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Topological constraints can affect both equilibrium and dynamic properties of polymer systems, and can play a role in the
organization of chromosomes. Despite many theoretical works, the effects of topological constraints on the equilibrium state of a
single compact polymer have not been systematically studied. Here we use simulations to address this longstanding problem. We
find that sufficiently long unknotted polymers differ from knotted ones in the spatial and topological states of their subchains. The
unknotted globule has subchains that are mostly unknotted and form asymptotically compact RG(s) ∼ s1/3 crumples. However,
crumples display high fractal dimension of the surface db = 2.8, forming excessive contacts and interpenetrating each other. We
conclude that this topologically constrained equilibrium state resembles a conjectured crumpled globule [Grosberg et al., Journal
de Physique, 1988, 49, 2095], but differs from its idealized hierarchy of self-similar, isolated and compact crumples.

1 Introduction

Topological constraints, i.e. the inability of chains to pass
through each other, have significant effects on both equilib-
rium and dynamic properties of polymer systems1–3 and can
play important roles in the organization of chromosomes3–6.
Early theoretical works suggested that topological constraints
per se compress polymer rings or polymer subchains by topo-
logical obstacles imposed by surrounding subchains7–9. This
compression makes a subchain of length s form a space-
filling configuration that has an average radius of gyration
RG(s)∼ s1/3. Recent simulations of topologically constrained
unconcatenated polymer rings in a melt10–14 have demon-
strated the effect of compression into space-filling configura-
tions and confirmed s1/3 scaling, thus providing strong support
to early conjectures.

The role of topological constraints in the equilibrium state
of a single compact and unknotted polymer remains unknown.
Earlier works3,7,8 have put forward a concept of the crumpled
globule as the equilibrium state of a compact and unknotted
polymer. In the crumpled globule, the subchains were sug-
gested to be space-filling and unknotted. This conjecture re-
mained untested for the quarter of the century. Here, we test
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this conjecture by comparing equilibrium compact states of a
topologically constrained and unknotted polymer, referred to
below as the unknotted globule, with those a topologically re-
laxed one, referred to below as the knotted globule (Fig. 1).

Recent computational studies examined the role of topolog-
ical constraints in the non-equilibrium (or quasi-equilibrium)
polymer states that emerge upon polymer collapse15–19. This
non-equilibrium state, often referred to as the fractal glob-
ule6,15, can indeed possess some properties of the conjectured
equilibrium crumpled globule. Properties of the fractal glob-
ule, its stability20, and its connection to the equilibrium state
are yet to be understood.

Elucidating the role of topological constraints in equilib-
rium and non-equilibrium polymer systems is important for
understanding organization of chromosomes. Long before ex-
perimential data on chromosome organization became avail-
able15, the crumpled globule was suggested as a state of
long DNA molecules inside a cell3. Recent progress in mi-
croscopy21 and genomics22 provided new data on chromo-
some organization that appear to share several features with
topologically constrained polymer systems15,23,24. For ex-
ample, segregation of chromosomes into territories resem-
bles segregation of space-filling rings5,12, while features of
intra-chromosomal organization revealed by Hi-C technique
are consistent with a non-equilibrium fractal globule emerg-
ing upon polymer collapse6,15,25 or upon polymer deconden-
sation23. These findings suggest that topological constraints
can play important roles in the formation of chromosomal ar-
chitecture4.

Here we examine the role of topological constraints in the
equilibrium state of a compact polymer (Fig. 1). We perform
equilibrium Monte Carlo simulations of a confined unentan-
gled polymer ring with and without topological constraints.
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Without topological constraints a polymer forms a classical
equilibrium globule with a high degree of knotting26,27. A
polymer is kept in the globular state by impermeable bound-
aries, rather than pairwise energy interactions, allowing fast
equilibration at a high volume density.

We find that topological states of closed subchains (loops)
are drastically different in the two types of globules and reflect
the topological state of the whole polymer. Namely, loops of
the unknotted globule are only weakly knotted and mostly un-
concatenated. We also find that spatial characteristics of small
knotted and unknotted globules are very similar, with differ-
ences starting to appear only for sufficiently large globules.
Subchains of these large unknotted globules become asymp-
totically compact (RG(s)∼ s1/3), forming crumples. Analyses
of the fractal dimension of surfaces of loops suggest that crum-
ples form excessive contacts and interpenetrate each other.
Overall, the asymptotic behavior we find support the conjec-
tured crumpled globule concept7. However, our results also
demonstrate that the internal organization of the unknotted
globule at equilibrium differs from an idealized hierarchy of
self-similar isolated compact crumples.

