
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Fluctuation spectra in polymer nematics and Frank elastic constants:
A coarse-grained modelling study

Patrick Gemünden and Kostas Ch. Daoulas∗

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

Monte Carlo simulations of uniaxial nematic polymer melts are performed, based on a discrete worm-like chain model combined
with soft, anisotropic non-bonded potentials. Different chain lengths are considered, the contour length of the longest being an
order of magnitude larger than the persistence length. Fromequilibrated melt configurations, density and director fluctuation
spectra are calculated and compared with analytical predictions available in literature. The latter typically correspond to hydro-
dynamic treatments of correlations and assume that there isno chain backfolding along the nematic director. Nevertheless, it is
demonstrated that the analytical theories capture severalfeatures of the spectra obtained in the current simulations, where moder-
ate backfolding of polymer chains is observed. Based on the available analytical expressions for density and director fluctuation
spectra, material properties, such as Frank elastic constants, are extracted. Their dependence on polymerisation degree is studied
and found to reproduce theoretically expected trends. For example, evidence is provided that the splay constant increases linearly
with chain length, when effects of hairpins are negligible.

1 Introduction

In nematic liquid crystals (LC), the thermodynamic cost of
changes in the orientation of the director on the mesoscale,
away from the core of topological defects1,2, can be expressed
through the Frank-Oseen free energy3. The latter presents a
volume integral of a free-energy density, corresponding toa
quadratic expansion with respect to the gradient of the director
field. For bulk LC this expansion reduces to a sum of three
distortion modes (splay, twist, and bend) of the director field,
coupled to an appropriate elastic constant4–6.

Elastic properties of LC are significant for various tech-
nological applications, including opto-electronics7,8, pattern
formation in colloids9, chemical detection10,11, and microflu-
idics12. In polymeric LC, elastic properties are a major fac-
tor affecting texture13. Examples where the latter is impor-
tant include manufacturing high strength materials14,15 and
applications in organic electronics16–23. There it has been
suggested22 that thermotropic LC mesophases of conjugated
polymers can facilitate manipulation of their morphology in
solid state through appropriate thermal annealing protocols.

Linking mesogenes into long molecules increases for poly-
meric LC the complexity of elastic behaviour. For instance,
changes in orientational order and density variations are cou-
pled, affecting splay deformation. Several analytical theories
were formulated24–31predicting fluctuation spectra and asso-
ciated material properties (including Frank constants) within a
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hydrodynamic treatment of correlations. The “bow-tie” shape
of the density structure factor27–31 is one of the representa-
tive theoretical results. At the same time, analytical theories
differ in certain predictions depending on the underlying as-
sumptions and approximations. One of the most known exam-
ples is the effect of chain length on the splay elastic constant,
where both linear26 and quadratic dependences24,25have been
predicted. The former stems from an entropic penalty for an
inhomogeneous distribution of chain ends required for a splay
deformation, as assumed by Meyer26. The alternative result
is due to de Gennes, assuming that the splay deformation is
achieved through density variations, while chain ends are ran-
domly distributed24,25. Interestingly, for lyotropic LC, taking
into account the dependence of the osmotic compressibility
on chain length (inversely proportional to leading order) elim-
inates32 the discrepancy between the results of de Gennes and
Meyer, i.e., they both yield a linear dependence. For poly-
mer melts (i.e., thermotropic LC), however, the controversy
remains. Notably, other theoretical studies reproduce there-
sult of Meyer.27–29,31

There have been very few5 experimental measurements
of elastic constants in thermotropic polymeric LC33–35. Ly-
otropic systems have been investigated to a somewhat larger
extent5, considering effects of concentration and chain length
on elastic properties. For instance, results supporting a linear
dependence of the splay constant on chain length have been
reported32. In the same work evidence was provided that in
the limit of long, semiflexible chains, the bending constant
becomes independent of chain length, as predicted theoreti-
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cally26,30,36–38.
In particle-based computer simulations of LC composed

of small molecules, several approaches have been developed
for a “first principle” determination of elastic constants cor-
responding to a given microscopic model. Their evalua-
tion from director fluctuations has been particularly popu-
lar39–42, while relationships between elastic constants and
orientation-dependent pair-correlation functions knownfrom
density functional theory43–45 have been also utilised41,46,47.
Recently a new method based on free-energy perturbations
was proposed48. However, these techniques have been rarely
applied to polymeric LC. For example, an early work49 dis-
cussed properties of elastic constants in lyotropic nematics,
describing them as two dimensional semi-flexible chains with
hard excluded volume interactions. Later,50 the bow-tie shape
of the density structure factor in lyotropic polymer nematics
was confirmed without addressing, however, director fluctua-
tions and related material properties.

Here, coarse-grained computer simulations are employed
to study density and orientational order fluctuations, as well
as related material properties in thermotropic polymer nemat-
ics in a unified way. The main-chain LC polymers are rep-
resented with discrete worm-like chains (WLCs), while non-
bonded interactions are described through soft anisotropic po-
tentials51,52. To obtain a realistic model and facilitate possible
comparison with future experiments, the potentials are param-
eterised to reproduce persistence length and density typical
for poly(3-alkylthiophenes). This is a representative family
of conjugated polymers where LC mesophases have been re-
ported20,21,53. With this model, Monte Carlo (MC) simula-
tions are conducted to equilibrate monodisperse nematic melts
with different chain lengths. Due to softness of interactions,
polymers with contour lengths up to an order of magnitude
larger than the persistence length (as defined from a disordered
melt) could be studied.

Equilibrated configurations are analysed to obtain density
and director-fluctuation spectra. We verify that the spectra
can be described by generic functional forms proposed the-
oretically,27–31,54treating material constants (e.g., compress-
ibility and Frank constants) entering these expressions asad-
justable parameters. Material constants extracted indepen-
dently from density and director-fluctuation spectra are com-
pared with each other, while their dependence on chain length
is also discussed. The results are compared with theoretical
predictions, taking into account that they assume absence of
hairpins as opposed to moderate chain backfolding in the sim-
ulations of the longest WLCs. For example, evidence is pro-
vided supporting the arguments of Meyer26 regarding a linear
dependence of the splay constant on chain length, when there
is no significant chain backfolding.

The paper is organised as follows. Sec. 2 describes the sim-
ulation strategy and the modelled systems. Sec. 3 recapitu-

lates the theoretical predictions in the “zero-hairpin” limit in
terms of the molecular model employed in the simulations. In
Sec. 4 strength of ordering and chain backfolding are quanti-
fied. Density and director fluctuation spectra are discussed.
Material properties such as Frank elastic constants are ex-
tracted and their dependence on chain length is compared with
theoretical predictions. Our conclusions follow in the last sec-
tion.

