelles, we use computer simulations, where the
fluid membrane is represented as a triangulated closed

T-SNARE

V-SNARE
Rab

vesicle

membrane organelle

ARF1-GTP-COATMER COMPLEX

membrane organelle

vesicle fusion

vesicle !ssion
 

(b)

(a)

Fig. 1 Schematics of active fusion-fission mediated
curvature changes. (a) Fusion of transport vesicle onto the
organelle membrane is induced by energy consuming
Rab-Snare complex and accompanied by membrane
deformation. (b) Fission of transport vesicle from the
organelle membrane is induced by energy consuming
Arf-Coat complex and accompanied by membrane
deformation. Our study extends to other active membrane
processes, such as the switching of membrane bound pumps
from their active to inactive forms (Supplementary Fig. S1).

surface with N vertices, denoted by { ~X}, that are in-
terconnected to form a triangulation map, {T }, con-
sisting of T triangles and L links (see Supplementary
Section S2 for a detailed description).

The membrane is assumed to be tensionless and in
the absence of any activity, the elastic stresses can
be described by the standard Canham-Helfrich energy
functional22,23, whose discrete form is given by,

Hel =
κ

2

N∑

i=1

(Hi −H0i)
2
Ai −∆p0 V , (1)

where Ai is the area element associated with vertex
i, Hi is the local mean curvature and κ is the bend-
ing modulus, a material parameter taken to be uniform
for simplicity. The local spontaneous curvature H0i,
whose form we declare later, is a measure of the pre-
ferred local mean curvature of the membrane and is
non-zero only at the sites of activity. In addition, there
is an osmotic pressure difference ∆p0 which sets the
scale of the mean enclosed volume at equilibrium.

Such simulation models have been used to study
non-axisymmetric, multicomponent membranes, both
at equilibrium and when subject to nonequilibrium
driving24–27.

Active fission-fusion induced by curvature generat-
ing/sensing proteins: The active events of fission
and fusion are driven by curvature generating vesicle-
protein complexes (Fig. 1), represented by a scalar field
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φ at every vertex i, and takes values +1 or−1, depend-
ing on whether this complex is bound to the membrane
at i or not. When bound, φi = 1, the complex induces
a local spontaneous curvature at i, else it does not; this
is achieved by setting H0i = C0(1 + φi)/2 in eqn. (1).

At every vertex i, the transition probabilities for
φi � −φi are taken to be independent of each
other. We denote the mean attempt rate for these non-
equilibrium curvature changes by ε, and choose a form
of these transition rates28, so as to ensure that N±, the
instantaneous number of vertices with φi = ±1 (with
N = N+ +N−), does not deviate significantly from a
desired value N0

±. The explicit form of these transition
rates are,

P+→− = ε−

(
N+

N

)
1

1 + exp(ζ[N+ −N− −A0])

(2)

and,

P−→+ = ε+

(
N−
N

)
1

η + exp(−ζ[N+ −N− −A0])
.

(3)

These transition rates are entirely dependent on the
preferred asymmetry parameter, A0 ≡ N0

+ −N0
−, and

the parameter ζ sets the scale of fluctuations in N+.
N0

+ and N0
− denote the steady state mean values of

N+ and N−; we ensure that N± reaches N0
± by setting

η =
(

2N−
N+
− 1
)

in (3). Note that the above transition
probabilities do not depend on the energy change asso-
ciated with a change in local configuration, φ � −φ.
This is unlike what one would expect for transition
probabilities obeying detailed balance.

