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ABSTRACT 
 

Dynamic Light Scattering (DLS) is a widely used 

technique for measuring the size distributions of nano- and 

micro-particles dispersed in a liquid. The principle is based 

on the analysis of the temporal fluctuations of light 

scattered by the particles at a given scattering angle. 

However, single-angle DLS measurements may lack 

resolution and robustness, particularly for multimodal 

and/or polydisperse samples. Multi-angle Dynamic Light 

Scattering (MDLS) provides more robust, reproducible and 

accurate Particle Size Distributions (PSDs) than single-

angle DLS. In this paper, a novel inversion method based 

on Bayesian inference is proposed for the estimation of the 

number PSD from MDLS measurements. The efficiency 

and robustness of this method is demonstrated through 

simulated and real data. 

 

Keywords: multi-angle dynamic light scattering, Bayesian 

inference, particle size distribution, multimodal  

 

1 INTRODUCTION 
 

Dynamic Light Scattering (DLS) is commonly used for 

sizing sub-micrometric particles dispersed in a dilute 

suspension [1]. The multi-scattering effect, which appears if 

the sample is too concentrated, may be treated by the cross 

correlation method [2]. DLS has numerous advantages: it is 

non-invasive, fast, and provides an absolute estimate of 

particle size. Experimentally, a cuvette containing the 

sample is irradiated by a polarized laser beam which leads 

to a scattering signal in all directions, depending on the 

particle size. The Brownian motion of the particles induces 

temporal variations of the scattered intensity recorded at a 

given angle. The time Auto-Correlation Function (ACF) of 

the intensity signal is analyzed to obtain the Particle Size 

Distribution (PSD). 

As the properties of nanoparticles are influenced by 

their size, the estimation of the PSD is an important issue in 

their characterization. This information is helpful for the 

study of their impact on environment and health [3]. 

Measuring the PSD of a complex sample with a good 

resolution is essential in many applications as protein 

characterization, quality of blood platelet determination, 

and process control of nanoparticles growth [4-5]. It is also 

important for determining the relative fractions of a mixture 

to improve its properties [6]. 

 The inversion of DLS data is known as an ill-posed 

mathematical problem since the solution is not unique, and 

a small amount of noise present in the measured data can 

lead to large variations in the estimated PSD. Several 

algorithms, such as the Cumulants method [7], CONTIN 

[8], non-negative least squares [9] or the maximum entropy 

method [10], are usually used to retrieve the PSD from DLS 

data. In general, satisfying results are achieved for 

monomodal samples or multimodal samples having 

populations with comparable intensity contributions and 

spaced by at least a factor 2 in diameter. However, due to 

the low information content of the time ACF acquired at a 

single angle, these methods do not give reliable results for 

more complex samples [11]. Indeed, the intensity scattered 

by a particle strongly depends on its size and on the 

scattering angle. Recovering the exact composition of the 

sample from single-angle DLS measurements can thus be 

difficult if the intensity scattered by one population 

predominates.  

Multiangle Dynamic Light Scattering (MDLS) allows 

getting more information about the studied sample by 

combining the DLS data acquired at several angles. Former 

studies have demonstrated that MDLS provides more 

robust, reproducible and accurate PSD than single-angle 

DLS, particularly for polydisperse and/or multimodal 

samples [11-13]. New data analysis methods have to be 

developed to optimize the results obtained by MDLS.  

In the present work, we propose a Bayesian method for 

the estimation of the number PSD from MDLS 

measurements. The Bayesian approach is innovative and 

very promising in terms of repeatability and robustness 

[14]. Clementi et al. [15] proposed a Bayesian approach for 

MDLS measurements analysis. The first step consists in 

calculating the Z-average diameters (harmonic intensity 

averaged particle diameter) for each scattering angle by the 

method of Cumulants. The PSD is then estimated by 

applying Bayesian inference to the Z-average diameters. 

However, the estimation errors on the Z-average diameters 

propagate for complex samples and can lead to large errors 

on the PSD. To overcome this issue, we propose to directly 

estimate the PSD from the autocorrelation functions. 

Basic theoretical principles on DLS and the new 

Bayesian method are presented in section 2. Section 3 

provides insights of the results obtained when the 

innovative numerical method is applied to simulated and 
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experimental data, as well as comparisons with usual 

procedures ([8] and [15]). 

 

2 THEORY 
 

2.1 Dynamic Light Scattering 

Estimating the PSD from single-angle DLS data 

consists in inverting the normalized electric field ACF, 

g
(1)

(τ). g
(1)

(τ) is related to the measured normalized intensity 

ACF, g
(2)

(τ), by the Siegert relation [16]:  

 �(�)(�) = 1 + 	
�(�)(�)
�,        (1) 

 

where β (< 1) is an instrumental factor.  

