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Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding
with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-
obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe
sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic
function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish di-
agrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric)
parameters. Microfluidic experiments validate our model as they concur very well with predictions.

1 Introduction

In contrast to classical bulk emulsification techniques for
which large quantities of fluid elements are handled at
one time,1 microfluidic technologies allow one to produce
monodisperse droplets one by one by using flow-focusing2 or
T-junction3 geometries and to perform and combine elemen-
tary tasks on each of these drops, e.g. fragmentation, dilu-
tion, mixing, or encapsulation.4,5 By manipulating drops one
at a time, this microfluidic toolbox not only offers possibili-
ties for the control of a drop size and internal composition that
are expected to be unparalleled but also tremendously impacts
material science by paving the way for a bottom-up approach
to design new material architectures.6,7 Nowadays, the litera-
ture documents a wide variety of such novel fluid-based ma-
terials, e.g. multi-component double emulsions,8 high-order
emulsions,9 microcapsules,10 and Janus particles.11 Also, us-
ing drops as microfluidic analogs of test tubes, it is possible
to scale down standard laboratory processes to a square inch
device format and to develop efficient high-throughput appli-
cations in chemistry, biochemistry, and biology.12–21

To ensure the robustness of applications using microflu-
idics, many investigations have aimed to understand the
physics behind the elementary tasks on drops mentioned

† Electronic Supplementary Information (ESI) available: Three Supplemen-
tary Movies illustrating sequences of cooperative breakups and a two-page
document containing the captions of the Movies and a figure with its caption.
This figure shows sequences of numerical breakup regimes as a function of the
slug interdistance with other parameters fixed. See DOI: 10.1039/b000000x/
a IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042
Rennes, France. Fax: 33 2 23 23 67 17; Tel: 33 2 23 23 30 27
‡ E-mail: laurent.courbin@univ-rennes1.fr
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above. In particular, the fragmentation of drops in microde-
vices is well-documented.22–42 This task is indeed widely
employed in various applications in diverse fields which in-
clude biology, e.g. the screening of compound libraries.43

One can actively break drops into smaller ones using an elec-
tric field35 or an optical approach.36 However, most investi-
gations focus on passive (geometry-mediated) breakup meth-
ods in which drops may or may not break when reaching
a bifurcating path22–34 or a micro-obstacle.22,38–42 All these
works have shown that drop breakup occurs when the capil-
lary number at play exceeds a critical value; yet, establish-
ing a general theoretical framework that completely describes
the breakup dynamics has proven to be a difficult task. In
our recent works,41,42 studying the breakup dynamics of one-
dimensional (1-D) trains of drops against rectangular micro-
obstacles, we have shown that the use of such geometries al-
lows one to tackle this challenging problem. When the dis-
tance between drops λ is large compared with the length of
the obstacle L, we have identified the seven dimensionless
(hydrodynamic, physicochemical, and geometrical) quantities
controlling the dynamics and we have introduced a theoretical
framework that rationalizes experimental findings.41 Within
this limit λ ≫ L that corresponds to the breakup of isolated
drops, our model successfully describes the possible breakup
regimes observed experimentally, the transition between these
regimes, and the volume of the daughter drops created when
breakup occurs. Building on this earlier work within the limit
λ ≪ L, we have found in this case that the volumes of the
daughter droplets depend solely on the geometric features of
the breakup geometry.42 This behavior which results from
drop-to-drop interactions is in sharp contrast with the situa-
tion λ ≫ L for which these volumes not only depend on the
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geometry but also on the hydrodynamics and physicochem-
istry.41 When λ ≪ L, our study has shown that the number
of daughter drops present in each of the two gaps on the sides
of the micro-obstacle is very large.42 We have therefore as-
sumed the temporal fluctuations of the pressure drops due to
the entrance and exit of a daughter drop in the gaps to be neg-
ligible compared with the mean values of the pressure drops.
We have used this assumption to establish a phenomenologi-
cal model based on a “mean-field”approach that predicts well
experimental findings and helps to rationalize experiments re-
ported in the early literature on the topic.22