2 Results

2.1 Model

A single homopolymer ring with excluded volume interac-
tions was modeled on a cubic lattice and confined into a
cubic container at volume density 0.5. The Monte Carlo
method with non-local moves28 allowed us to study chains
up to N = 256000. If monomers were prohibited to occupy
the same site, this Monte Carlo move set naturally constrains
topology, and the polymer remains unknotted. Setting a small
finite probability for two monomers to occupy the same lat-
tice site would let two regions of the chain cross. This would
relax topological constraints while largely preserving the ex-
cluded volume (Fig. S7). The topological state of a loop was
characterized by κ, the logarithm of the Alexander polyno-
mial evaluated at −1.127,29,30. To ensure equilibration, we
estimated the scaling of the equilibration time with N for
N ≤ 32000, extrapolated it to large N, and ran simulations
of longer chains, N = 108000 and 256000, to exceed the es-
timated equilibration time (see Supplement and Fig. S9 for
details). We also made sure that chains with topological con-
straints remain completely unknotted through the simulations,
while polymers with relaxed topological constraints become
highly entangled27 (Fig. S8)

2.2 Topological properties

First, we asked how the topological state of the whole poly-
mer influences the topological properties of its subchains. Be-

Knotted  globuleUnknotted  globulea b

Fig. 1 Representative conformations of two different types of
globules (confined polymer rings, length N = 256000): (a) the
unknotted globule formed by a single polymer ring with topological
constraints; (b) the knotted globule formed by a polymer ring
without topological constraints. Both chains are painted in
red-yellow-green-blue along the polymer length.

cause a topological state can be rigorously defined only for a
closed contour, we focused our analysis on loops, i.e. sub-
chains with two ends occupying neighboring lattice sites. Fig.
2a presents the average knot complexity �κ(s)� for loops of
length s for both types of globules. We found that loops of the
knotted globule were highly knotted, with the knot complexity
rising sharply with s. Loops of the unknotted globule, on the
contrary, were weakly knotted, and their complexity increased
slowly with length. Their knotting complexity was also very
variable, indicating the abundance of slip knots31 (Fig. S5).

This striking difference in the topological states of loops
for globally knotted and unknotted chains is a manifestation
of the general statistical behavior of so-called matrix–valued
Brownian Bridges (BB)32. The knot complexity κ of loops in
the topologically unconstrained globule is expected to grow as
κ(s)∼ s2. Contrarily, due to the global topological constraint
imposed in the unknotted globule, the knot complexity of its
loops grows slower, κ(s) ∼ s, which follows from the statis-
tical behavior of BB in spaces of constant negative curvature
(see Appendix, Fig. 2a, and32–35 for details). Our simulations
are in good agreement with this theory (Fig. 2a).

Another topological property of loops of a globule is a de-
gree of concatenation between the loops. We computed the
linking number for pairs of non-overlapping loops in each
globule (Fig. 2b) and found that loops in the unknotted globule
are much less concatenated than loops in the knotted globule.

Taken together, these results show that the topological state
of the whole (“parent”) chain propagates to the “daughter”
loops. While loops of the unknotted globule are linked and
knotted, their degree of entanglement is much lower than that
in the topologically relaxed knotted globule (Fig. S5). Our re-
sults also demonstrate that loops of a single unknotted globule
are not equivalent to recently studied rings in a melt, which
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Fig. 2 Topological properties of polymer loops in the knotted

and unknotted globules. (a) Knot complexity of polymer loops as a
function of their length, s, for chains of different length N (shown by
colors) in knotted (dashed) and unknotted (solid) globules. (b)
Distribution of the linking numbers for non-overlapping loops of
length s = 9000 to 11000 in 32000-long globules.

were unknotted and unconcatenated. We further examine this
parallel below.

2.3 Spatial properties

Next, we examined the effects of topological constraints on
the spatial properties of loops. We computed an average gy-
ration radius RG(s) (Fig. 3) as a function of loop length s, in
chains of different length N. The two types of globules show
different trends in RG(s).

The behavior of RG(s) for knotted globules has two regimes
that are well-known and described by the Flory theorem36.
Shorter subchains behave as Gaussian coils RG(s) ∼ s1/2 un-
til they reach the confining walls at R ∼ N1/3, i.e. for s �
sc ∼ N2/3. For longer subchains, s � sc, RG(s) plateaus at
RG(s) ∼ N1/3. Note that this is qualitatively similar to RG(s)
for a phantom chain confined to a box (Fig. S1). Overall, for
knotted globules, our results are in line with theoretical pre-
dictions.