2 Modelling approach

2.1 Coarse-grained description

Studying fluctuations in polymer nematics and comparing
with related analytical theories requires the consideration of
large systems. In particular, it is desirable that the dimensions
of the system substantially exceed the largest possible molec-
ular scale of the problem – the length of a fully stretched poly-
mer chain. This motivates us to combine a drastically coarse-
grained representation of polymer architecture with soft non-
bonded interactions (i.e. on the order of the thermal energy,
kBT). The latter relaxes excluded volume constraints, increas-
ing significantly the computational efficiency. At the same
time, comparing to models with “microscopic” hard sphere
excluded volume50, achieving nematic polymer order with
isotropic soft potentials (as those in standard Dissipative Par-
ticle Dynamics55) is more complicated56. In contrast, it has
been demonstrated56–61 that it is straightforward to describe
LC mesophases with anisotropic soft potentials. This strategy
will be employed here, using a special form of anisotropic po-
tentials51,52 inspired by field theoretical approaches to poly-
meric liquid crystals62–66, which facilitates parameterisation.

Each of then polymers is represented51 by a discrete WLC
chain withN segments (bonds) so that the bonded interactions
are described by:

Hb

kBT
=−ε

N−1

∑
s=1

nnni(s+1) ·nnni(s) (1)

where nnni(s) are unit vectors oriented along theN seg-
ments of thei-th chain. The model is quite generic, how-
ever here the parameters are chosen to represent melts of
poly(3-alkylthiophenes). Each segment stands for two atom-
istic repeat units and corresponds geometrically to the back-
bone chord connecting every second thiophene. Due to the
specific geometric construction, the segment length is set51,67

to b = 0.79nm and is kept constant during the simulations.
The stiffness parameter is set toε = 3.284, which for ideal
chains can be shown analytically51,68 to lead to a persistence
length lp ≃ 2.2nm. This choice presents a qualitative top-
down parameterisation aiming to obtain a WLC with stiffness
representative for this family of polymers, e.g.lp ≃ 2.2nm
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is comparable to values reported for poly(3-hexylthiophenes)
(P3HT) at elevated temperatures.69

In principle, within the current strategy models closer to
the original chemical structure of specific polymers can be
also implemented. For example, in ref.52 liquid crystalline
mesophases of P3HT were addressed employing less drastic
coarse-graining, where each effective monomer represented
one atomistic hexylthiophene (thus in that modelb = 0.4nm
which expresses the distance of two neighbouring repeat
units). Non-bonded interactions were described by torsional
and angular potentials obtained in a bottom-up fashion from
systematic coarse-graining of atomistic chains. In this case,
describing the geometric zigzag of the backbone was neces-
sary for developing soft anisotropic potentials leading tobiax-
ial nematic mesophases and considering effects of morphol-
ogy on charge transport52. At the same time, for the purposes
of the current study focusing on the long wavelength limit,
the WLC model which neglects microscopic details presents
a more natural choice. The implementation of the discrete
WLC in the simulations simplifies the comparison with an-
alytical theoretical predictions, which were obtained on the
basis of the continuum WLC model (see Sec. 3). The WLC
model is also computationally more advantageous: to address
the same magnitude of chain lengths (in terms of persistence
length) the more detailed description would involve twice as
many coarse-grained particles.

The anisotropic soft potential describing the non-bonded in-
teractions is defined51,52as:

Vnb = u(r i j (s,m))

[

κ̄ − 2ν̄
3

qqqi(s) : qqq j(m)

]

(2)

where rrr i(s) and rrr j(m) are the coordinates of the centres
of the s-th and m-th segment in thei-th and j-th chain,
so that r i j (s,m) = |rrr i(s)− rrr j(m)|. The tensorqi,αβ (s) =
3
2ni,α(s)ni,β (s)−

δαβ
2 expresses the segment orientation with

respect to the laboratory coordinate frame. The soft core
u(r i j (s,m)) is proportional52 to the overlap of two spherical
density distributions set toω(rrr) = 3/4πσ3 for r ≤ σ and zero
otherwise, placed atrrr i(s) andrrr j(m). Thus the following form
is obtained70:

u(r i j (s, t)) =
1
ρo

∫

drrrω(rrr − rrr i(s))ω(rrr − rrr j(t)) = (3)

=
3

8πρoσ3

(

2+
r i j (s, t)

2σ

)(

1− r i j (s, t)

2σ

)2

Since the density distributions can be seen as representa-
tions of the microscopic degrees of freedom underlying the
coarse-grained units51,52,71,72, we choose for the interaction
rangeσ = 0.79nm which is comparable to the length of a
hexyl chain in all-trans configuration. Combined with the den-
sity clouds, the WLC can be considered as a soft tube encasing

n

Fig. 1 Representative configuration of a nematic WLC melt with
N = 32 segments per chain when the macroscopic director of the
mesophase is aligned alongz-axis of the laboratory frame. The edge
length of the simulation cell isLbox = 2L (whereL is the contour
length of the WLC). To demonstrate thatLbox is substantially larger
than the actual end-to-end distance of the chains along the director
of the nematic phase, the configuration is presented without periodic
conditions. To improve visibility a two-colour scheme is employed.

the backbone of the poly(3-hexylthiophene) together with the
attached side chains51. ρo is a reference bulk density; since
the bulk density of P3HT is∼ 4hexylthiophenes/nm3 and
each segment in our model represents two hexylthiophenes we
chooseρo = 2segments/nm3. The parameter̄κ controls the
compressibility and we choosēκ = 7.58kBT, which is com-
parable to the values used in earlier studies51,52. To obtain
nematic ordering, the strength of the orientation couplingbe-
tween segments is set tōν = 3.33kBT. All simulations are
performed at temperatureT = 500K.

2.2 Systems studied and simulation details

Monodisperse melts of coarse-grained chains withN = 16,
32, 48 and 64 segments were equilibrated using Monte Carlo
(MC) simulations in thenVT ensemble. Cubic simulation
cells with periodic boundary conditions in all directions were
considered. For the three largestN the length of the cell-edges,
Lbox, was chosen to be two times larger than the end-to-end
distance of a fully stretched WLC (which equals the contour
length,L = bN). For the shortest chains,N = 16, simulations
in cells with Lbox = 8L were conducted, while smaller sys-
tems,Lbox= 4L, were also considered to estimate finite system
size effects. The number of chains in each melt was chosen
so that the average segment density reproduced the reference
bulk density of P3HT, i.e.,nN/V = ρo. This requirement leads
to systems with a large number of particles (e.g., forN = 64

1–14 | 3

Page 3 of 15 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



there are more than 2×106 segments in the cell), which nev-
ertheless can be equilibrated due to the softness of the interac-
tions. For each of the longest melts eight independent simula-
tions were performed, to allow for an error estimation of the
extracted properties (cf. Sec. 4). For melts withN = 16 chains
the number of independent simulations was larger – sixteen.