The adsorption-desorption of protein complexes and
the concomitant membrane shape changes are non-
equilbrium processes. The transition probabilities as-
sociated with these state changes explicitly break de-
tailed balance, seen here as a violation of the Kol-
mogorov loop condition (Supplementary Section S3)
— we show that there exists a loop in configuration
space where the product of transition probabilities in
one direction is not equal to the product taken in the re-
verse direction. Detailed balance is restored when we
set ε = 0 or C0 = 0. We will refer to ε as the activity
rate, and C0, as the curvature-activity coupling. On top
of all this, we allow the curvature generation resulting
from the binding and unbinding of these complexes to

be cooperative, this could be accounted for by an Ising-
Hamiltonian,

Hφ = −1

2

N∑

i=1

∑

j∈Ωi

Jij φiφj , (4)

where the summation is over sites j ∈ Ωi, the set of
all vertices connected to i. While in principle Jij can
depend on the local curvature, for simplicity we take it
to be homogeneous and equal to J . Note that J could
be zero (uncorrelated (un)binding) or can have either
sign; the existence of export sites29,30 in the secretory
system might suggest that J > 0.

Monte Carlo dynamics of the membrane: The full
Monte Carlo dynamics includes the above mentioned
active processes, the usual Kawasaki exchange moves
of the field φ, and the Metropolis moves of membrane
shape25,31, using the full Hamiltonian

H = Hel + Hφ, (5)

as summarized in Fig. 2. It should be noted that unlike
the active process which changes the value of φ in a
non-conserved manner, the Kawasaki exchange moves
facilitate aggregation of φ while keeping its average at
a constant value, thereby taking the φ distribution to-
wards equilibrium. We define a Monte Carlo sweep
(MCS) to be L attempts to flip links, N attempts to
move vertices,N+ attempts to exchange φi with neigh-
bouring vertices, and ε attempts to flip the value of φ at
vertices — this sets the unit of time.

We fix N0
+ = 0.1N and vary ε, C0 and J to explore

the morphology of membranes at the nonequilibrium
steady state. κ and J are in units of kBT , and C0 is
in units of a−1

0 , where a0 is the size associated with
the coarse-grained vertices. Before discussing the re-
sults of the active membrane, we display the equilib-
rium membrane shapes and phase diagram by setting
ε = 0, for different values of C0 and J in Supplemen-
tary Fig. S4.

2 Results and Discussions

Motivated by the phenomenology of trafficking dy-
namics in the secretory pathway6, we have explored
the strong nonequilibrium regime where membrane re-
laxation times are longer than the timescale of activity.
We monitor the time series of the volume, cluster num-
ber and mean elastic energy and show that they saturate
to a nonequilibrium steady state,
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a) Vertex move

b) Link flip

c) Field exchange

{ ~X} → { ~X ′}

{T } → {T ′}

{φ} → {φ′}

Pacc = min [1, exp(−β∆H )]

Pacc = min [1, exp(−β∆H )]

Pacc = min [1, tanh(−β∆H )]

φ = 1

φ = −1

Fig. 2 DTMC of two-component fluid membranes. (a) A
chosen vertex is randomly displaced in 3-dimensions
keeping the connectivity {T } unchanged. (b) A link is
flipped (red line) to change connectivity. (c) Kawasaki
exchange of {φ} (green arrows) to enable diffusion of active
protein complex on the surface (see text for notation). Here
β ≡ 1/kBT (kB is the Boltzmann constant and T
temperature) and ∆H is the change in H (eqn. (5)) upon
change in the conformational state of the membrane. In
addition to the above moves, we carry out the active
φ� −φ transitions at a rate set by ε.

The steady state morphologies of an active mem-
brane is shown in Fig. 3. These shapes can be broadly
classified as : (a) quasi-spherical, (b) prolate ellipsoids,
(c) tubules and flattened sacs, and (d) stomatocytes.
Fig. 4 shows the phase diagram of an active membrane
in the ε − C0 plane, with J fixed. Similarly, the phase
diagram in the ε − J plane for a fixed value of C0 is
shown in Fig. 5. We now make detailed comments on
the effect that each of these parameters have on mem-
brane shape. We study the steady state phase diagram
of an active membrane upon varying C0, ε and J .
Effect of curvature-activity coupling,C0 : Fig. 3a(i-iii)
shows a sequence of steady state shapes of the ac-
tive membrane going from quasi-spherical to tubule
to flattened sac on increasing C0, at a fixed activity
rate ε = 0.1N/MCS. These nonequilibrium steady
state shapes are distinct from their equilibrium counter-
parts (Supplementary Fig. S4), obtained when the ac-
tivity rate ε = 0.