Subchains in unknotted globules were proposed to be com-
pressed by topological constraints and follow RG(s)∼ s1/3 re-
lation7. Surprisingly, we do not observe any significant com-
pression of loops in chains of length N ≤ 13500, as there is
little difference between RG(s) curves for the two types of
globule. For longer chains, N ≥ 105, we observe increasing
difference between RG(s) of knotted and unknotted globules.
Little difference is seen in other moments of the distribution

of subchain sizes (Fig. S3). In the unknotted globules, we ob-
serve a range of subchain length, 103 ≤ s ≤ 104, in which the
subchains are compressed (RG(s) ∼ s1/3) and the curves for
the two largest systems collapse. However, this scaling regime
arises as a gradual decrease from RG(s)∼ s1/2 (see Fig. S11),
and thus cannot be established unambiguously.
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Fig. 3 Spatial properties of loops in the knotted and unknotted

globules. (a) The average radius of gyration RG(s) for loops of
length s. Inset shows conformations of three 10000-monomer loops
for N = 256000 globules. Circles indicate subchains of length
(2 ·N)2/3, which is equal to L2, squared box size. (b) Dependence of
RG(s = (2N)2/3) on the chain size N. Colored circles match to
circles in the Fig. 3a; grey circles denote N = 2000 and N = 32000,
which are not shown in the Fig. 3a.

Earlier studies have established that topological constraints
become relevant for chains that are several times longer than a
characteristic length Ne called the enganglement length4,36–38.
For a similar system, an equilibrium melt of rings at the same
volume density, it was estimated that Ne ≈ 17511, and topo-
logical constraints become relevant only above several Ne, i.e.
for N � 100011. Following this logic, we expect that in our
system topological constraints become relevant for subchains
of length s � 1000. However, subchains s ≥ sc experience
confinement, which overshaddows topological compression.
Indeed, when we consider only loops not touching the bound-
ary, we see the difference for subchains s � 1000 (Fig. S4).
For topological constraints to be relevant, a polymer should
have subchains that do not experience external confinement
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(s ≤ sc ∼ N2/3) but are sufficiently long to experience topo-
logical compression (s � 1000). This sets a lower limit for a
polymer to experience topological constraints (N2/3 � 1000).
Consistently, we observe a difference between RG(s) for the
two types of globules for N � 32000 (Fig. 3a, S11).

To test the conjecture that RG(s) ∼ s1/3, we need to sepa-
rate compression by topological constraints from the effect of
confinement. To this end, we focused on loops of size s = sc,
which are the largest loops not affected by confinement. Fig.
3b presents RG(sc) as a function of N and clearly shows dis-
tinct scalings for knotted and unknotted globules. The knot-
ted globule follows RG(sc) ∼ N1/3, which is a consequence
of RG(s) ∼ s1/2. For the unknotted globule, however, we
observe RG(sc) ∼ N2/9, which corresponds to RG(s) ∼ s1/3.
Thus, in agreement with earlier conjectures7,33, topological
constraints lead to the formation of ”space-filling” subchains,
i.e. R(s) ∼ s1/3. However, the compressing effect of topo-
logical constraints becomes evident only for very long poly-
mers, such as N � 105. Space-filling crumples are visible in
unknotted globules of length N = 256000, but the difference
is visually subtle (Fig. 4). Distinguishing individual knotted
and unknotted globules by eye is challenging, but a pattern is
visible when several globules are compared.

Kn
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nk
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tt
ed

Fig. 4 Compression of subchains in unknotted loops. Seven
consecutive subchains of length s = 10000 are highlighted with
consecutive colors (red, orange, yellow, green, marine, blue, violet)
in four knotted and unknotted N = 256000 long globules; rest of the
chain is shown in grey.

Our analysis reveals significant effects of global topolog-
ical constraints on the topological and spatial characteristics
of loops. Next, we asked whether topological states and sizes
of loops are intrinsically connected. We computed RG and κ
for loops of length s = 20000 in N = 256000 globules (Fig.
S6). Despite having similar RG, loops from the two types of
globules show different knot complexity: all loops from the
unknotted globule were significantly less knotted than loops
of the same length in the knotted globule. Moreover, κ for
loops in the knotted globule negatively correlates with RG:
more compact loops form more complex knots in the system
were no topological constraints were present. This relation-
ship, however, does not hold across globules: loops in the un-

knotted globule are on average more compact and less knot-
ted. These observations highlight that there is no simple rela-
tionship between spatial and topological properties of closed
contounrs.