Here, we investigate the general case λ ∼ L for which the
temporal fluctuations of the pressure drops in both gaps are
large and can no longer be neglected. For this flow configu-
ration, we expect object-to-object hydrodynamic interactions
to induce time-delayed feedback; such feedbacks are, for in-
stance, known to participate in the regulation of droplet traffic
at a junction.44–52. More generally, the problem is expected
to fall into the class of discrete time-delay systems.53 As il-
lustrated in Movies S1–S3 provided in the ESI†, the breakup
of an object can indeed influence the response of the fol-
lowing ones when λ ∼ L. Specifically, we observe in this
movie the emergence of complex breakup dynamics that can
exhibits periodicity (see Movie S2 and Movie S3 in the ESI†).
In what follows, we build on the theoretical framework es-
tablished in recent investigations on droplet breakup against
micro-obstacles38,41,42 to model the flow and rationalize our
observations. We obtain numerical results that demonstrate
the emergence of complexity in drop breakup when λ ∼ L.
Especially, we predict the existence of regimes in which the
size of the daughter drops created upon breaking mother ones
varies periodically with the index of the mother drop in the
train. We establish diagrams mapping breakup regimes as a
function of the physical parameters at play. Both the existence
of these periodic breakup regimes and the main features of the
predicted breakup diagrams are validated by a set of microflu-
idic experiments.

2 Numerical simulations

We consider a 1-D train of periodically-spaced drops flowing
at a constant velocity v in a microchannel having a rectangular
cross-section of height h = 45 µm and width w = 130 µm
(see Fig. 1). The train is directed towards a rectangular ob-
stacle of length L = 300−700 µm and width 30 µm. This
obstacle is parallel to the walls of the main channel and is
off-centered so that the two gaps (1) and (2) on each side of
the obstacle have different widths w1 and w2 < w1 and same
height h (Fig. 1). The drops’ length and inter-distance are re-
spectively Ld = 300−700 µm and λ = 400−2000 µm. We
next refer to these drops which are larger than w and h as
“slugs” which periodically collide with the obstacle at a rate

ν = v/λ. Upon impact, the front of a slug is deformed so that
two fluid-fluid interfaces may invade the two gaps and propa-
gate in them at different velocities.
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Fig. 1 Top-view photograph of the flow and schematic of the flow
geometry defining the geometrical [L, w, h, w1, w2],
physicochemical [ηc, ηs, γ], and hydrodynamic [Ld, λ, v]
parameters of the problem. Also, ϕn is the volume fraction of the
n-th mother slug flowing in the narrow gap (2).

To model the dynamics of these two-fluid interfaces, we use
a theoretical framework that describes both the transport of
slugs in microchannels at low Reynolds and capillary numbers
and the behavior of isolated slugs impacting micro-obstacles
with either circular or rectangular shapes.38,41 This framework
is based on three flow properties:

(i) v varies as q/S where q is the total flow rate and S = hw
is the constant cross-section of the channel,

(ii) Flows of both continuous and slug phases are described
by Darcy’s laws. Hence, the pressure drop over a portion ℓ
of a slug can be written ∆p = ηsℓq

h3w f(wh ); ηs is an effective
viscosity of the slug54 and f(wh ) is a dimensionless function

that reads f ≈ 12
(
1− 0.63

(
w
h

)−1
)−1

for h<w,55

(iii) There is a capillary pressure drop 2 εγ
w

(
1 + w

h

)
across

the curved two-fluid interfaces, i.e. across the front and rear
edges of a slug; γ is the surface tension between slug and
transporting phases and ε = 1 or −1 depending on whether
the front or the rear edge of a slug is considered.

