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We connect the intermittent single particle motion and the macroscopic dynamics in experiments on 
colloidal glasses. 
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Glass–forming materials are characterized by an intermittent motion at the microscopic scale. Particles spend most oftheir
time rattling within the cages formed by their neighbors, and seldom jump to a different cage. In molecular glass formersthe
temperature dependence of the jump features, such as the average caging time and jump length, characterize the relaxation
processes and allow for a short–time prediction of the diffusivity. Here we experimentally investigate the cage–jump motion of
a two–dimensional hard—sphere–like colloidal suspension, where the volume fraction is the relevant parameter controlling the
slow down of the dynamics. We characterize the volume fraction dependence of the cage–jump features and show that, as in
molecular systems, they allow for a short time prediction ofthe diffusivity.

1 Introduction

The glass transition occurring in many materials can be in-
duced by changing different control parameters. In molecular
liquids, for example, the temperature is the relevant control pa-
rameter1,2, while in hard sphere systems the transition is con-
trolled by the density3–5. In other systems, such as attractive
or soft colloids, both temperature and density play an impor-
tant role6–8. Despite this variety, glass–forming materials ex-
hibit common features. Indeed, on approaching the glass tran-
sition one observes a dramatic increase of the relaxation time,
a vanishing diffusivity, the breakdown of the Stokes–Einstein
relation9 and the emergence of dynamical heterogeneities10.
At the microscopic level, one observes the emergence of an
increasingly intermittent single particle motion, both inequi-
librium supercooled liquids11,12 and aging glasses13. Indeed,
in glassy systems particles spend most of their time confined
within the cages formed by their neighbors, and seldom make
a jump to a different cage. This universality suggests that
jumps might be the elementary irreversible events allowingfor
the relaxation of the structural glasses12. If this is so, then par-
ticles move performing a random random walk with step size
of average length〈∆rJ〉, and average duration,〈∆tJ〉. Since
the jump duration is small with respect to relaxation time, an
important consequence of this scenario is the possibility of de-
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termining the diffusivityD on the time–scale of the jump du-
ration, i.e. well before the system enters the diffusive regime.
Indeed, one expects

D = ρJ
〈∆r2

J〉

〈∆tJ〉
(1)

whereρJ is the density of jumps, i.e. the fraction of parti-
cles that are making a jump at every instance of time. We
have recently investigated this scenario via numerical simula-
tions based on a molecular liquid model12, through an algo-
rithm able to segment the trajectory of each particle in cages
and jumps. This allowed to verify that jumps are irreversible
events, and that the relation between the features of the cage–
jump motion and the diffusivity holds as the dynamics slow
down by lowering the temperature.

In this paper we experimentally investigate whether a simi-
lar scenario holds in hard sphere like systems, where the den-
sity is the relevant control parameter and the temperature plays
a minor role, as it simply fix the dynamical time-scale. This
is not obvious, as the physical mechanisms responsible for the
slow down of molecular and of hard sphere systems might be
different. Indeed, in the first case the slow down occurs on
cooling as the system spends an increasing amount of time
close to minima of its potential energy landscape14–19. Con-
versely, in hard sphere systems the slowing down has a purely
entropic origin, and the elementary relaxation events might
not be single particle jumps, but rather structural rearrange-
ments involving a finite number of particles20,21. Via the ex-
perimental investigation of a two–dimensional hard–sphere–
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like colloidal system, here we show that particle jumps are
irreversible and that they are short lived with respect to the re-
laxation time. This allows for a short time prediction of the
diffusivity of hard–sphere sphere systems via Eq. 1.

2 Methods

2.1 Experiments

We have experimentally investigated the motion of a two–
dimensional layer of colloidal particles immersed in water.
The sample was a 50:50 binary mixture of silica beads, with
bead diameters 3.16±0.08 and 2.31±0.03 µm respectively,
in a≈ 1.4 ratio known to prevent crystallization. The sample
cell was prepared with a microscope slide and a No.1 thick-
ness coverslip separated by two Parafilm stripes. Heating the
whole cell up to 90◦C allowed the Parafilm stripes to melt and
then to glue the two glasses. The resulting sample cell thick-
ness was about 90-100µm. The silica particles, being heavier
than water, settle on the bottom coverslip creating a two di-
mensional system of free diffusing particles. We image the
system using a standard microscope equipped with a 40x ob-
jective (Olympus UPLAPO 40XS). The images were recorded
using a fast digital camera (Prosilica GE680). At the high-
est volume fraction, we image roughly a thousand of particles
in the field of view of our microscope (see Fig. 1a). Particle
tracking was performed using custom programs.

