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We present a framework for calculating the surface density profile of a stain deposited by a drop with a receding contact line.

Unlike a pinned drop, a receding drop pushes fluid towards its interior, continuously deposits mass across its substrate as it

evaporates, and does not produce the usual “coffee ring.” For a thin, circular drop with a uniform evaporation rate, we find the

surface density of the stain goes as η(r) ∝

(

(r/a0)
−1/2

− r/a0

)

, where r is the radius from the drop center and a0 is the initial

outer radius. Under these conditions, the deposited stain has a mountain-like morphology. Our framework can easily be extended

to investigate new stain morphologies left by drying drops.

1 Introduction

Solute deposition from evaporating sessile drops is an impor-

tant tool with varied applications. Evaporation-controlled de-

position is used in colloidal self assembly,1–5 electronics,6,7

particle segregation,8 and medical physics.9 Currently studied

effects on evaporative deposition include Marangoni flow,10

substrate shape,11,12 and surface-bound colloids.13 Here, we

examine the impact of a receding contact line on solute depo-

sition in an evaporating sessile drop.

Evaporation and changes in height force fluid flow within a

drying drop and eventually govern the shape of its deposited

stain. Often, the outer edge of the drop pins to the surface,

giving rise to the “coffee ring effect,”14,15 but there are many

cases when the edge does not stay pinned throughout evapora-

tion. Many studies examine the connection between stain mor-

phology and the stick-slip behavior of the contact line.16–22

Furthermore, a recent study by Li et al23 found that drops

containing poly(ethylene glycol) recede during the majority of

their evaporation and only show contact line pinning at early

times. These drops form mountain-like deposits in the center

of the drop instead of the usual ring morphology. Other ex-

periments have also found unusual, mountain-like stain mor-

phologies for receding drying drops.24,25 In these cases, the

standard intuition from the coffee ring effect does not apply.

When the drop’s edge freely recedes, height changes near the

edge of the drop are larger than height changes at the cen-

ter, which pushes fluid radially inward as the drop evaporates.

Furthermore, mass deposits when it is overtaken by the reced-
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ing edge of the drop, which means mass continuously deposits

across the substrate as the drop evaporates.

Despite these differences, many of the ideas from the cof-

fee ring effect can be extended to drops with receding contact

lines. In this paper, we theoretically examine solute deposi-

tion in a thin, circular drop with a uniform evaporation profile

across its surface and a receding contact line. For this specific

case, the surface density of the stain can be calculated analyt-

ically. To find the surface density of the deposited stain we

1. find the height profile as a function of time;

2. determine the fluid velocity from evaporation and

changes in height;

3. solve for the trajectory of fluid parcels; and

4. track the evolution of masses bound by fluid parcels.

We find an exact formula for the surface density of the stain

deposited from uniform evaporation. Our calculation serves as

an illustrative example of the effects from a receding contact

line and our method can easily be implemented numerically to

handle more complex evaporation profiles.

2 Theoretical Regime

In our calculation, we consider small, circularly symmetric

drops with slow dynamics. In these drops, surface tension

dominates over gravitational, viscous, and inertial stresses.

The drop height evolves quasi-statically and surface tension

alone governs its shape. For drops with viscosity, density, and

surface tension comparable to water, this regime corresponds

to drop radii of a few millimeters and drying times of thou-

sands of seconds. Note that these scales compare with scales

found in experiments.15,23
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Evaporation from the drop’s surface determines the exact

form of the time dependence. The total evaporation must ex-

actly balance the drop’s volume change since evaporation con-

serves the mass of the fluid. Therefore,

dV

dt
=−

∫ a(t)

0
J(r, t)2πr dr, (4)

where the volume, V , is determined by the height profile: V =
1
2
πH(t)a2(t).
Note that Eq. 4 holds for any J(r, t). In the case where the

evaporation rate is uniform, Eq. 4 implies

πa(t)H(t)ȧ(t)+
1

2
πa2(t)Ḣ(t) =−πa2(t)J0, (5)

where J(r, t) = J0. This differential equation is solved by em-

ploying the fact that H(t) ∝ a(t). Then,

a(t) = a0

(

1−
t

t f

)

(6)

and

H(t) = H0

(

1−
t

t f

)

, (7)

where a0 is the initial radius of the drop, H0 is the initial height

at the center, and t f =
3H0
2J0

is the final drying time.

3.2 Fluid Velocity

Together, the height profile and continuity equation uniquely

determine the depth averaged velocity profile, u(r, t). After

substituting h(r, t) into Eq. 2, the velocity is given by

u(r, t) =

{

−
r

4(t f −t) r ≤ a(t)

0 r > a(t)
(8)

The functional form of u(r, t) immediately provides interest-

ing results. In contrast to the pinned drop case, u is inward

and has a maximum value which is independent of time. At

any time, the maximum velocity of a fluid parcel in the drop is

u(a(t), t) = −a0/(4t f ). This maximal fluid velocity is slower

than the rate that the edge recedes, ȧ(t) =−a0/t f . Therefore,

the edge of the drop overtakes every fluid parcel that originates

at a non-zero radius before the drop finishes drying. After a

fluid parcel is overtaken, its mass deposits onto the substrate

and remains immobile throughout the remainder of the evap-

oration. This deposition mechanism is qualitatively different

from that for pinned drops.