All chains are initially fully stretched and aligned along the
z-axis of the laboratory frame, while their centres-of-massare
randomly distributed. A MC algorithm based on a combi-
nation of standard random monomer displacement (DIS) and
slithering snake (REP) MC moves is employed to equilibrate
the system. The mix of moves contains 30% DIS and 70%
REP. A representative snapshot of an equilibrated nematic
melt of chains withN = 32 is presented in Fig. 1.

3 Theoretical background (zero-hairpin limit)

In this section, earlier theoretical predictions regarding den-
sity and director fluctuations in polymer nematics will be re-
capitulated in terms of the discrete WLC model employed in
the simulations. For a nematic mesophase withn continuum
WLCs, it is straightforward to introduce a local areal density
of chains intersecting a plane normal to the average director of
the mesophase,n. Without loosing generality, it is convenient
to assume thatn is parallel to thez-axis of the laboratory coor-
dinate frame. Thenzp sets the position of such a plane andrrr⊥
is a two dimensional vector defining a point on the plane. In
this setup chains, when oriented without backfolding, can be
described27,29–31as curves which are single-valued functions
of z. The local areal density becomes:

ρ(rrr⊥,zp) =
n

∑
i=1

∫ zL(i)

zo(i)
δ (rrr⊥− rrr i⊥(z))δ

(
zp−z

)
dz (4)

In the above,zo(i) and zL(i) are z-projections of the two
ends of thei-th chain (L is the contour length of the WLC).
Within a hydrodynamic treatment of correlations, local fluctu-
ationsδρ(rrr⊥,zp) andδnnn(rrr⊥,zp) of density and director fields
can be penalised through a free energy:27,29,31

F =
∫

drrr⊥

∫

dzp

[

B
2

(
δρ
ρ̃o

)2

+ (5)

G
2

(

∂zpδρ − ρ̃o∇⊥δnnn

)2
]

+Fn[δnnn]

The first term in eqn 5 stands for a simple equation-of-state,
with ρ̃o andB being the average areal chain density and the
two-dimensional bulk modulus, respectively. The latter does
not depend on chain length, up to aO(L−1) term29 due to
translational entropy. For a chain to intersect a plane, theaver-
age distance of its centre fromzp must be smaller thanl/2 be-
low or above the surface73, wherel is the average length of the

chain projection on thezaxis. Thus it follows that̃ρo = nl/V.
The second term in eqn 5 expresses the constraint that changes
in areal density and director fields are coupled, henceG can be
seen as a Lagrange multiplier enforcing this constraint. Inpar-
ticular4,26 ∂zpδρ − ρ̃o∇⊥δnnn= ρH −ρT, whereρH andρT are
the local densities of chain “head” and “tail” ends. In the limit
of infinitely long chains there are no chain ends present, thus
the differential form in eqn 5 is strictly zero. Hence in thiscase
G → ∞. For finite chains, to penalise deviations ofρH − ρT

from zero (as happens in the case of splay deformation26),
analytical theories26,27,29,31typically assumeG = lkBT/2ρ̃o.
This corresponds to the concentration susceptibility of a mix-
ture of “head” and “tail” ends, considering them as noninter-
acting ideal gases. Recently it was recognised that this con-
straint applies in fact to polar nematic ordering and care isre-
quired when it is implemented in nonpolar nematics73,74 (i.e.
quadrupolar ordering). For the latter, an alternative tensorial
conservation law has been developed74. However, to the best
of our knowledge this constraint has not yet been employed
when describing fluctuations. The last term,Fn, is a “bare”
Frank free energy with splay,K1, twist, K2, and bend,K3,
elastic constants approximately equal to those of a system of
unpolymerised mesogenes29.

From eqn 5, structure factors of areal density and director
fluctuations were obtained27,29,31 in the hydrodynamic limit
and found in agreement with a more elaborated “microscopic”
description, mapping polymer trajectories on wordlines oftwo
dimensional bosons27,29,31. To cast these results in context
of discrete WLCs, it is helpful to parameterise the continuum
WLC through the arc lengtht of the curve. Since there is no
backfolding,z will be a single-valued function oft, that is,
z= zi(t) andrrr i⊥(zi(t)) = rrr i⊥(t). Thus eqn 4 becomes:

ρ(rrr⊥,zp) =
n

∑
i=1

∫ L

0
δ (rrr⊥− rrr i⊥(t))δ

(
zp−zi(t)

)
z′idt (6)

Considering thatz′i = dzi/dt is the direction cosine of the
tangent vector of the curve at arc lengtht with the z-axis, a
discrete analog of eqn 6 can be introduced as:

ρ(rrr⊥,zp) =
n

∑
i=1

N

∑
s=1

δ (rrr⊥− rrr i⊥(s))δ
(
zp−zi(s)

)
a (7)

whererrr i(s) = {rrr i⊥(s),zi(s)} are the coordinates of the cen-
tres of the segments of the discrete WLC anda is a character-
istic microscopic length scale representing an average projec-
tion of the distance between segment centres onz-axis. Based
on eqn 7 a structure factor for the density fluctuations can be
defined as:

〈ρ(qqq⊥,qz)ρ(−qqq⊥,−qz)〉= (8)

a2

V

〈
∣
∣
∣

n,N

∑
i,s=1

exp
[
i
(
qqq⊥ · rrr i⊥(s)+qzzi(s)

)]
∣
∣
∣

2
〉

=

(
ρ̃o

ρo

)2

S(qqq⊥,qz)
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Angular brackets denote an average in the canonical en-
semble andl = aN was substituted intõρo = nl/V to ob-
tain a = ρ̃o/ρo. The scattering functionS(qqq⊥,qz) is nor-
malised byV and not the number of scatterers,nN, as is more
common. Direct substitution of theoretical results27,29,31 for
〈ρ(qqq⊥,qz)ρ(−qqq⊥,−qz)〉 into eqn 8 leads to the following pre-
diction for the discrete WLC model:

S(qqq⊥,qz) =
kBTρ2

o

(
q2
⊥+

(
K1q2

⊥+K3q2
z

)
/Gρ̃2

o

)

Bq2
⊥+

(
B/Gρ̃2

o +q2
z

)(
K1q2

⊥+K3q2
z

) (9)

This corresponds to highly asymmetric scattering, where
the contour lines of constantS(qqq⊥,qz) create the character-
istic “bow-tie” pattern27,29–31. As an illustration, it is helpful
to consider the behaviour ofS(qqq⊥,qz) along theqz = 0 and
q⊥ = 0 axes:

S(q⊥,0) =
kBTρ2

o

B
S(0,qz) =

kBTρ2
o

B+Gρ̃2
oq2

z
(10)

S(0,qz) has an Ornstein-Zernike form withξ 2 = Gρ̃2
o

B be-
ing the analog of a correlation length (squared). Indeed the
above demonstrate that for infinitely long chains,l → ∞ (that
is,G→∞), there should be no scattering30 alongq⊥ = 0 while
constant scattering is still obtained forqz = 0. According to
eqn 10, chains of finite length scatter also forq⊥ = 0. This
scattering however decays as one moves from the origin of the
axes (more detailed discussion of the predicted contour plots
of the structure factor can be found, for example, in ref.31).