To avoid bacterial contamination both the bead mixture
and the sample cell were carefully washed several times with
ethanol and then with distilled highly purified MilliQ water.
To avoid particle sticking through Van der Waals forces, the
beads were dispersed in a water surfactant solution (TritonX-
100, 0.2 % v/v). With this concentration the particles did not
stick to the coverslip for days. The sample temperature was
continuously monitored during experiments, remaining stable
within 1◦C around the room temperature (T = 22◦C).

We have investigated different volume fractionsφ , in the
range 0.64–0.79. At higher volume fractions the time required
for the particles to settle down in a single monolayer was too
long to avoid particle sticking.

2.2 Cage-jump detection algorithm

We segment each of the experimentally recorded particle
trajectory in a sequence of cages and jumps, as illustrated in
Fig. 1c and d. We use an algorithm12 that associates to each
particle, at each timet, the fluctuationsS2(t) of its position
computed over the interval[t − 10tb : t + 10tb], with tb ≃ 1s
being the ballistic time. At timet, a particle is considered
in a cage ifS2(t) < 〈u2〉, as jumping otherwise. Here〈u2〉
is the Debye–Waller factor, that we determine from the mean
square displacement as in Ref. 22 and whose volume fraction

(a) (b)

(c) (d)
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Fig. 1 (a) Snapshot of the investigated system at volume fraction
φ = 0.76. (b) Trajectories of all particles in the region highlighted in
(a). A portion of one such trajectory segmented in cages and jumps
is illustrated in real space (c) and in the(x, t) and(y, t) space (d).

dependence is shown in Fig. 2b. At each instant the algorithm
gives access to the density of jumps,ρJ, defined as the fraction
of particles which are jumping, and to the density of cages,
ρC = 1−ρJ. By monitoring whenS2 equals〈u2〉, we are able
to identify the time at which each jump (or cage) starts and
ends. That is, this approach explicitly considers that jumps
are processes with a finite duration.

3 Results

3.1 Glassy dynamics

We have investigated the slow dynamics of the system con-
sidering the volume fraction dependence of the mean square
displacement,r2(t), and of the persistence correlation func-
tions, p(t), respectively illustrated in Fig. 2a and Fig. 3. The
persistence correlation function is defined, in analogy to lat-
tice models, as the fraction of particles that has not jumpedup
to timet 23–25.

As the volume fraction increases, the mean square displace-
ment develops a long plateau before entering the diffusive
regime, as usual in glass–forming systems. The value of this
plateau is the Debye–Waller factor〈u2〉, and estimates the
amplitude of the vibrational motion before the system relax.
We have measured〈u2〉 as the value of the mean square dis-
placement at the time at which its logarithmic time derivative
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Fig. 2 (a) Mean square displacement for different volume fraction,
as indicated. (b) volume fraction dependence of the Debye–Waller
factor. The dashed line is a guide to the eye. (c) volume fraction
dependence of the diffusivity. The full line corresponds toa power
law fit, D(φ) ∝ (φc−φ)b, with φc ≃ 0.81±0.01 andb= 2.8±0.02.

acquires its minimum value22. Fig. 2b illustrates that〈u2〉,
which is the only parameter required by the algorithm used to
segment particle trajectories, gradually decreases as thevol-
ume fraction increases. Fig. 2c illustrates the volume frac-
tion dependence of the diffusivityD, that we estimate from the
long time behavior〈r2(t)〉= Dt. We observe the diffusivity to
decrease by three order of magnitudes following a Mode Cou-
pling power law behaviorD ∝ (φc−φ)b, with φc ≃ 0.81±0.01
andb= 2.8±0.02.