The presence of curved interfaces is taken into account by
the capillary pressure. For the sake of simplicity, however, we
model the flow considering interfaces that are flat rather than
curved. Although strong, such an approximation has allowed
us to successfully describe the breakup of isolated slugs.41

Within this simplified framework, all fluid-fluid interfaces
present in one of the gaps (i) of width wi (i = 1 or 2) move
at the same velocity vi(t). The pressure drop across the obsta-
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cle then reads ∆p(t) = ηcLvi(t)
h2 f

(
wi

h

) [
1 +

(
ηs−ηc

ηc

)
ℓi(t)
L

]
+

2Ei(t)γ
wi

(
1 + wi

h

)
, where ηc is the viscosity of the continuous

phase. In this expression, at the time t in the gap (i), ℓi(t) and
Ei(t) correspond to the total length occupied by the dispersed
phase and the sum of ε over of all two-fluid interfaces, respec-
tively. The origin of time is taken when the front edge of the
first slug in a train of slugs collides with the obstacle. The con-
servation of the total flow rate and the equality of the pressure
drop over both gaps allow one to compute vi(t), thus to predict
the positions of all fluid-fluid interfaces in the gap (i) at the
time t. In our numerical simulations, time is discretized in δt
units of the order of 10−3/ν so that the nature of our findings
is not affected by the selected value of δt. We perform our sim-
ulations with MATLAB using the flow properties discussed
above and the numerical algorithm described below. When-
ever an interface enters or exits one of the gaps, ∆p(t) varies
discontinuously which requires to reevaluate vi(t). Each time
tn = n/ν, the front edge of the n-th slug in the train meets
the obstacle and enters the larger gap (1) of width w1. ¶ Note
that an interface then propagates in the gap (2) only when the
pressure drop over the gaps overcomes the capillary pressure
required to accommodate the presence of a curved interface
in this narrower gap.41 The rear edge of the n-th slug meets
the obstacle a time tf = Ld/v after tn. If in the meantime, a
two-fluid interface has invaded the narrow gap, has propagated
forward and is still present in this gap at the time tn + tf , the
slug breaks into two daughter slugs that flow downstream both
gaps. The volume of the daughter slug flowing in the gap (i)
of width wi is then given by:

Ω
(n)
i = wih

∫ tn+tf

tn

vi(t) dt. (1)

When breakup does not occur, the mother slug having a vol-
ume Ω = Ldwh flows in the large gap (1). Consequently,
depending on whether breakup occurs or not at tn + tf , our
numerical algorithm places either two new rear edges in both
gaps or one rear edge in the large gap. To investigate the in-
fluence of drop-to-drop interactions on the fragmentation pro-
cess, we next study numerically the evolution of the volume
fraction ϕn = Ω

(n)
2 /Ω for trains of colliding slugs as a func-

tion of the controlling parameters of the problem. When run-
ning a simulation, both gaps are initially empty, i.e. they do
not contain any interfaces nor slug phase.

We begin by varying both λ and v, the values of the other
parameters [L, w, h, w1, w2, Ld, ηc, ηs, γ] being constant.
As illustrated in Fig. 2, we obtain three main fragmentation
regimes. In accordance with our previous work on the breakup
of isolated slugs,41 we observe that fragmentation occurs only
for a large enough slug velocity for any λ. Below this critical

¶This situation requires that experiments are performed at constant flow rates.

speed the slugs do not break (the blue area in Fig. 2 indicates
this no breakup regime). For large enough slug speeds and
high dilutions, i.e. large values of λ, the slugs are sufficiently
distant from each other so that the fragmentation of a slug is
not influenced by the behavior of the preceding ones; all slugs
of a train then break identically. As a result, ϕn is constant in
this isolated breakup regime in which the slugs can be con-
sidered as non-interacting hydrodynamically, that is, isolated
(the red area in Fig. 2 corresponds to this regime). By con-
trast, when λ becomes smaller than a critical value that is a
function of v, the evolution of ϕn with the slug index n ex-
hibits a transient variation for the small values of n, i.e. at
early times when the first slugs impact the obstacle and invade
the gaps (the green area in Fig. 2 corresponds to this coopera-
tive breakup regime). The occurrence of these fluctuations in
the response can be qualitatively explained as follows. When
the first slug of a train collides with the obstacle, both gaps
are solely filled with continuous phase. By contrast, when the
next slugs in the train meet the obstacle, one of the two gaps
or both of them may contain fluid-fluid interfaces because of
the breakup of preceding slugs. The presence of front and rear
edges of daughter slugs alters the dynamics of the two-fluid in-
terfaces propagating in these gaps whenever a slug meets the
obstacle and thus alters the temporal evolution of the volume
of the created daughter slugs. At long times, i.e. large values
of n, the response is no longer transient and two behaviors are
then observed: ϕn is either constant or surprisingly becomes a
periodic function of n (see Fig. 2).