For a monomodal and monodisperse sample, the electric 

field ACF is a single exponential decay:  

 �(�)(�) = �
��,          (2) 

 

where Γ is the decay rate, related to the translational 

diffusion coefficient of the particles, Ds, by the following 

relation: 

 � = ����.           (3) 

 

The magnitude of the scattering vector is given by: 

 � = ����� sin ����,          (4) 

 

where n is the solvent refractive index, θ the scattering 

angle, and λ0 the laser wavelength in vacuum. Assuming 

that the sample consists of non-interacting spherical 

particles, their hydrodynamic diameter, Dh, is estimated by 

means of the Stokes-Einstein equation: 

 �� =  !"#�$%&,           (5) 

 

where kB is the Boltzmann constant, T the absolute sample 

temperature, and η the medium viscosity. 

Polydisperse or/and multimodal samples are composed 

of populations with different diameters. Each of them gives 

a contribution similar to a monomodal distribution, and the 

electric field autocorrelation function can be represented by 

an integral over the intensity-weighted distribution of decay 

rates, G(Γ) [1]:  

 �(�)(�) = ' ((�)�
��)�*+ .         (6) 

 

After inversion of the electric field ACF, g
(1)

(τ), the 

intensity-weighted PSD is deduced from G(Γ). Mie theory 

can then be applied to convert the intensity distribution to a 

volume or number distribution [17].  

MDLS consists in doing DLS measurements at several 

scattering angles, and to solve the whole equations system. 

 

2.2 Proposed Bayesian Inversion Method 

The aim of our work is to improve the multimodal 

number-weighted PSD (NPSD) estimation from MDLS 

measurements using a Bayesian method. Contrarily to the 

method proposed by Clementi et al. [15], we propose to 

directly apply the Bayesian inference to the MDLS 

measurements (time ACF), and not to the Z-average 

diameters. In this way, the effect of error propagation will 

be drastically limited. The proposed method is a free-form 

model, i.e. no assumption is made about the NPSD shape. 

The diameter range and the number of points of the solution 

are specified by the user.  

The Bayesian inference approach is a statistical 

inversion method. It allows taking into account available a 

priori information as well as model and measurements 

uncertainties. In this approach, the quantities involved in 

the mathematical model are represented as random 

variables with joint probability distributions. The solution 

of the inverse problem is summarized in a probability 

distribution, called posterior distribution, when all prior 

knowledge has been incorporated. Contrarily to 

deterministic methods, which only provide a reasonable 

estimate of the quantity of interest, various different 

estimates can be calculated from the posterior probability 

distribution in statistical approaches. Furthermore, 

statistical methods are much more appropriated than 

deterministic ones for solving ill-posed problems. Indeed, a 

regularization parameter is often used in deterministic 

methods in order to obtain a smooth solution to the 

problem. On the contrary, the Bayesian inference approach 

averages all the solutions consistent with the data, leading 

to more robust results [14].  

In practical applications, the posterior probability 

density function can be very complex and/or highly 

multivariate. In such cases, Markov Chain Monte Carlo 

(MCMC) methods are typically used to draw samples from 

the posterior probability density function of interest. Then, 

the inference about the parameters of interest is made from 

the drawn samples.  

The mathematical development of the proposed 

Bayesian inversion method is detailed in [18]. Here is a 

brief description. The discrete NPSD ,(��) is estimated, 

for a set of particle diameters (��,�, … , ��,/), from the 

MDLS data acquired at different angles {θ2, 3 = 1, . . . , 5}. 
For each angle78, the intensity ACF is measured at discrete 

time delays {τ:, ; = 1, . . . , <8}. The proposed statistical 

model for the measured intensity ACFs, �=�>(�)(�:), is 

expressed by: 

 �=�>(�)(�:) = ��>(�)(�:) + ?8(;)  for 3 = 1, . . . , 5, and 

; = 1, . . . , <8.     (7) 

 

Page 2 of 7Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



where ��>(�)(�:) is the noise-free intensity ACF at the angle 78 and ?8(;) is an additive noise assumed to be normally 

distributed with zero mean and variance @8� at the angle 78. 

We note , = A,B��,�C, … , ,B��,/CD", 

�=8(�) = E��>(�)(��), … , ��>(�)B�F>CG" for 3 = 1,…5 and 

�=(�) = E�=�(�)" , … , �=H(�)"G". ."denotes the transpose operator. 