To compare with simulations, it is convenient to address
director fluctuations in melts of discrete WLCs in terms of
the nematic tensor39,40,54,75, Qαβ (rrr)= ρ−1

o ∑n,N
i,s qi,αβ (s)δ (rrr−

rrr i(s)). The Fourier transform of this quantity is given by:

Qαβ (qqq⊥,qz) = (11)

1√
Vρo

n,N

∑
i,s=1

qi,αβ (s)exp
[
i
(
qqq⊥ · rrr i⊥(s)+qzzi(s)

)]

For n oriented along thez-axis and small distortions of
the director field, one has54,76: δnα(rrr) = 2Qαz(rrr)/3〈S〉 (here
α = x,y and 〈S〉 is the average order parameter). Thus the
theoretical predictions27,29,31for 〈δnα(qqq⊥,qz)

2〉 transform to:

4〈|Qαz(qqq⊥,qz)|2〉
9〈S〉2kBT

=
1

K2q2
⊥+K3q2

z

(

1− q2
α

q2
⊥

)

+

(12)

1

KR
1 q2

⊥+K3q2
z

(
q2

α
q2
⊥

)

with KR
1 = K1+

B
B

Gρ̃2
o
+q2

z

As in the case ofS(qqq⊥,qz) angular brackets denote an aver-
age in the canonical ensemble.

The form of the spectrum of the orientation tensor in eqn 12
is generic and typical54 for nematic LC described by a Frank
free energy, albeit here the splay constantKR

1 is q−dependent.
The limit of KR

1 for q2
z → 0 is KR

1(o) = K1 + Bξ 2 = K1 +
1
2kBT lρ̃o. It can be seen27,29,31thatKR

1(o) ∼ N, which agrees
with a more qualitative treatment by Meyer. On the contrary,
in the same limit, an alternative approach by de Gennes24,25

leads to a different scaling,KR
1(o) ∼ N2. Notably, for infinite

chains all analytical theories24,27,29,31are consistent with each
other, predictingKR

1 = K1+B/q2
z.

4 Results

4.1 Data analysis

During the discussion of the theoretical predictions, for sim-
plicity it was assumed that the laboratory and the macroscopic
nematic director frames match. In simulations, this takes place
in the starting configurations wheren is oriented along thez-
axis of the simulation box. However, it is important to mon-
itor n during the entire MC run since it can reorient40,77 due
to fluctuations. Thus in each melt configuration the maximum
eigenvalue,S, and the corresponding eigenvector of the tensor
1
V

∫
Qαβ (rrr)drrr = 1

nN ∑n,N
i,s qi,αβ (s) were calculated. This anal-

ysis demonstrates that for the two shortest melts,N = 16 and
32, the changes in the orientation ofn are indeed substantial.
For example, for theN = 16 melt angles as large asθ = 7.5◦

betweenn and thez−axis of the laboratory frame were ob-
served. At the same time, for the two longest meltsN= 48 and
64 the re-orientations ofn were found insignificant, i.e., the
observed angles were at mostθ ≃ 1◦. During the analysis of
the fluctuation spectra, the differences between the laboratory
and the nematic director frames are taken into account40,77as
described below.

To calculate fluctuation spectra, the scattering vectors must
comply with periodic boundary conditions78 and it is more
convenient to introduce them in the laboratory frame. There
their components are given byqL

α = 2π iα/Lbox, whereiα are
integers andα = x,y,z. For each configuration of theN = 16
and 32 melts a density structure factorS(qqqL) is calculated in
the Fourier space of the laboratory frame via the definition in
eqn 8 but replacingqqq = {qqq⊥,qz} with qqqL (rrr i(s) are by de-
fault in the laboratory frame). To define the vectors we use
−15≤ iα ≤ 15. Subsequently, aqqqL-dependent 123-frame is
introduced40,77. Thez-axis of this frame in every configura-
tion is set along the correspondingn. The y-axis is placed
in the plane defined byqqqL and n, while orthonormality de-
termines thex-axis. The scattering vector in 123-frame is ob-
tained asqqq= T̂qqqL , whereT̂ is the rotation matrix transforming
between the two frames. From the definition of the 123-frame
it follows thatqqq=

{
0,qy,qz

}
, with qqqy ⊥ n andqqqz ‖ n. Trans-
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forming all availableqqqL into{qy,qz}-pairs, the values ofS(qqqL)
can be assigned to a two dimensional spectrumS(qy,qz) in the
director-based frame. Since theθ angle between the direc-
tor and thez-axis of the laboratory frame changes during the
run, the discrete set of vectorsqqqL generates a continuum set
of qqq-vectors in 123-frames. In practice, these continuum val-
ues ofqy andqz are coarse-grained into bins40. In this work
the width of the bins is chosen equal to the resolution 2π/Lbox

of the Fourier space in the laboratory frame and final density
fluctuation spectra are obtained as averages of theS(qy,qz) ac-
cumulated in each bin over all configurations.

The calculation of the spectrum of the orientation tensor
is similar. Namely, for the two shortest melts the Fourier
transform Qαβ (qqq

L) is first calculated replacing in eqn 11
qqq = {qqq⊥,qz} with qqqL . The Fourier image is transformed to
a qqqL-dependent 123-frame to obtain̂Q(qy,qz) = T̂Q̂(qqqL)T̂−1.
Then|Qαβ (qy,qz)|2 are calculated and assigned to the bins of
theyz-plane in 123-frame which correspond to the rotatedqqqL .
After considering all configurations, the final spectra are ob-
tained as averages of the values accumulated in each bin.

For the longestN = 48 and 64 melts, where the variations
in the orientation ofn are small, we assume that the direc-
tor frame coincides with the laboratory frame, so thatqqq= qqqL .
In these meltsqqq is placed in theyz-plane of the laboratory
frame so thatqqq = {0,qy,qz}, whereqy,z = 2π iy,z/Lbox with
−20≤ iy,z ≤ 20. ThusS(qy,qz) and|Qαβ (qy,qz)|2 are directly
calculated from eqn 8 and eqn 11 respectively, and the final
spectra are obtained as averages of the values accumulated for
each discrete{qy,qz}-pair for all configurations.

4.2 Strength of nematic order and director orientation

N 16 32 48 64
〈S〉 0.62(4) 0.65(1) 0.66(0) 0.66(7)

Table 1Average nematic order parameter,〈S〉, as a function of
number of chain segments,N.