We refer to the first case as the transient cooperative
breakup regime (denoted regime ¬ in Fig. 2) in which the
number and respective positions of the fluid-fluid interfaces
present in the two gaps reach steady states. Consequently, all
slugs of a train find the same geometric and hydrodynamic
configurations when meeting the obstacle. Hence, the slugs
all break identically and ϕn is constant at long times in the
regime ¬. The criterion used to distinguish this regime and
the isolated breakup regime is as follows: the latter regime is
obtained when the first slug of a train breaks in the absence of
any daughter slugs or interfaces in the gaps and the breakup
of all following slugs is identical to that of the first one. In
the second case, referred to as periodic cooperative breakup
regimes, the number and respective positions of the two-fluid
interfaces present in the two gaps become periodic functions
of n and so does ϕn. Figure 2 shows an example (regime ¯) of
such periodic cooperative regimes; the number used to denote
a periodic cooperative regime corresponds to its period T ≥ 2
which is the number of daughter slugs per cycle.

We next discuss our results using the capillary number
C = ηcv

γ that compares the magnitude of viscous and surface
forces and is generally the governing dimensionless quantity
in problems dealing with the breakup of drops or bubbles.56

To thoroughly study the problem, we run numerical simula-
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Fig. 2 Numerical variations of ϕn for a sequence of daughter slugs
produced upon breakup in the narrow gap as a function of the index
of the mother slug n for twelve sets of parameters (λ,v) as indicated
in the figure. The shaded colors denote the three observed
behaviors: (blue) no breakup, (red) isolated breakup, and (green)
cooperative breakup. The regimes ¬ and ¯ denote transient and
periodic cooperative regimes, respectively. The simulations are
conducted with Ld = 280 µm, w1 = 70 µm, w2 = 30 µm,
L = 700 µm, ηc =3 mPa s, ηs = 12 mPa s, and γ = 6.5 mN m−1.

tions for different values of L and Ld and we report the results
in diagrams mapping the response in the plane

(
λ
L , C

)
. These

diagrams reported in Fig. 3 and Fig. 4 share similar features
which indicate the generality of the reported phenomena:

(i) For any combination of obstacle length and slug size,
breakup occurs only when the capillary number exceeds a crit-
ical value. Below this value, the no breakup regime is solely
observed,

(ii) When breakup occurs, the observation of cooperative
breakup regimes requires λ/L to be small enough to introduce
slug-to-slug hydrodynamic interactions. For large values of
λ/L, only isolated breakup regimes are obtained,

(iii) Both transient (regime ¬) and periodic (period T ≥
2) cooperative breakup regimes are obtained for large enough
capillary number and small enough ratio λ/L.

Our results show that the period of the periodic coopera-
tive regimes is a function of the governing parameters that can
be larger than 4; the period can be as large as eight daughter
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Fig. 3 Numerical diagrams mapping the different hydrodynamic
regimes in the plane

(
λ
L
, C

)
for Ld = 215 µm and increasing values

of L from the top to the bottom panel as indicated in the figure. The
other parameters are identical to those of Fig. 2. Like in Fig. 2, the
shaded colors indicate the three main breakup regimes: (blue) no
breakup, (red) isolated breakup, and (green) cooperative breakup.
The regime ¬ corresponds to the transient cooperative breakup
regime. Each of the patterns denotes the period T ≥ 2 of a periodic
cooperative regime: Oblique dashed lines (T = 2), dots (T = 4),
and horizontal lines T ≥ 5. T also corresponds to the number used
to denote a periodic regime as shown in the figure.
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Fig. 4 Numerical diagrams mapping the different hydrodynamic
regimes in the plane