Using the Bayes formula, the joint posterior 

probability distribution of the NPSD vector and the noise 

variances given the MDLS data can be expressed by: 

 

I �,, @8,8J�,…H� |�=(�)� = L(M)∏ LBO>PCL(Q=>(P)|M,O>P)R>ST L(Q=(P))  (8) 

 

where I(,) and I(@8�) express the available prior 

information about the NPSD and the noise variance 

respectively. I(�=8(�)|,, @8�) is the likelihood function (i.e., 

the conditional probability density function of the measured 

DLS data at the angle 78 given a NPSD vector , and a 

variance @8�). The used prior densities and the expression of 

the likelihood function are detailed in [18]. 

As result of marginalisation step with respect to the 

noise variances, the posterior probability density function 

of interest (i.e. of the NPSD vector , given the measured 

MDLS data) is given by: 

 I �,|�=(�)� =
UV�WI X−Z[\,Z��]∏ E^8 �,�G
_>PH8J� , , ≥ 00, bcℎ�3?ef�  (9) 

 

Where [\ is a squared matrix that represents the second 

derivative operator and ^8 �,� = ∑ X�=�>� (�:) −F>:J�
��>,M� (�:)]�. 

The posterior probability density function of interest 

is sampled using a MCMC Metropolis-within-Gibbs 

sampler. The NPSD is estimated from the generated 

Markov chain by the minimum mean square error (MMSE) 

estimator. 

 

3 APPLICATION TO SIMULATED AND 
REAL DATA 

 

The numerical analysis for inverting MDLS data is first 

validated through simulated data. It is then tested on 

different experimental cases. For all tests, the polystyrene 

latex particles are dispersed in water at 25°C (refractive 

index n = 1.33, viscosity η = 0.89 cPo). The light source is a 

vertically-polarized laser diode of wavelength λ0 = 638 nm.    

 

3.1 Simulations 

To simulate MDLS data, an arbitrary PSD is first 

defined. The noise-free normalized intensity ACFs at 

different angles are then calculated using the mathematical 

model described in section 2.2. An additive Gaussian noise 

is finally added to the data.  

The arbitrary chosen PSD is a trimodal mixture of latex 

particles represented by a combination of 3 Gaussian 

distributions with mean diameters D1 = 400 nm, D2 = 600 

nm and D3 = 1019 nm, and respective standard deviations 

σ1 = 7 nm, σ2 = 10 nm and σ3 = 10 nm. The relative number 

fractions of each mode are respectively 73 %, 20 % and 7 

%. Autocorrelations functions were simulated at 13 angles 

between 60 and 120°, with a step of 5° between each angle. 

An additive noise of 10
-3

 amplitude is added to the ACFs.  

 

3.2 Experimental data 

Experiments were carried out using the Nano DS 

Particle Size Analyzer from CILAS. In this system, the 

sample is contained in a square-shaped scattering cell. The 

scattered light is collected by a single-mode optical fiber 

mounted on a goniometer arm, and connected to a 

photomultiplier. 

Dilute suspensions of polystyrene standard spheres 

(NIST traceable particle size standards, Thermo Scientific) 

were used for experimental studies. Sample 1 is a bimodal 

mixture of 102 nm and 596 nm particles, with relative 

number fractions of 99.7 % and 0.3 %, respectively. Sample 

2 is the trimodal mixture used for simulations. Both 

samples were measured at angles between 60 and 120°. The 

angular step was 10° for Sample 1, and 5° for Sample 2.  

For each sample, 5 measurements of 10 min duration were 

realized at each angle. 

 

3.3 Results 

Figure 1 compares the results obtained with our method 

and that of Clementi [15] on the simulated data. These 

results clearly show that the NPSD assessed with our 

method is the closest one to the expected NPSD. The 3 

peaks at 400 nm, 600 nm and 1019 nm are well resolved 

with a very good accuracy. Their relative number fractions 

are respectively 74 %, 19 % and 7 %. On the contrary, the 

method of Clementi does not clearly resolve the 3 peaks. 

More details about the validation of our method on 

simulated data and other examples can be found elsewhere 

[18]. 
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Figure 1: Comparison of the results obtained with our 

method and the method of Clementi on the simulated data.  