Fig. 3 shows the decay of the persistence at different vol-
ume fraction. From this decay we have extracted the typical
relaxation time,p(τ) = 1/e, whose volume fraction depen-
dence is illustrated in the inset. The relaxation time is well
described by a power law functional form,τ(φ) ∝ (φc−φ)−c,
with φc ≃ 0.81±0.01 andc= 2.6±0.02. The critical volume
fraction and the critical exponents describing the behavior of
τ and that ofD are compatible. This indicates that, despite
the presence of a marked glassy dynamics, as apparent from
the plateau observed in the mean square displacement at the
highest investigated volume fraction, the system is still in the
so-called mode–coupling regime.

3.2 Cage–jump dynamics

We now consider the temporal and spatial features of the cage–
jump motion, and their volume fraction dependence. We start
by considering the temporal features, summarized in Fig. 4.
Panel a illustrates, for different values of the volume fraction,
the distributionF(tp) of the time particles persist in their own
cages before making the first jump aftert = 0. This is of inter-
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Fig. 3 Persistence correlation functions for increasing values of φ ,
from left to right. The values ofφ are as in Fig. 2a. The inset
illustrates the volume fraction dependence of the persistence
relaxation time. The full line is a power law fit,τ(φ) ∝ (φc−φ)−c,
with φc ≃ 0.81±0.01 andc= 2.6±0.02.

est as directly related to the persistence correlation function,
p(t) = 1−

∫ t
tp=0F(tp)dtp26–28. Panel b illustrates the distri-

butionP(tw) of the time particles wait in a cage between two
subsequent jumps, i.e. the cage duration. In the continuous
time random walk approximation29, these two distributions
are related byF(tp) ∝

∫ ∞
tp P(tw)dtw. The two distributions are

characterized by different average values,〈tp(φ)〉 and〈tw(φ)〉,
whose volume fraction dependence is illustrated Fig. 4c, to-
gether with the volume fraction dependence of the relaxation
time τ(φ). We observe〈tp(φ)〉 and〈tw(φ)〉 to show a simi-
lar behaviour, and the persistence time to scale exactly as the
relaxation time, consistently with the relation betweenp(t)
andF(tp) mentioned above. In the continuous time random
walk description of the relaxation of structural glasses, the
agreement between〈tp(φ)〉 and 〈tw(φ)〉 implies the validity
of the Stokes–Einstein relation, in agreement with our system
being in the mode–coupling regime. As a further characteri-
zation of the temporal features of the cage–jump motion, we
illustrate in Fig. 4d and e the probability distribution of the
jump duration,Q(∆tJ), which decays exponentially, and the
volume fraction dependence of the average value〈∆tJ〉, which
decreases on compression. An exponentialQ(∆tJ) distribution
has been also observed in model molecular glasses, but in that
case the average value was found to be temperature indepen-
dent12. Fig.s 4d,e offer us the opportunity to clarify that the
elementary process identified with a jump has a finite dura-
tion, which in the present can be of the order of minutes. The
use of the term ‘jump’, which suggests the presence of short–
lived events, is only justified as the jump duration should be
compared with the relaxation time of the system. For instance,
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in this work the ratioτ/〈∆tJ〉 increases from 2, at the smallest
volume fraction with glassy features, to≈ 250, at the highest
volume fraction we have considered.

We finally consider that, at every instant of time, a parti-
cle is either caged or jumping. Accordingly, by observing the
system for a time of the order of the ballistic time, which is
the timescale considered by the protocol used to segment the
trajectory in cages and jump, we can measure the density of
jumpsρJ. This equals the probability that a particle is jump-
ing at a generic timet, and is therefore related to the fraction
of the total time particles spend jumping,

ρJ =
〈∆tJ〉

〈tw〉+ 〈∆tJ〉
. (2)

Fig. 4f shows that this equation is verified by our data. As
mentioned above, as the dynamics slows down the jump du-
ration becomes much smaller than the relaxation time, so that
∆tJ(φ)≪〈tw(φ)〉, andρJ ≃ 〈tw〉−1. We also note that in order
to compute the r.h.s of the above equation one has to estimate
〈tw〉: this requires to reliably sample the waiting time distribu-
tion P(tw), an operation accomplished on a time scale of the
order of the relation timeτ. Conversely the l.h.s. can be es-
timated on a small and density independent timescale of the
order of〈∆tJ〉, as the only requirement is to observe a finite
number of jumps. As the density decreases, the ratio〈∆tJ〉/τ
decreases, which implies that we predict a long time feature
from a short time analysis.