In Table 1 we summarise the values of configurational aver-
ages of the maximum eigenvalues,〈S〉, as a function of chain
lengthN. It can be seen that the strength of nematic orientation
increases with chain length, saturating for longer molecules.
This behaviour stems from orientational correlations along
chain backbone induced by bending rigidity51 and is quali-
tatively similar to the shift of the isotropic-nematic transition
to higher temperatures as molecular weight increases51,53,79.

4.3 Chain backfolding

For the following discussion of fluctuation spectra and ma-
terial constants, it is important to quantify the amount of back-
folded chains as a function of polymer length. To comply with
the theoretical description in Sec. 3, in every configuration,
for each chain the number of intersections with a sequence of
planes normal to the axis of the director,n, was calculated.
The distance between the planes was chosen with fine step
(significantly smaller than the bond length). A chain was con-
sidered as backfolded if found to intersect a plane more than
once.
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Fig. 2 Main panel: Percentage of chains in a melt having at least
one hairpin, as a function of number of chain segments,N. Inset:
The component of the average radius of gyration (squared),R2

gz,
along the director as a function ofN.

Fig. 2 presents the percentage of backfolded chains (aver-
aged over all configurations) as a function of the number of
segments in the chain. It can be seen that the amount of these
molecules increases substantially with chain length so that for
N= 64 almost 40% of polymers have at least one backfolding.
The apparent linearity of the plot is due to the still moderate
chain lengths. Theoretical arguments based on the continuum
WLC model80 within mean-field approximation predict that
the fraction of backfolded chains should eventually saturate
to unity as 1−exp(−Γ) with Γ = (L/lo)exp(−Uh/kBT). The
characteristic scales of length,lo, and energy,Uh, are functions
of chain stiffness, strength of orientational coupling, order pa-
rameter, and temperature.L stands for the contour length. The
small number of backfolding events per chain in our case is
demonstrated by the inset of Fig. 2. The figure presents a log-
arithmic plot of the component of the average radius of gyra-
tion (squared) along the nematic director,R2

gz, as a function of
N. It can be seen that it still obeys a rod-like scalingR2

gz∼ N2;
in a regime with many hairpins it should be37,80R2

gz ∼ N.
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Fig. 3 (a) Contour plot of density fluctuation spectrum,S(qy,qz), in the nematic director frame of a melt withN = 32 segments per chain.
Contour lines correspond to equal magnitude of scattering. (b) Main panel: For the sameN = 32 melt solid circles show a one-dimensional
“cut” of the scattering function,S(0,qz). The contribution from intramolecular scattering alongz-axis,So(0,qz), is also presented with solid
line. An estimate ofSo(0,qz) based on a rod system is shown with dashed line (see main text for details).Inset: Form factor,Po(0,qz), for
N = 16, 32 and 64 melts.

4.4 Density fluctuation spectra

A representative contour plot ofS(qy,qz) for a nematicN= 32
melt, calculated in the director frame as described in Sec. 4.1,
is presented in Fig. 3a. It agrees qualitatively with the theo-
retically predicted bow-tie shape (see previous section),while
similar scattering patterns have been reported in earlier simu-
lations of lyotropic polymer nematics50. Fig. 3a demonstrates
that near the origin, the scattering decreases moving alongthe
qy = 0 axis as predicted theoretically. However, in simulations
this decay is not monotonous and for higherqz, a sequence of
scattering minima is observed.

The additional scattering features in Fig. 3a do not signify
smectic ordering but stem from intramolecular scattering.For
a nematicN = 32 melt, this is shown in Fig. 3b by compar-
ing S(0,qz) with the contribution from intramolecular scatter-
ing,So(0,qz), along thez-axis of the director frame (for clarity
only the regionqz > 0 is shown). The intramolecular scatter-
ing is first calculated in the laboratory frame from:

So(qqq
L) =

1
V

n

∑
i=1

〈∣
∣
∣
∣
∣

N

∑
s=1

exp
(
iqqqL · rrr i(s)

)

∣
∣
∣
∣
∣

2〉

= NρoP(qqqL)

(13)

Angular brackets denote an average over chain conforma-
tions andP(qqqL) stands for the molecular form factor81. Sub-
sequently, the 123-frame transformation is employed to ob-

tain from So(qqqL) the So(0,qz) in the director frame. Fig. 3b
highlights thatS(0,qz) is already affected by the second of the
subsidiary maxima ofSo(0,qz). The apparent difference in the
location of some of the maxima ofS(0,qz) andSo(0,qz) stems
from the binning of theqz vectors used to calculate the former.

The oscillations ofSo(0,qz) manifest the strong stretching
of polymers along the nematic director and are observed in
all melts modelled in the current work. This is illustrated
in the inset of Fig. 3b presentingP(0,qz) for systems with
N = 16, 32 and 64. It is instructive to compare the intramolec-
ular scattering with the following estimate. In a melt config-
uration, for eachi-th chain the component of the radius of
gyration (squared) along the nematic director,R2

gz(i), is ob-
tained. Eachi-th chain is assigned the form factor of a rod,
Prod(i)(qz) = [2sin(qzlr(i)/2)/qzlr(i)]

2 (qz is taken parallel to
the rod axis). The length of the rod,lr(i), is chosen so that
it has the same radius of gyration (squared) as the chain, that

is, lr(i) =
√

12R2
gz(i). The approximate intramolecular scatter-

ing follows from So(0,qz) ≃ (Nρo)〈Prod(qz)〉, where angular
brackets denote an average over all chains and configurations.
It is presented in the main panel of Fig. 3b with dashed line
and follows roughly the shape ofSo(0,qz) calculated exactly
via eqn. 13. As illustrated in the inset, the loss of structur-
ing in P(0,qz) increases with chain length, e.g., due to larger
variations in chain conformations.

It is interesting to explore whetherS(qy,0) andS(0,qz) can
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Fig. 4 Examples of the inverse density structure factor forN = 32
(solid circles) andN = 64 (open circles) melts. The bottom panel
presentsρ2

oS−1(qy,0) as a function ofqy and the approximation (cf.
eqn 10) with a constant (dashed line) which is practically the same
for bothN. The upper panel presentsρ2

oS−1(0,qz) as a function of
qz. The parabolic fits forN = 32 andN = 64 are shown with solid
and dashed lines, respectively. In both panels, broken red lines mark
the boundaries ofq-space used for the fit.

be described by a constant and an Ornstein-Zernike form re-
spectively, as suggested by eqn 10. For this purpose Fig. 4
presentsρ2

oS−1(qy,0) (lower panel) andρ2
oS−1(0,qz) (upper

panel) as a function ofqy andqz respectively, forN = 32 (blue
solid symbols) andN = 64 (black open symbols) melts. The
structure factor presented in the figure is the average of eight
S(qy,qz) calculated from the corresponding number of inde-
pendent runs. Accordingly, errorbars are equal to the standard
deviation

√

σ2(qy,qz) of the structure factor at every scatter-
ing mode.