Effect of activity rate, ε : The steady state shapes are
very sensitive to the rates of activity and go from tubu-
lar to flattened sacs to stomatocyte as activity rate is

(i) tubule (ii) flattened sac  (iii) stomatocyte

neck

(i) tubule (ii) flattened sac (iii) stomatocyte

(ii) tubule (iii) flattened sac(i) quasi-spherical

(a)

(b)

(c)

Fig. 3 Shapes of an active membrane. (a) Steady state
shapes at ε = 0.1N/MCS and J = 0, as a function of
curvature-activity coupling, C0. (b) Steady state shapes at
J = 0 and C0 = 0.8, as a function of activity rate, ε. The
side of the stomatocyte that is curved-in, is colored
differently, for clarity. (c) Steady state shapes at
ε = 0.1N/MCS and C0 = 0.8, as a function of
cooperativity J between active species. All configurations
are obtained with κ = 20, ∆p0 = 0 and N0

+ = 0.1N . The
locations of the active protein complexes are shown by the
shaded regions.

increased. This is illustrated in Fig. 3b for three activ-
ity rates, ε = 0.1, 0.25, and 0.5N/MCS, at a fixed
value of C0 = 0.8.

Effect of cooperativity, J: Cooperativity between the
active species, J > 0, promotes the formation of clus-
ters, which in turn enhances the effects of activity and
curvature-activity coupling, consistent with results re-
ported in32 for the case of membrane mediated aggre-
gation of active pumps, and leads to the sequence of
shapes depicted in Fig. 3c. We find that while activity
promotes small clusters, it prevents larger clusters from
forming (Fig. 6a).

This point deserves further discussion. For an equi-
librium membrane, the critical transition to having
large clusters occurs around J ∼ 1 (Fig. 6b), with the
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0.5

1.0

0.0

0.75

0.25

0.25 0.5 0.75 1.0

quasi-spherical

prolate

tubules and flattened sac

stomatocytes

Fig. 4 Phases of the active closed membrane as a function
of C0 and activity ε. The phase boundaries are mere guide to
the eyes, determined by visual inspection of the dominant
shape within an ensemble of morphologies simulated at each
state point.

3

5

0

  1

0.25 0.5 0.75 1.0

quasi-spherical

stomatocytes

4

phase segregated 

tubules and flattened sac

Fig. 5 Phase diagram of the closed active membrane as a
function of J and activity ε, for a fixed C0 = 0.8. The phase
boundaries are mere guide to the eyes, determined by visual
inspection of the dominant shape within an ensemble of
morphologies simulated at each state point. Appreciable
phase-segregation of the protein species happens only in the
absence of activity, ε = 0, and when J ' 1.

size of the largest cluster scaling with the total num-
ber of aggregating particles. In contrast, for the active
membrane with ε = 0.1, there are no large scale cluster
formation at the steady state — indeed, though the av-
erage domain size increases with J , 70% of the active
species are still monomeric (Fig. 6a).

We compute the cluster size distribution P (s), and
find that it fits to a power law, with an exponential cut-

off : P (s) ∼ s−α exp(−s/s0), with the exponent α
and s0 roughly independent of ε, but dependent on J
(Fig. 6 and Supplementary Section S6). The exponent
α ≈ 1, for small values of J , is consistent with the
results of Turner et al.15.

10 -6

10 -4

10 -2

100

011

= 0, J = 0
= 0, J = 1
= 0.1, J = 1
= 0.25, J = 1

(a)

10 -4

10 -2

100

011

J = 0
J = 1
J = 3
J = 5
J = 10

= 0.1

P
(s
)

s

(b)

Fig. 6 Normalized cluster size distribution P (s) of the
active species. (a) as a function of J at ε = 0.1N/MCS,
(b) as a function of activity rate, ε, given in units of
N/MCS. The equilibrium distribution (ε = 0) for J = 0
and 1 is shown for comparison. Here, N0

+ = 0.1N and
C0 = 0.8.