2.4 Contact probability

Another important characteristic of internal polymer orga-
nization is the probability Pc(s) of a contact between two
monomers separated by a contour length s. For example,
for a 3D random walk, Pc,RW (s) ∼ s−3/2 (see Supplemen-
tal Information). Recently developed experimental technique,
Hi-C, measures Pc(s) experimentally for chromosomes in-
side cells15,22. Comparison of experimental and theoreti-
cal Pc(s) can shed light on polymer organization of chromo-
somes15,39,40. In our previous work, we found that a non-
equilibrium fractal globule, which emerges upon a polymer
collapse, has Pc(s) ∼ sα , α ≈ −1. The Pc(s) scaling for the
fractal globule agrees with Pc(s) from the Hi-C data for hu-
man chromosomes better than other polymer ensembles15.

Figure 5 presents Pc(s) for the knotted and unknotted glob-
ules. For the knotted globule, as expected, we observed two
regimes Pc(s) ∼ s−3/2 for s � sc, followed by a plateau for
s � sc

41. As above, an equilibrium globule without topo-
logical constraints can be considered as a ”gas of random
walks”41, i.e. short chains (s � sc) behave as random walks.
Different random walks are mixed and are equally likely to
contact each other, leading to the plateau of Pc(s) for s � sc.
Subchains in the unknotted globule, however, experience ad-
ditional confinement by topological constraints and have a dif-
ferent Pc(s). For N ≤ 13500, little difference is observed be-
tween the two types of globules, which is consistent with our
observation that topological effects play little role for shorter
polymers.

Longer unknotted globules show a different Pc(s) curve
with a less steep decline of Pc(s) for small s and no distinct
plateau for large s. Pc(s) plots and their derivatives (Fig. S11)
suggest a possible scaling regime Pc(s)∼ sα , −1 < α <−0.8
for loops of s = 103 − 104, where topological constraints are
expected to play a bigger role. The value observed for the melt
of rings11,12, α ≈−1.17, is outside of this range highlighting
a difference between these systems.

Note, however, that estimating scaling of Pc(s) for both
types of globules is challenging due to a broad transition be-
tween different regimes and the effects of confinement. As
seen on Fig. S11, even for the knotted globule, where the
scaling of Pc(s) ∼ s−3/2 is known, it can be observed only
asymptotically.
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Fig. 5 Scaling of the contact probability. Pc(s) is shown for
knotted and unknotted globules of different sizes. Compare to Fig.
3a.

2.5 Fractal structure of loops

Loops of the unknotted globule become asymptotically com-
pact as the polymer size increases, forming crumples. The
question that follows is whether such crumples become more
isolated from each other. To answer this question, we studied
shapes of crumples formed by loops; we calculated the fractal
dimension of their surface and corrected for finite-size effects.
For a loop, the surface area of the boundary, A, is defined as
the number of monomers forming contacts with the rest of the
polymer4. The fractal dimension of the loop boundary, db, is
defined by A(s) ∼ sdb/3. Note that db denotes fractal dimen-
sion of the boundary only in the compact subchain regime,
RG ∼ s1/3; for non-compact subchains it measures the scaling
of the subchain boundary with subchain length.

Finite-size effects, i.e. effects of the global confinement on
the loops, can be taken into account by a function that depends
on the fraction of the loop s in the whole chain N, f

� s
N
�
, giv-

ing the surface area A(s,N) = f
� s

N
�

sdb/3 = g
� s

N
�

Ndb/3. We
can then compute db by comparing A for chains with the same
value of s/N, but in globules of different length N (Fig. 6a).
Figure 6b shows db as a function of N and gives asymptotic
behavior of db for large N, where topological constraints be-
come most relevant. As expected, loops in the knotted glob-
ule have db ≈ 3, suggesting that loops fully mix with each
other throughout their entire volume. In the unknotted glob-
ule, however, loops have db ≈ 2.8, indicating that loops are
not fully mixed, yet not fully isolated. A fractal dimension
db = 2 would indicate interactions over two-dimensional sur-
face area, i.e. as bricks stacked together. This result is also
consistent with the fractal dimension of a ring surface ≈ 2.85
found for unconcatenated rings in a melt12, and suggests that
loops of the unknotted globule are not isolated, and form in-
terdigitated compact crumples (Fig. 4).
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Fig. 6 Fractal dimension of a loop surface. (a) The surface area
A(s,N) of loops of length N/2 (left) and N/30 (right) as a function
of chain length N. (b) The fractal dimension of the surface
measured from slopes in (a), as a function of N. The slope in (a) is
estimated from pairwise differences between two neighboring
values of N. Error bars show a standard error of the mean obtained
by bootstrapping. To allow comparisons between error bars, plots
were shifted by a negligible offset along the horizontal axis.