The bottom panel of Fig. 4 demonstrates that for small
wavevectors, the density structure factor normal to the nematic
director can be indeed approximated by a constant, which
should equalB/kBT (cf. eqn 10). The constant is marked by
the horizontal black dashed line, obtained from a linear least
squares fit82 of ρ2

oS−1(qy,0) in q2-space, for|qy| ≤ 0.6nm−1.
The extractedB/kBT is presented as a function ofN in Fig. 5
(open squares). The errorbars correspond to approximately
1% error in the estimation ofB. They characterise the spread
of the values obtained after splitting the independent runsfor
each chain length into groups with four simulations each, and
calculating theB constant separately for each group as de-
scribed above. The data in Fig. 5 demonstrate that, for the
considered chain lengths, the two-dimensional bulk modulus
B does not depend onN. In principle, a weak reduction ofB
asN becomes larger is expected mainly because of the smaller

translational entropy of chains (cf., Sec. 3). Such effectshow-
ever are not discernible in the plot.
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Fig. 5 Simulation results forGρ̃2
o/kBT (black circles, left axis) and

B/kBT (red squares, right axis) as a function of number of chain
segments,N. The arrow marks the constant offset ofGρ̃2

o/kBT.

A parabolic approximation toρ2
oS−1(0,qz), motivated by

the Ornstein-Zernike form of eqn 10, is demonstrated in the
upper panel of Fig. 4 for melts withN = 32 andN = 64 (solid
blue and dashed black lines, respectively). The curves shown
in the figure were obtained through a linear least squares fit
of ρ2

oS−1(0,qz) in q2-space, withGρ̃2
o/kBT as a free param-

eter while fixing B/kBT to the values calculated from the
analysis ofρ2

oS−1(qy,0). As a test, we have fitted the spec-
tra allowing also for variations ofB/kBT and no significant
differences were observed. Moreover, theB/kBT calculated
in this way, match the data obtained from the analysis of
ρ2

oS−1(qy,0) (see Fig. 5). For all melts the fit was performed
in the region|qz| < 0.56nm−1, which presents an empiri-
cal choice. Namely, as suggested by the similarity between
the So(0,qz) and the approximate intramolecular scattering
calculated from the rod system, the natural choice to avoid
the “jagginess” ofρ2

oS−1(0,qz) would be to consider length
scales larger than the characteristic chain dimension dominat-

ing scattering. This would correspond to|qz| < 2π/
√

12R2
gz

(R2
gz follows from Fig. 2). Indeed for the shortestN = 16

chains, where effects from intramolecular scattering are the
strongest, we follow this condition and fitρ2

oS−1(0,qz) by a
parabola for|qz| < 2π/l ≃ 0.5nm−1. At the same time, we
have observed thatGρ̃2

o/kBT extracted from the parabolic ap-
proximation does not change substantially when the fit regime
is expanded beyond|qz| = 0.5nm−1 to incorporate periods
of oscillations inρ2

oS−1(0,qz) (presumably because of can-
cellation effects). For longer chains, where effects from in-
tramolecular scattering are less pronounced,ρ2

oS−1(0,qz) is
approximated by a parabola for|qz| ≃ 0.6nm−1. In this case,
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Fig. 6 (a) Contour plot of the inverse director fluctuation spectrum,Wxz(qy,qz), corresponding to twist-bend modes forN = 64 melt. (b) A
subset of simulation data forWxz(qy,qz) as a function ofq2

y at two representative values,qz = 0 and 1nm−1 (squares and circles, respectively)
is presented. Dashed lines show the approximation by the analytical expression of eqn 14. (c) Same as (b) but consideringWxz(qy,qz)as a
function ofq2

z at fixedqy = 0 and 1nm−1.

the fitting region includes several multiples of 2π/
√

12R2
gz.

Fig. 5 presents theGρ̃2
o/kBT obtained from the above pro-

cedure as a function ofN (open circles). As in the case of
B/kBT, errorbars characterise the spread of the values for
Gρ̃2

o/kBT obtained after splitting the independent runs for
each chain length into groups with four simulations each. No-
tably, theGρ̃2

o/kBT calculated from fits whereB/kBT was
also allowed to vary, are within these errorbars. The results
can be well described by linear dependence ofGρ̃2

o/kBT on
chain length (dashed black line). This observation supports
the theoretical assumption26,27,31G ∼ l (since l = aN) with
the difference that in simulations the linear dependence has a
constant offset (marked by the arrow in Fig. 5). It is inter-
esting that there are no clear deviations from the dependence
Gρ̃2

o/kBT ∼ N which was predicted in the zero-hairpin limit,
even in the case of the longer melts,N = 64, where almost
40% of molecules have at least one backfolding “defect”.

4.5 Director fluctuation spectra and Frank constants

4.5.1 Twist,K2, and bend,K3, constants

When the scattering vector is located in theyz-plane eqn 12
predicts that the fluctuations of the nematic tensor correspond-
ing to twist-bend modes should fulfil:

Wxz(qy,qz)≡
9kBT〈S〉2

4〈|Qxz(qy,qz)|2〉
= K2q2

y +K3q2
z (14)
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Fig. 7 Main panel: Splay,KR
1(o) , twist, K2, and bend,K3, elastic

constants as a function of the number of segments in a chain. The
Gρ̃2

o calculated in Fig. 5 is also reproduced on the plot. Inset:
Comparison ofKR

1(o) andGρ̃2
o after subtracting from the latter the

offset indicated in Fig. 5.

The theoretical result can describe the simulation data in
a rather broad range of wavevectors, for all modelled chain
lengths. This conclusion follows after fitting the right-hand
side of eqn 14 toWxz(qy,qz) calculated from melt configu-
rations. We perform this fit inq2-space for|qy,z| ≤ 1nm−1

using linear least squares. The statistical error estimatefor
the individual modes ofWxz(qy,qz) was obtained as described
in sec. 4.4. The elliptic shape of the twist-bend fluctuation
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spectrum is illustrated in Fig. 6a, presenting forN = 64 a con-
tour plot ofWxz(qy,qz). An example of the accuracy of the fit
is provided in Fig. 6b presenting a subset of simulation data
for Wxz(qy,qz) as a function ofq2

y at two representative val-
ues,qz= 0 and 1nm−1 (squares and circles, respectively). For
theseqz, dashed lines show the approximation byK2q2

y+K3q2
z

(whereK2 andK3 originate from the fit in the whole region
|qy,z| ≤ 1nm−1) and, within error bars, are close to the data.
Fig. 6c presents a similar plot, consideringWxz(qy,qz) now as
a function ofq2

z atqy = 0 and 1nm−1.
The twist and bend elastic constants calculated from the fit

for all modelled chain lengths are presented in Fig. 7. Er-
rorbars were obtained from the standard deviation of elastic
constants calculated by fitting the fluctuation spectra in each
of the available independent runs, separately. We emphasise
the robustness of the results regarding the choice of the fit-
ting region. Namely, choosing smaller limits, for example
|qy,z| ≤ 0.5nm−1, yields for K2 and K3 very similar results.
Fig. 7 demonstrates that bothK2 andK3 tend to constant val-
ues as chain length increases, which is in agreement with the-
oretical arguments26. K3 is roughly twice as large asK2, while
the order of magnitude of both constants is 10−11N. For ther-
motropic nematic polymers, experiments have reported forK2

andK3 a rather broad range of order of magnitudes, from33,34

10−12N to35 10−10N. Interestingly, the order of magnitude of
the twist and bend constants obtained in the simulations falls
within this window. The magnitudes ofK2 andK3 in the above
experiments were found to be comparable to each other.