The phase diagram of the steady state morphologies
of an active membrane in ε− C0 and ε− J space, dis-
played in Fig.4 and Fig.5, shows that the same ramified
or flattened shape can be achieved either by increasing
ε or C0. To identify order parameters characterizing
these phases, we first note that the surface area of the
active membrane remains roughly constant (Fig.7), not
surprising given that the DTMC moves do not allow
for a change in the total number of vertices N and are
connected by tethers. We therefore characterize these
phase transitions by geometrical order parameters such
as the scaled volume V/V0, where V0 is the volume
of the fully inflated sphere, or the ratio of the surface
area-to-volume.
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2800
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3200

0 0.25 0.5 0.75 1
0

0.5

1.0

1.5

×10
4 Quasi Spherical

Tubes, discs and Stomatocytes

(a)

(b)

〈V
〉

〈A
〉

C0

ǫ = 0.1

ǫ = 0.15

ǫ = 0.2

ǫ = 1.0

Fig. 7 (a) The average membrane area remains roughly the
same (within a range permissible by the tight bounds on the
tether lengths), upon changes in C0 and ε. (b) Average
volume 〈V 〉 enclosed as function of C0 for different values
of ε shows significant changes. The transition from a
quasi-spherical membrane to tubular/flattened
sacs/stomatocytes is accompanied by a sharp reduction in
the enclosed volume. Here, κ = 20, C0 = 0.8, J = 0 and
N0

+ = 0.1N .

The scaled volume, collapses abruptly as the mem-
brane shape transforms from a quasi-spherical confor-
mation to a tubule or a disc, and thereafter smoothly
goes to zero as the membrane transforms to a stom-
atocyte (Fig. 9). This transition is also evident in
the behaviour of other geometrical measures related
to the gyration tensor, such as asphericity and shape-
anisotropy (Supplementary Section S9). This collapse
transition is of purely non-equilibrium origin, its on-
set is advanced when ε increases and is absent for an
equilibrium membrane, ε = 0 (Fig. 9).

Thus far, we had not imposed any constraint on the
volume enclosed by the membrane, which allows the
quasi-spherical membrane at equilibrium to acquire a
volume V such that the membrane tension and excess
pressure are zero. It should be noted that the resulting
enclosed volume V ≤ V0, where V0 is the volume en-
closed by the membrane, with same N vertices, when

it is fully inflated. Starting from this equilibrium state
with V/V0 < 1 andC0 = 0, we now explore the steady
state shapes, at different activity rates, as a function
of an added pressure ∆p0. At large positive ∆p0, the
membrane is an inflated sphere. The pressure required
to fully inflate the membrane increases with C0 and ac-
tivity rate ε. On plotting the scaled volume versus an
activity renormalized pressure ∆p = ∆p0 + ∆pa, we
find a complete data collapse (Fig. 10). ∆pa is an ac-
tivity induced dynamical pressure, whose sign is neg-
ative. This dynamic pressure is calculated as follows.
Starting from a fully inflated equilibrium vesicle with
volume V0, which will now have a tension σ0, we ob-
tain the steady state configuration of the vesicle for a
fixed activity rate and C0. The enclosed volume V at
steady state is a decreasing function of ε and C0, as
shown in Fig.7.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

V
(

0
,∆

p
0
)/
V
0

∆p0

= 0.0

= 0.1

= 0.25

= 0.5
= 0.75

= 1.0

= 2.0
= 5.0

= 10.0

Fig. 8 Volume as a function of the bare pressure ∆p0, for
an active membrane with C0 = 0.8 and for activity rates ε =
0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0, and 10.0N/MCS.