3 Conclusions

Our results provide strong support to the early conjecture7

and reveal several new insights about the effects of topological
constraints on the compact state of a polymer. In agreement
with7, we observe that topological constraints make a compact
polymer acquire a new conformational state, earlier called the
crumpled globule. In this state, the unknotted polymer forms
largely unknotted and weakly concatenated crumples. These
crumples are asymptotically compact (RG(s) ∼ s1/3) and dif-
fer from random walk subchains (RG(s) ∼ s1/2) emerging in
the absence of topological constraints. However, the effect is
hard to detect, since large subchains experience confinement,
while small subchains (less that a few Ne) do not feel topolog-
ical constraints. As a result, only chains of some intermediate
size (103 � s � N2/3) form topologically compressed crum-
ples. Similarly, the effects of topological constraints are most
evident in large globules (N � 105).

Unexpectedly, we also found that the loops in a globally un-
knotted polymer are somewhat knotted and concatenated. The
brownian bridge argument explains this phenomenon and is in
good quantitative agreement with the scaling of κ(s) (Fig. 2).
Knots formed by loops of the unknotted globule are much less
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complex than those in the topologically unconstrained glob-
ule. Overall, this demonstrates how global topological con-
straints imposed in the whole chain propagate into local topo-
logical constraints acting on its subchains.

We found little evidence of the predicted self-similarity in
the internal organization of the unknotted globule. Even the
largest system considered (N = 256000) shows a rather nar-
row (factor of 10 in s) scaling regime in RG(s). Moreover,
the fractal dimension of loop surfaces, db ≈ 2.8, shows that
compact crumples are neither fully isolated (db = 2), nor fully
mixed (db = 3). Some degree of mixing with neighboring sub-
chains makes crumples swell, possibly narrowing the range
of s where subchains are self-similar, and further highlighting
differences between a finite-size unknotted globule and an ide-
alized hierarchical crumpled globule proposed theoretically7.

It is possible that features of the conjectured crumpled
globule can be more evident in a non-equilibrium state that
emerges immediately after polymer collapse (often referred to
as the fractal globule)6,15, rather than in the equilibrium sys-
tem considered here. In the non-equilibrium state, a broader
regime of scaling in Pc(s) and RG(s) suggests that even much
shorter chains have self-similar organization (see also4). We
cannot rule out the possibility that effects other than than topo-
logical constraints, acting on shorter time scales, constraint a
collapsed chain in a quasi-equilibrium or transient state. If it
exists, such a state would be different from the crumpled glob-
ule studied here.

We find many similarities and some notable differences be-
tween the unknotted globule formed by a single ring and the
melt of unconcatenated rings11,12. Both systems show quanti-
tatively similar compression of rings and loops by topological
interactions, as follows from similar RG(s) asymptotic scal-
ings and similar fractal dimension of the surface. The systems
however are different on many levels. While rings in a melt
are monodispersed, unknotted and unconcatenated, loops of a
single polymer have a broad size distribution, are knotted and
concatenated. This variation in size can lead to swelling of
larger loops. Moreover, larger loops experience global con-
finement of the globule. Topologically, the systems are differ-
ent since considered polymer ring has only one global topo-
logical constraint, while the melt has as many constraints as
the number of rings. Nevertheless some characteristics of mid-
size loops in unknotted globules resemble those of rings in a
melt.

Overall, we find that equilibrium state of a single unknot-
ted polymer chain is different from topologically relaxed sys-
tem. It would be interesting to see whether and to what extent
this phenomenon is observed in other physical systems where
topology can play a role.
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Appendix

Statistics of matrix-valued Brownian Bridges

The conditional distributions of a knot complexity of a sub-
part of a globally unknotted polymer chain is typical problem
in the theory of Markov chains and deals with the determi-
nation of the conditional probability for so-called Brownian
Bridges (BB). The investigation of statistics of BB supposes
the determination of the probability P(x, t|0,T ) for a random
walk to start at the point x = 0, to visit the point x at some in-
termediate moment 0 < t < T , and to return to the initial point
x = 0 at the moment T . The same question can be addressed
for BB on the graphs of noncommutative groups, on Riemann
surfaces and for products of random matrices of groups32,34.