4 Surface Density Profile

The evolution of the initial mass of solute determines the final

surface density profile, η(r). After the drop dries, the mass

Symbol Definition

R Final deposition radius and Lagrangian label for a

mass of solute

M(R) Mass bound by inner radius R after deposition is

complete

τ(R) Deposition time; a(τ(R)) = R

µ(R) Initial radius bounding M(R)
ξ (R, t) Trajectory of bounding radius over time; ξ (R,0) =

µ(R) and ξ (R,τ(R)) = R

u(r, t) Radial velocity of fluid at radius r and time t

η(r) Deposited surface density profile

Table 1 Definitions of symbols

M(R) deposited on the substrate between a radius R and the

initial edge of the drop a0 is the integral over the surface den-

sity:

M(R) =
∫ a0

R
2πrη(r)dr, (9)

so that M′(R) ≡ 2πRη(R). At time t = 0, M(R) can also be

calculated from the initial height profile. If φ0 is the initial

density of solute and µ(R) is the radius that initially bounds

the mass M(R),

M(R) =
∫ a0

µ(R)
2πrφ0h(r,0)dr. (10)

(See Fig. 3) Then, M′(R) explicitly connects η , h, and µ:

η(R) = φ0h(µ(R),0)
µ(R)

R
µ ′(R). (11)

Interpreted piece by piece, this is a very intuitive equation.

The annular parcel of fluid that deposits at R determines the fi-

nal surface density. The parcel originated at µ(R) with a local

area density of φ0h(µ(R),0). The circumference of the par-

cel decreases after being transported from µ(R) to R, leading

to an increase in density by a factor of µ(R)/R. The annular

parcel is also be compressed or extended radially during its

evolution, which further alters its density by a factor of µ ′(R).
Therefore, µ(R) determines the final surface density.

We track the evolution of an annular fluid parcel that de-

posits at R backwards in time to find its initial radius. Let

ξ (R, t) be the trajectory of a fluid parcel that finally deposits

at R. The parcel will deposit on the surface at some time τ(R).
By definition, ξ (R,τ(R)) = R at this time. Since a fluid par-

cel deposits after the receding edge overtakes it, the parcel

deposits when a(τ(R)) = R. Substituting this condition into

Eq. 6 yields

τ(R) = t f (1−R/a0). (12)
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Fig. 4 (a) Deposited surface density profile (blue, solid) compared

with φ0h(r,0), the initial surface density (yellow, dashed). Note that

the mass is concentrated and the surface density diverges at the

center. The stain is shaped like a mountain instead of a ring. (b)

Perspective view of the deposited stain.

Remarkably, the power-law governing the deposit shape is

controlled by experimental conditions. As noted above, only

the behavior of u(r) near the center is relevant for determin-

ing the density profile η(r). The exponent ν can be easily

calculated from the evaporation and height profiles without

explicitly solving for the complete flow field:

ν =
1

2

(

1−
J(0)/J̄

ḣ(0)/ ˙̄h

)

, (17)

where the overbar indicates the average over the drop.27 This

formula depends only on the existence of a stationary and

regular stagnation point; thus it is applicable to unpinned as

well as pinned circular drops. The unpinned aspect only in-

fluences the ḣ(0)/ ˙̄h factor (See Fig. 2). When ν > 0, fluid

flows away from the center and the surface density will fade

to 0. For ν < 0, the density diverges and the stain forms a

mountain. For a drop evaporating on a dry substrate, ν can

be calculated analytically. The evaporation profile for a drop

on a thin dry substrate is J(r, t) = J0 f (λ )
(

1− (r/a(t))2
)−λ

,

where λ = (π −2θc)/(2π −2θc).
15 In the limit where θc ap-

proaches 0, ν = 1/8. In this case, the stain fades at the center

even though the contact line recedes.

It is also worth noting that Eqs. 2, 3, 4, and 11 are generic

for a thin drop with a receding contact line. Even though the

functional form of the evaporation controls the velocity pro-

file, the time dependence of the height profile, and the final

form of the surface density, it is possible to follow the proce-

dure outlined in this paper to find the surface density. In spe-

cial cases, the surface density can be found analytically, but it

is not difficult to extend this analysis numerically to explore

the morphology induced by other evaporation profiles.

6 Conclusion

The fluid motion within a drying drop is directly influenced

by the behavior of its contact line. Unlike a pinned drop, a

receding contact line pushes fluid inwards and the stain de-

posits continuously as the drop evaporates. For a circular drop

with Poisson ratio ν at its center, the power law of the surface

density profile near the center is η ∝ (r/a0)
2ν . To apply this

framework accurately to an experiment requires an accurate

estimate of the surface evaporation. It is not clear, for exam-

ple, whether deposited mass will retain moisture, which would

greatly reduce the evaporation from the edges of the drying

drop. Once an evaporation profile is obtained, our method can

quickly predict the profile of the deposited stain.
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We present a framework for calculating the surface density profile of a stain

deposited by an evaporating drop with a receding contact line. A thin drop

with a uniform evaporation profile deposits a mountain shaped stain, as shown

in image.
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