(
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)
for L = 700 µm and increasing values

of Ld from the top to the bottom panel as indicated in the figure.
The colors, patterns and other parameters are identical to those of
Fig. 2 and Fig. 3.

slugs per cycle (data shown in Fig. S1 of the ESI†) which indi-
cates the existence of long range correlations between succes-
sive breakup events. The domain of existence of cooperative
breakup regimes is also significantly influenced by the obsta-
cle length and slug size. For a value of λ/L and Ld, figure 3
shows that a periodic cooperative regime spans a wider range
of C as L increases. By contrast, as shown in Fig. 4, when L
is fixed, increasing Ld for a value of λ/L tends to reduce the
domains of existence of these regimes when C is changed.

3 Experiments
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Fig. 5 Experimental variations of the volume fraction ϕn as a
function of the index of the mother slug n for four sets of parameters
[λ,v,Ld]: (a) cooperative breakup regime ¯ [λ = 702± 39 µm,
v = 10275± 173 µm s−1, Ld = 286± 11 µm], (b) cooperative
breakup regime  [λ = 1246± 43 µm, v = 11653± 289 µm s−1,
Ld = 262± 16 µm], (c) no breakup [λ = 448± 19 µm,
v = 6377± 260 µm s−1, Ld = 281± 13 µm], (d) isolated breakup
[λ = 654±35 µm, v = 11312±382 µm s−1, Ld = 254±13 µm].

To validate our model and the resulting numerical pre-
dictions, we carry out microfluidic experiments with planar
devices made of poly-dimethylsiloxane (PDMS-Sylgard 184
purchased from Dow Corning) using soft lithography tech-
niques.57 As briefly described below, the features of our ex-
perimental set-up are similar to the geometry used for the nu-
merical simulations (see Fig. 1). A flow focusing geometry2 is
employed to generate a train of periodically-spaced monodis-
perse slugs flowing in a channel having a rectangular cross-
section (height h = 45 µm and width w = 130 µm). The 1-D
train of slugs is then directed towards a rectangular obstacle
of length L = 700 µm, parallel to the walls of the channel.
The obstacle is off-centered and the two gaps on its sides are
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w1 = 70 µm and w2 = 30µm. The fluid-fluid system is
deionized water (Millipore, 18 MΩ cm) dispersed in hexade-
cane (Sigma-Aldrich) that serves as transporting phase. The
water phase contains 15 g/L of a surfactant (Sodium Dodecyl
Sulfate, Sigma). The two fluids are injected at controlled flow
rates using independently adjusted syringe pumps (PHD 2000,
Harvard Apparatus). For this two-fluid system, the viscosities
and the surface tension between phases are ηc = 3 mPa s,
ηs = 12 mPa s, and γ = 6.5 mN m−1.41 An additional in-
jection (or withdrawal) of continuous phase is conducted in
a dilution module placed far upstream from the obstacle so
that the flow is steady near the obstacle. This module en-
ables to control the distance λ between slugs, thus their speed
v, while maintaining their size Ld and production rate ν un-
changed.58 Images of the flow are recorded in the vicinity of
the obstacle with a high-speed camera (Phantom V7) work-
ing at 1000 frames/s. The values of the parameters Ld, v, λ
and the volume fraction ϕn are obtained from image analysis
using a custom-written MATLAB software. In all our experi-
ments, the Reynolds and capillary numbers are small and span
the ranges 10−2−10−1 and 10−4−10−2, respectively.