Our topological problem to determine the complexity of a
subloop in a globally trivial collapsed polymer chain, allows
natural interpretation in terms of BB. Suppose the following
imaginative experiment. Consider the phase space Ω of all
topological states of densely packed knots on the lattice. Se-
lect from Ω the subset ω of trivial knots. To simplify the set-
ting, consider a knot represented by a braid, as shown in the
Fig. 7, where the braid is depicted by a sequence of uncor-
related ”black boxes” (each black box contains some number
of over– and under–crossings). If crossings in all black boxes
are identically and uniformly distributed, then the boxes are
statistically similar. Cut a part of each braid in the subset ω ,
close open tails and investigate the topological properties of
resulting knots. Just such situation has been qualitatively stud-
ied in7, where the crumpled globule concept was formulated
mainly on the basis of heuristic scaling arguments. The CG
hypothesis states the following: if the whole densely packed
lattice knot is trivial, then the topological state of each of its
”daughter” knot is almost trivial.

It has been shown33 that the computation of the knot com-
plexity in the braid representation depicted in the Fig. 7 can
be interpreted as the computation of the highest eigenvalue of
the product of noncommutative matrices designated by black
boxes.

To proceed, consider first the typical (unconditional) com-
plexity of a knot represented by a sequence of N independent
black boxes. This question is similar to the growth of the loga-
rithm of the largest eigenvalue, λ , of the product of N indepen-
dent identically distributed noncommutative random matrices.
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Fig. 7 Schematic representation of knots by braids: a) unconditional
random distribution of black boxes produces a very complex knot;
b) conditional distribution implies the whole knot to be trivial,
which imposed strong constraints on complexity of any subpart of
the braid.

According to the Furstenberg theorem35, in the limit N � 1
one has

lnλ (N)∼ γN, (1)
where γ = const is the so-called Lyapunov exponent. Being
rephrased for knots, this result means that the average knot
complexity, κ, understood as a minimal number of crossings,
M, necessary to represent a given knot by the compact knot
diagram, extensively grows with M, i.e. κ ∼ M. In the ordi-
nary globule, for subchains of length N2/3 < s < N, the typical
number of crossing, M, on the knot diagram grows as M ∼ s2,
leading to the scaling behavior

κ ∼ s2 (2)

for the knot complexity κ. This is perfectly consistent with
the well known fact: the probability of spontaneous unknot-
ting of a polymer with open ends in a globular phase is ex-
ponentially small. Following the standard scheme27,30, we
characterize the knot complexity, κ, by the logarithm of the
Alexander polynomial, ln[Al(t = −1.1)Al(t = −1/1.1)], i.e.
we set κ = ln[Al(t =−1.1)Al(t =−1/1.1)]. As it seen from
Fig. 2, the conjectured dependence lnAl(t = −1.1) ∼ s2 is
perfectly satisfied for ordinary (knotted) globule.

Consider now the conditional distribution on the products
of identically distributed black boxes. We demand the prod-
uct of matrices represented by black boxes to be a unit ma-
trix. The question of interest concerns the typical behavior of
ln λ̃ (n,N), where λ̃ (n,N) is a sub-chain of first n matrices in
the chain of N ones. The answer to this question is known34:
if n = cN (0 < c < 1 and N � 1), then

ln λ̃ (n = cN,N)∼
√

n = γ̃(c)
√

N (3)

where γ̃(c) absorbs all constants independent on N. Translated
to the knot language, the condition for a product of N matrices
to be completely reducible, means that the ”parent” knot is
trivial. Under this condition we are interested in the typical
complexity κ̃ of any ”daughter” sub-knot represented by first
n = cN black boxes.

Applying the (3) to the knot diagram of the unknotted glob-
ule, we conclude that the typical conditional complexity, κ̃
expressed in the minimal number of crossings of any finite
sub-chain of a trivial parent knot, grows as

κ̃ ∼
√

s2 ∼ s (4)

with the subchain size, s. Comparing (4) and (2), we con-
clude that subchains of length s in the trivial knot are much
less entangled/knotted than subchains of same lengths in the
“unconditional” structure, i.e. when the constraint for a par-
ent knot to be trivial is relaxed. Indeed, this result is perfectly
supported by Fig. 2 which show linear grows of κ̃= ln[Al(t =
−1.1)Al(t =−1/1.1)] with s for the unknotted globule, while
quadratic grows for the knotted globule.
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