 

Figure 2 (a) shows the NPSDs obtained with our 

algorithm from the experimental data measured for Sample 

1. Both peaks around 100 nm and 600 nm are well resolved 

with a good accuracy (less than 6 % error on the position of 

the peaks), and with relative fractions consistent with those 

expected. Compared to the results obtained with the method 

of Clementi [15] from the same MDLS data (figure 2 (b)), 

our method shows better repeatability and accuracy. Figure 

2 (c) gives the results obtained for the same sample by 

single-angle analysis at 90° with the CONTIN algorithm. In 

this case, single-angle analysis also permits to resolve both 

populations. However, the error on the position of the peak 

at 600 nm is greater than 20 %. As one can notice from 

figure 2 (a), the proposed method has some limitations for 

particles of diameter of about 100 nm or lower. This 

problem, which is also mentioned in other MDLS studies 

[11-12, 15], is due to the fact that the light scattered by such 

small particles shows little angular variations. 

 

 

Figure 2: Comparison of the results obtained with our 

method (a) and the method of Clementi (b) from MDLS 

data acquired for Sample 1. (c) Single-angle analysis of the 

same sample at 90° with the CONTIN algorithm. From 300 

to 1000 nm, the NPSDs are shown on an expanded scale. 

 

Results obtained for Sample 2 with our method (a), the 

method of Clementi (b), and by single-angle DLS at 80° (c) 

and 120° (d) with the CONTIN algorithm are given in 

figure 3. Our method resolves successfully the 3 peaks 

around 400 nm, 600 nm and 1019 nm, with accuracy better 

than 5 % and a good repeatability. The relative number 

fractions measured for the 3 peaks are respectively 60 %, 

27 % and 13 %. The measured number fractions of the 

peaks at 600 nm and 1019 nm are slightly greater than those 

expected, whereas the 400 nm number fraction is 

underestimated. However, the estimated NPSD is very 

close to that expected.  

As shown in figure 3 (b), the 3 peaks are also retrieved 

by the inversion method of Clementi, but with a lower 

precision than with our method.  

As expected, CONTIN is unable to resolve the 3 peaks 

of the distribution of Sample 2, because the different 

populations are spaced by less than a factor 2 in diameter. 

The PSD calculated by CONTIN possesses only one peak, 

whose position varies as a function of the scattering angle. 

For the quantities mixed to the preparation of Sample 2, 

Mie theory predicts that the 3 populations scatter almost the 

same amount of light around 80°, whereas the intensity 

scattered by the particles of 1019 nm predominates around 

120°. The mean diameter of the estimated distribution at 

80° is thus close to the mean of the mixed diameters (figure 

3 (c)). As shown in figure 3 (d), it is closer to 1019 nm at 

120°.   

 

Figure 3: Comparison of the results obtained with our 

method (a) and the method of Clementi (b) from MDLS 

data acquired for Sample 2. (c) and (d) Single-angle 

analysis of the same sample at 80° and 120° with the 

CONTIN algorithm. 

 

These results clearly show the advantage of MDLS for 

the analysis of complex samples having 2 or more closely 

spaced modes. Furthermore, the comparison of our results 

to those obtained with the Clementi method [15] seems to 

confirm the reduction of error propagation by applying 

directly the Bayesian method to the ACFs. The NPSDs 
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calculated with the proposed approach show better 

resolution, repeatability and agreement with the expected 

distributions. 

 

4 CONCLUSIONS 
 

For complex unknown samples containing several 

populations, single-angle DLS can hardly give reliable 

results because the chosen angle may be inappropriate to 

detect all the present populations. MDLS, combined with a 

powerful inversion method to analyze simultaneously all 

the available data, is a very useful technique to overcome 

this issue. The efficiency of the proposed method has been 

demonstrated through experimental and simulated 

examples. Our technique is able to resolve peaks spaced by 

less than a factor 2 in diameter, with a better accuracy 

compared to other developed MDLS algorithms. This new 

method has been successfully tested on data acquired with 

the Nano DS from CILAS. This robust approach combined 

with a multi-angle instrument is efficient to characterize 

complex samples that cannot be measured by DLS 

instruments nowadays. 
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FIGURE 1: COMPARISON OF THE RESULTS OBTAINED WITH OUR METHOD AND THE METHOD OF 

CLEMENTI ON THE SIMULATED DATA.  
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Figure 2: Comparison of the results obtained with our method (a) and the method of Clementi (b) from MDLS 

data acquired for Sample 1. (c) Single-angle analysis of the same sample at 90° with the CONTIN algorithm. 

From 300 to 1000 nm, the NPSDs are shown on an expanded scale. 

 

 

Figure 3: Comparison of the results obtained with our method (a) and the method of Clementi (b) from MDLS 

data acquired for Sample 2. (c) and (d) Single-angle analysis of the same sample at 80° and 120° with the 

CONTIN algorithm. 
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