Starting from the steady state of the active mem-
brane obtained for every pair of ε and C0, an inflat-
ing pressure ∆p0 is applied in small increments and
the individual ∆p0 − V isotherms are recorded till
the active membrane becomes fully inflated, i.e till
V (ε, C0,∆p0)/V0 ∼ 1. The isotherms for an active
membrane (see Fig. 8 ) for the case of C0 = 0.8) show
a modified behaviour when compared to the isotherm
obtained at equilibrium. We find that the maximum
pressure required to inflate the vesicle increases by a
value ∆pa, whose origin is dynamic, and is dependent
on both ε and C0. The isotherms for the active mem-
brane collapse on to the equilibrium curve, as shown in
Fig.10, when the bare osmotic pressure ∆p0 is rescaled
by the corresponding dynamical pressure ∆pa to ob-
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tain an effective pressure ∆p = ∆p0 + ∆pa.
To obtain an analytic estimate of the dynamical pres-

sure ∆pa, we generalize the condition for equilib-
rium of an inflated spherical membrane33 to this ac-
tive case : ∆p0R + 2(σ0 + σa) − κC2

0 = 0, where
R is the radius of the inflated sphere, σ0 is the ten-
sion on the equilibrium fully inflated membrane, and
σa = −εκC2

0/(1 + ε) is the dynamic tension induced
by fission-fusion at an activity rate ε ∗. This dynamic
tension can be reinterpreted as a renormalized pressure,
∆p = ∆p0 − 2εκC2

0/R (1 + ε), consistent with the
demonstration in inset Fig. 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

ǫ = 0.1
ǫ = 0.15
ǫ = 0.25
ǫ = 0.5
ǫ = 1.0

equilibrium(ǫ = 0)

C0

〈
V
V0

〉

Discs &Tubes

Stomatocytes

Quasi-spherical

Fig. 9 Scaled enclosed volume (V/V0) as a function of C0

with κ = 20, J = 0.0 and N0
+ = 0.1N for different values

of ε in units of N/MCS. The transition from
quasi-spherical to tube, disc and stomatocyte are shown by
the various shaded regions for the specific case of
ε = 0.1N/MCS. The transition from a quasi-spherical
vesicle to other shapes is characterized by a jump in the
enclosed volume and gets sharper as ε increases. The
equilibrium, ε = 0, curve is when 10% of the vertices have a
local spontaneous curvature C0.

3 Concluding Remarks

Our goal here has been to be able to describe generic
large scale morphologies, such as ramified, tubular or
sheet-like shapes, that seem to be shared by many dif-
ferent internal membrane compartments, both in the
secretory (e.g., Golgi) and the endocytic (e.g., endo-
somes) pathways, using a common shared dynami-

∗An induced tension of similar form was proposed recently for an
equilibrium membrane when it is constrained to a configuration with
curvature less than the one set by the spontaneous curvature: R.
Lipowsky, Faraday Disc., 161, 305 (2013)

-1 0 1 2 3 4
0

0.5

1

0 0.5 1 1.5
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-1.5
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-0.5

0

∆
p
a

2κC2
0

R(1+ )

V
(

C
0
)/
V
0

∆p = ∆p0 +∆pa

= 0.5, 0.0 < C0 < 1.0

= 1.0, 0.0 < C0 < 1.0

0 < 10, C0 = 0.5

0 < 10, C0 = 0.8

= 0.0

= 0.1

= 0.25
= 0.5

= 0.75

= 1.0

= 2.0

= 5.0
= 10.0

Fig. 10 Data collapse of the scaled enclosed volume versus
the activity renormalized pressure, ∆p. Data corresponds to
κ = 20, C0 = 0.8, N0

+ = 0.1N with ε =
0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0 and 10.0N/MCS.
(Inset) Computed values of the dynamic pressure ∆pa for
different values of ε and C0, shows a good fit to
2εκC2