Quantitative measurements of the volume fraction ϕn

confirm the experimental existence of cooperative breakup
regimes illustrated qualitatively in Movies S1−S3 in the ESI†

and predicted numerically (see Fig. 5(a) and (b) showing
two examples of experimental periodic breakups). Also, fig-
ure 5(c) shows that the slugs do not break when their speed
does not exceed a critical value as found numerically. For
speeds larger than the critical one, isolated breakup is ob-
served when λ is large enough to prevent slug-to-slug inter-
actions [Fig. 5(d)]. Movies corresponding to no-breakup and
isolated breakup regimes can be found as Supplementary Ma-
terial of one of our recent work41. Hence, the main features of
our numerical predictions discussed in section 2 are observed
experimentally.

To further validate our numerical model, we proceed as fol-
lows. When a steady train of slugs having the desired slug
size is obtained, we vary the additional flow rate in the di-
lute module while maintaining all other flow rates unchanged.
This method for which Ld and ν are set while v = λν is
adjusted, allows us to investigate the problem experimentally
along straight dilution lines and to establish diagrams mapping
the response in the plane

(
λ
L , C

)
. The criterion used to distin-

guish transient cooperative breakups and isolated breakups is
identical to the one defined in section 2 for our numerical sim-
ulations. In Fig. 6, we report our experimental results along
with numerical data in a diagram plotted in the plane

(
λ
L , C

)
with identical values of governing parameters. Each set of
measurements is performed along a given dilution line and is
represented by a given symbol. The colors and patterns used
for these symbols are identical to those used for our numerical
diagrams. These colors and patterns allow one to identify the

12

10

8

6

4

2

0

¸/L
0.5 1 1.5 2 2.5 3

1

2

4
¸5

isolated
breakup

no breakup

cooperative
breakup

1
0
  
C

3

Fig. 6 Comparison between the numerical diagram mapping the
three hydrodynamic regimes in the plane

(
λ
L
, C

)
for Ld = 280 µm

and L = 700 µm (middle plot in Fig. 4) and four sets of
measurements conducted with the same value of L and an average
slug size 280 µm with a standard deviation σ = 13 µm. The colors,
patterns and other parameters are identical to those of Figs. 4. Each
set of measurements is performed along a dilution line and is
represented by a symbol (diamonds, squares, circles and triangles).

nature of the three main observed regimes [no breakup (blue),
isolated breakup (red), and cooperative breakup (green)] and
the period T of the possible periodic regimes. As indicated in
Fig. 6, the oblique dashed, dotted, and horizontal solid lines
stand for regimes with T=2, T=4, and T ≥ 5, respectively.
As shown in this figure, despite the strong approximations in
our simple physical model, the predictions obtained for the
domains of existence of the different breakup regimes concur
well with experiments conducted for the same obstacle length
and slug size. Also, figure 6 shows that the numerical predic-
tions of the periods T of periodic cooperative regimes com-
pare well with experimental data. Unfortunately, we could
not manage to report experimental observations of periodic
regimes with periods larger than 4 as their occurrence is pre-
dicted numerically in very narrow regions of the dilution lines.

4 Conclusions

To conclude, we have shown that the breakup dynamics of a 1-
D train of drops against a micro-obstacle can be complex. Es-
pecially, numerical simulations and experimental observations
show the emergence of cooperative effects between drops: we
report regimes in which the volume of the daughter droplets
created upon breaking mother ones becomes a time-periodic
function. As seen in investigations of droplet traffic in mi-
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crofluidic networks,47–50 the occurrence of periodic regimes
separated by bifurcations results from the iteration of simple
rules and the existence of hydrodynamic feedback between
drops. Inherent in microfluidics, such time-delayed feedbacks
originate from the alteration of the hydrodynamic resistance
of a channel by the presence of drops flowing in it. Hence,
the breakup of a drop may be influenced by the behavior of
the preceding ones in a train of drops. From the standpoint of
nonlinear physics, cooperative breakups allow one to investi-
gate time-delay effects on a continuous variable (here ϕn) in
a temporally discrete system. These findings could also help
the design of commercial obstacle-mediated breakup devices
as they offer possibilities for tailoring emulsions and foams
having a multimodal distribution of sizes.59,60
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We present a model describing the complex breakup dynamics of one-dimensional trains  
of drops against rectangular micro-obstacles.  
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