4.5.2 Splay,KR
1 , constant

For the splay-bend mode, the theory (see eqn 12) predicts:

Wyz(qy,qz)≡
9kBT〈S〉2

4〈|Qyz(qy,qz)|2〉
=

[

KR
1(o)−

Bξ 4q2
z

1+ξ 2q2
z

]

︸ ︷︷ ︸

KR
1

q2
y +K3q2

z (15)

In the above expression an equivalent form for the splay
constantKR

1 (qz) (comparing to eqn 12) is employed, to facil-
itate fitting. It follows from eqn 15 that, in theory, for small
wavevectors the isolines ofWyz(qy,qz) should form an ellipse
in the yz-plane of the director frame. Asqy andqz increase,
the contour plot ofWyz(qy,qz) should transform into a figure-
of-eight shape with the long axis oriented along the director.

In contrast to twist-bend fluctuations, the shapes of splay-
bend spectraWyz(qy,qz) in the simulations of melts with
shorter chains (N = 16 andN = 32) do not completely match
the corresponding theoretical predictions. As an illustration
Fig. 8a presents a contour plot ofWyz(qy,qz) for a N = 16
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Fig. 8 (a) Contour plot of the inverse director fluctuation spectrum,
Wyz(qy,qz), of the splay-bend modes in aN = 16 melt, illustrating
the “wiggles” in the pattern of contour lines. (b) Contour plot of the
inverse single-chain director fluctuation spectrum,wyz(qy,qz), for
the same melt, presenting a cross-like pattern of minima.

melt. While the general shape of the plot follows the theo-
retical expectations, the isolines exhibit a sequence of “wig-
gles”.Contrary to the case of density structure factors (cf.
Fig. 3a) these additional features stem from intermolecular
correlations and not directly from intramolecular scattering.
This conclusion follows after considering the contribution of
intramolecular scattering, obtained by calculating for each i-
th molecule first the Fourier transform of its nematic tensorin
the laboratory frame according to:

Qi,αβ (qqq
L) =

1√
Vρo

N

∑
s=1

qi,αβ (s)exp
(
iqqqL · rrr i(s)

)
(16)

For each chain the Fourier image of the molecular ne-
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Fig. 9 (a) Contour plot of the inverse director fluctuation spectrum,Wyz(qy,qz), corresponding to splay-bend modes forN = 64 melt where no
“wiggles” are observed. (b) A subset of simulation data forWyz(qy,qz) as a function ofq2

y at two representative values,qz = 0 and 1nm−1

(squares and circles, respectively) is presented. Dashed lines showthe approximation by the analytical expression of eqn 15. (c) Same as (b)
but consideringWyz(qy,qz) as a function ofq2

z at fixedqy = 0 and 1nm−1.

matic tensor is transformed to aqqqL-dependent 123-frame
to obtain Q̂i(qy,qz) = T̂Q̂i(qqqL)T̂−1 so that the total part
of intramolecular scattering is given byw−1

yz (qy,qz) ≡
4n∑n

i=1Qi,yz(qy,qz)/9〈S〉2kBT.

Fig. 8b presents the contour plot ofwyz(qy,qz) for N = 16
demonstrating that it has a different pattern comparing to
Wyz(qy,qz). For short chains, the cross-like shape of min-
ima inwyz(qy,qz), not observed in total scattering, stems from
strong correlations in the orientation of segments along the
same molecule due to stiffness. The instantaneous polar angle
θs between a segment andn is nonnegative and has an average
value 〈θs〉 > 0. In Fig. 8b the angles between the branches
of the cross and theqy-axis depend on the magnitude of〈θs〉.
Indirectly however the intermolecular correlations leading to
the distortions in Fig. 8a are still coupled to chain connectiv-
ity. This follows from the observation that they are located
at wavevectors roughly corresponding to the contour length
of the polymer chains. For longer polymers the distortions
of the isolines not only shift to smaller wavevectors but be-
come also less pronounced. Fig. 9a presents the contour plot
of Wyz(qy,qz) for the longestN = 64 melt, which is in very
good agreement with the shape predicted by eqn. 15. This can
be quantified by fitting theWyz(qy,qz) obtained in the simula-
tions for |qy,z| ≤ 1nm−1 by the functional form suggested by
eqn. 15. Fig. 9b considers two representative valuesqz= 0 and
1nm−1 to demonstrate that the fitted function (dashed lines)
describes the original data (squares and circles, respectively)
closely at different values ofqz. Fig. 9c provides a similar
comparison, now consideringWxz(qy,qz) as a function ofq2

z

at two representative values,qy = 0 and 1nm−1. Notably, the
value of the bend constantK3 obtained from this fit matches
the value extracted from the twist-bend fluctuations.

For all chain lengths, the small wavelength behaviour of the
splay constant,KR

1(o), is presented in Fig. 7 (open circles). It
was extracted from linear fits toWxz(qy,qz) as a function of
q2

y, while settingqz = 0. For melts without significant hairpin
effects, the plot suggests a linear dependence ofKR

1(o) on N as
first predicted by Meyer. For polymer nematics with a large
number of hairpins per chain, it has been predicted theoreti-
cally37 that KR

1(o) should reach a finite value as a function of
N. Thus, for longer chains with moderate backfolding (such
asN = 64) the onset of saturation, i.e., sublinear dependence
of KR

1(o) on N, might be expected. In fact forN = 64 our re-
sults suggest the appearance of such effects, manifested bythe
slight, within errorbars, “bending” of theKR

1(o) plot.

An important question refers to the extent to which the
above results are affected by finite system size effects. For
N = 16 the splay constant obtained from test simulations in
smaller cells,Lbox = 4L, matched theKR

1(o) in Fig. 7 (obtained
atLbox= 8L). However, in simulations of longest melts where
Lbox= 2L is employed, fluctuations could be more suppressed,
resulting into Frank constants that are larger comparing to
those of an “infinite” system. Therefore, in larger samples
of these melts splay constants might reduce, leading to more
pronounced saturation effects.