0/R(1 + ε), where R ∼ 19.4 a0 is the radius of the
fully inflated membrane.
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Fig. 11 Time evolution of an active tubular membrane at
steady state, with C0 = 0.8, κ = 20, N0

+ = 0.1N , J = 1,
and ε = 0.1N/MCS, following the inhibition of
activity—the time axis has been shifted such that the
inhibition occurs at t = 0. The membrane relaxes to
equilibrium, forming buds, characteristic of two-component
membranes 25, in the process minimizing the elastic energy,
Hel (open circles). Concommittantly, domains, enriched in
the protein complex, coarsen resulting in a monotonic
reduction of the cluster number, Nclus(open squares).
Symbols have been shown only at some representative
points.

cal feature, namely the non-equilibrium processes of
fission-fusion driven by energy consuming mechano-
chemical transducers.

This places nonequilbrium phenomena at the heart
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of organelle morphogenesis and appears to have some
level of support1,34,35. Our work should not be viewed
as being inconsistent with the view that tubular and
flat organelle morphologies can arise from forces gen-
erated by specialized curvature-modifying proteins or
protein scaffolding proteins4,13,36–41. It could be that
tubular and flattened sheet-like structures formed as a
result of active fission-fusion are stabilized by the pres-
ence of protein scaffolds. In addition, it is possible
that the presence of filamentous cytoskeletal structures
could provide a scaffold that directly affects membrane
shape.

How does one experimentally test this nonequilib-
rium perspective ? The definitive aspects of the ac-
tive nonequilibrium viewpoint will be manifest in the
dynamical fluctuations at steady state, the dynamical
response to perturbations and the dynamics towards
steady state17,18. Unfortunately, these aspects can-
not be analyzed using Monte Carlo simulations. A
simple and unique consequence of the active driving,
would be the centre-of-mass movement of the entire
organelle when the flux of activity breaks fore-aft sym-
metry, and could in principle be amenable to experi-
ments. Similarly, other consequences, such as sponta-
neous swelling and tubular instabilities due to activity
induced negative tension17,21,42, arise when there is an
imbalance between fission-fusion dynamics.

Fig. 11 demonstrates how the shape and composi-
tion of the active membrane relaxes towards equilib-
rium when the activity ε is abruptly shut off. Start-
ing from an initial tubular morphology of the active
membrane, the shape changes rapidly to give rise to an
inflated near-spherical equilibrium morphology. The
elastic energy Hel drops exponentially fast and that
the curvature sensing/generating proteins cluster and
coarsen, as indicated by a rapid decrease of Nclus, to
form tubular buds (as in Kumar et. al.25). This shape
evolution is shown in Supplementary Movies M1 and
M2. Experimental approaches, in which one monitors
the dynamics of shape changes of Golgi compartments
using high resolution live-cell imaging, when the agen-
cies of active fission and fusion are suddenly switched
off, could help resolve these issues.

Admittedly, one cannot ignore the effects of both
specific curvature generating proteins or the cytoskele-
tal scaffolding in shaping the membrane conforma-
tions. In future, we plan to add these effects to the
nonequilibrium framework presented here. We hope
the results obtained here will drive further experimen-
tal efforts in arriving at a deeper understanding of the

fundamental issues governing organelle morphogene-
sis.
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42 J. Solon, J. Pécréaux, P. Girard, M.-C. Fauré,
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Eukaryotic cells are characterized by having well defined internal membrane 

bound organelles with distinct morphological identity. A central issue in cell 

biology is the physical and chemical origins of organelle 

morphology. We explore this issue in the context of 

organelles subject to intense membrane trafficking. Using a 

dynamical Monte Carlo simulation, which incorporates the 

active curvature modifying  processes, !we show 

that closed membranes can exhibit morphologies 

which are strikingly similar to those displayed by 

cellular organelles. Our results suggest that the 

complex ramified shapes of cell organelles can 

also be a result of active material transport, thus 

placing non-equilibrium driven processes at the heart 

of organelle morphogenesis.
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