As a final characterization of the cage–jump motion, we
have considered the jump length∆rJ, defined as the distance
between the centers of mass of two adjacent cages, and the

cage gyration radiusRC =
√

〈r2
i 〉− 〈r i〉2, where the averages

run over the trajectory pointsr i belonging to a given cage. The
probability distribution of the jump length,W(∆rJ), and the
volume fraction dependence of〈∆r2

J〉 are illustrated in Fig.s 5a
and b. As in molecular systems12 W(∆rJ) decays exponen-
tially, and its average value decreases as the dynamics slow
down. We also observe the probability distribution of the gy-
ration radius,V(RC), to decay exponentially, with an average
value decreasing on compression, as illustrated in Fig.s 5cand
d. Fig.s 5b and d show the presence of a separation of length-
scales in the dynamics, with the average jump length exceed-
ing the average gyration radius of the cage by at least a factor
5 (at the highest investigated volume fraction). This comple-
ments the separation of timescales observed by comparing the
cage and the jump duration.

3.3 Relating glassy and cage–jump dynamics

The characterization of the features of the cage–jump motion
allows to verify the main point of our work, namely the possi-
bility of determining the macroscopic diffusivity from a short
time analysis, through Eq. 1. We stress that this relation isonly
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Fig. 4 Probability distribution of the persistence (a) and of the
waiting time (b), and volume fraction dependence of their average
values (c). Probability distribution of the average jump duration (d),
and volume fraction dependence of its average value (e). Panel (f)
show that the density of jumps is fixed by the average waiting time
and by the average jump duration. In panel (f) the straight line is
y= x; in all other panels lines are guides to the eye.

valid if jumps are irreversible events, as in this case particles
behave as random walkers12, and

D = lim
t→∞

1
Nt

N

∑
p=1

[rp(t)− rp(0)]2 =
1
Nt

N

∑
p=1

θ (p)
J (t)〈∆r2

J〉. (3)

The last equality is obtained considering that, at timet, the
contribution of particlep to the overall square displacement

is due toθ (p)
J (t) jumps of average square size〈∆r2

J〉. The av-

erage number of jumps per particle,〈θJ(t)〉= 1
N ∑N

p=1θ (p)
J (t),

appearing in the last equality can be also written as〈θJ(t)〉 =
t/(〈∆tJ〉+ 〈tw〉). Using Eq. 2,〈θJ(t)〉 andρJ can be related,
〈θJ(t)〉= (ρJ/〈∆tJ〉)t, which substituted in Eq. 3 finally leads
to Eq. 1.

In Fig. 6 we compare the measured value of the diffusivity,

with that predicted by Eq. 1. We findD= mρJ
〈∆r2

J〉

〈∆tJ〉
, with mof

the order of unity, in good agreement with the theoretical pre-
diction. This suggests that, at least in the investigate volume
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a scaling factor≃ 1.2. We stress thatD is estimated at long times,
while ρJ〈∆r2

J〉/〈∆tJ〉 is estimated at short times, well before the
system enters the diffusive regime.

fraction range, jumps are irreversible events.

4 Discussion

Our experimental investigation proves that, in the consid-
ered volume fraction range, single particle jumps are the ir-
reversible events that allow for the relaxation of hard sphere
colloidal glasses. This allows for a short time prediction of

the diffusivity. This result complements our earlier numerical
study of a model molecular glass12, where we also proved
single particle jumps to be irreversible events. Indeed, we
have found the same physical scenario to capture both the
slow down of the dynamics of molecular glass formers, for
which temperature is the relevant control parameter, and of
colloidal glasses, for which density is the control parame-
ter. This unifying approach is relevant considering that al-
ternative approaches to describe the relaxation of molecular
glasses, that identify irreversible events as transition in the en-
ergy landscape14–16, are not relevant in hard–sphere colloidal
systems.

Open questions ahead include the investigation of the valid-
ity of this approach at higher volume fractions, where the irre-
versible events might involve the rearrangement of many par-
ticles, as previously speculated20,21. In addition, it would be
interesting to consider three dimensional systems, even tough
we expect the dimensionality to play a minor role, both be-
cause structural glasses exhibit an intermittent single particle
motion in both two and three dimensions, as well as because
frustration effects, that might favor collective relaxation pro-
cesses, are less relevant in high dimensions.
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