In Fig. 7 the quantityGρ̃2
o previously calculated from den-

sity fluctuations (cf. Fig. 5) is also reproduced as a function of
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N. According to the theoretical predictionKR
1(o) = K1+Gρ̃2

o

one expects that: a)KR
1(o) has the same slope comparing to

Gρ̃2
o as a function ofN and b)KR

1(o) ≥ Gρ̃2
o is larger thanGρ̃2

o ,

sinceKR
1 is nonnegative. In Fig. 7 for short chains,Gρ̃2

o has
a similar slope withKR

1(o) which agrees with the first expecta-

tion. At the same time in simulationsGρ̃2
o is larger thanKR

1(o).
One can argue that this difference from the theoretical result is
due to the constant offset in the linear dependence ofGρ̃2

o on
N observed in Fig. 5. The inset of Fig. 7 comparesKR

1(o) and

Gρ̃2
o , subtracting from the latter the offset 1.99kBT obtained

in Fig. 5. In this case the two curves are very close to each
other, for short chains.

5 Conclusions and Outlook

In this work Monte Carlo simulations of nematic polymer
melts described by a soft model were performed to study equi-
librium density and director fluctuation spectra, as well asre-
lated material constants. The model is generic but incorpo-
rates features important for the qualitative study of the above
properties. The polymer architecture is represented by thedis-
crete WLC model, accounting for two characteristic molecular
scales: the persistence and the contour length. Pairwise non-
bonded potentials have two components. The first is isotropic
and limits the compressibility of the polymeric liquid, while
the second depends on the relative orientation of the segments,
inducing nematic ordering. Nematic WLC melts for four dif-
ferent chain lengths were considered, their contours beingup
to an order of magnitude longer than the persistence length (as
defined in the state of a disordered melt).

Some generic characteristics (such as the bow-tie pattern)
of the shape of density and director fluctuations spectra were
found to agree with theoretical predictions27–29,31. At the
same time, at length scales roughly comparable with the ex-
tension of polymer chains along the nematic director, the den-
sity and the splay-bend spectra exhibited additional scatter-
ing features. These features were evident in melts with short
WLC (only a few persistence lengths long). In such systems,
the spectra of the density fluctuations parallel and normal to
nematic director were well described by the theoretical pre-
dictions only for wavelengths comparable or larger than the
contour length. For short WLC, in contrast to density fluctu-
ations, the secondary scattering features did not allow us to
fit the splay-bend spectra by the theoretical functional forms.
For melts with longer chains effects from secondary scattering
features diminish. Thus the shape of the density and director
fluctuation spectra (including splay-bend modes) is well ap-
proximated by the theoretical predictions in a broad range of
wavevectors. This is noteworthy since the population of back-
folded chains in these melts is substantial (up to 40%), while

the theoretical results were obtained in the zero-hairpin limit.
Two material constants controlling (for large wavelengths)

density fluctuations normal and parallel to the nematic direc-
tor were extracted and their dependence on chain length was
investigated. For all melts, this dependence was found to be
consistent with the theoretical predictions in the zero-hairpin
limit 26–29,31, despite the increasing amount of backfolding
with chain length. For the shorter melts, within the accuracy of
the data and the considered system sizes, the splay Frank con-
stant obtained from director fluctuations was found to increase
linearly with chain length, in agreement with the argumentsof
Meyer26 and later theories.27–29,31,37. For larger chains (an or-
der of magnitude longer than the persistence length) our data
suggest the onset of a sub-linear dependence due to larger
amount of backfolded molecules37. Twist and bend Frank
constants were found to saturate with chain length, in agree-
ment with theoretical expectations26.

Although the interactions are soft, the order of magnitude
of bend and twist constants was found to be 10−11N which
is within the window of magnitudes 10−12N to 10−10N re-
ported in some experiments33–35. Both constants were found
to be significantly smaller than the splay constant. Taking into
account that the model was mapped on a real family of poly-
mers (i.e. poly(3-alkylthiophenes)), these observationsare en-
couraging for a possible comparison of our results with future
experiments in these materials.

In the current study, no strong effects of chain backfolding
on the dependence of material constants on the length of poly-
mer chains were observed. This behaviour can be rationalised
by the fact that the number of hairpins per molecule remained
small. To address in detail how material constants are affected
by chain backfolding, modelling nematic melts with longer
chains would be required. Varying chain stiffness offers addi-
tional possibilities for changing conformational properties and
such effects should be also explored in the future.
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13 T. De Ǹeve, M. Kĺeman and P. Navar,Liq. Cryst., 1994,18, 67–71.
14 E. T. Samulski,Phys. Today, 1982,35, 40–46.
15 X. J. Wang and Q.-F. Zhou,Liquid Crystalline Polymers, World Scientific,

Singapore, 2004.
16 R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead

and D. D. C. Bradley,Synthetic Met, 2005,155, 274–278.
17 H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P.

Woo, M. Grell and D. D. C. Bradley,Appl. Phys. Lett., 2000,77, 406–408.
18 D. Neher,Macromol. Rapid Commun., 2001,22, 1365–1385.
19 I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald,

M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L.
Chabinyc, R. J. Kline, M. D. McGehee and M. F. Toney,Nat. Mater.,
2006,5, 328–333.

20 S. Hugger, R. Thomann, T. Heinzel and T. Thurn-Albrecht,Colloid
Polym. Sci., 2004,282, 932–938.

21 M. L. Chabinyc,J. Vac. Sci. Technol. B, 2008,26, 445–457.
22 N. Stingelin,Polym. Int., 2012,61, 866–873.
23 I. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R.J. Kline,

M. Cölle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton,
L. Richter, A. Salleo, M. Shkunov, D. Sparrowe, S. Tierney and W. Zhang,
Adv. Mater., 2009,21, 1091–1109.

24 P. G. de Gennes,Mol. Cryst. Liq. Cryst., 1977,34, 177–182.
25 P. G. de Gennes,in Polymer Liquid Crystals, eds. A. Ciferri and W.R.

Kringbaum, ch. 5, Academic Press, New York, 1982.
26 R. B. Meyer,in Polymer Liquid Crystals, eds. A. Ciferri and W.R. Kring-

baum, ch. 6, Academic Press, New York, 1982.
27 P. Le Doussal and D. R. Nelson,Europhys. Lett., 1991,15, 161–166.
28 R. D. Kamien, P. Le Doussal and D. R. Nelson,Phys. Rev. E, 1993,48,

4116–4117.
29 R. D. Kamien, P. Le Doussal and D. R. Nelson,Phys. Rev. A, 1992,45,

8727–8750.
30 J. V. Selinger and R. F. Bruinsma,Phys. Rev. A, 1991,43, 2910–2921.
31 D. R. Nelson,Physica A, 1991,177, 220–232.
32 S.-D. Lee and R. B. Meyer,Liq. Cryst., 1990,7, 15–29.
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