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The principles that underlie the motion of colloidal particles in concentration gradients and the propulsion of chemically-powered

synthetic nanomotors are used to design active polymer chains. The active chains contain catalytic and noncatalytic monomers,

or beads, at the ends or elsewhere along the polymer chain. A chemical reaction at the catalytic bead produces a self-generated

concentration gradient and the noncatalytic bead responds to this gradient by a diffusiophoretic mechanism that causes these two

beads to move towards each other. Because of this chemotactic response, the dynamical properties of these active polymer chains

are very different from their inactive counterparts. In particular, we show that ring closure and loop formation are much more

rapid than those for inactive chains, which rely primarily on diffusion to bring distant portions of the chain in close proximity.

The mechanism presented in this paper can be extended to other chemical systems which rely on diffusion to bring reagents into

contact for reactions to occur. This study suggests the possibility that synthetic systems could make use of chemically-powered

active motion or chemotaxis to effectively carry out complex transport tasks in reaction dynamics, much like those that molecular

motors perform in biological systems.

1 Introduction

Active transport is a common mechanism employed by bio-

logical systems to carry out many functions in the cell and a

large variety and number of molecular machines have evolved

to perform specific tasks.1 Now familiar examples include the

family of kinesins and dyneins that move along microtubule

filaments and actively transport vesicles, organelles and pro-

teins in the cell, among the many other functions they perform.

Other motors act as pumps or are involved in signalling pro-

cesses in the networks of chemical reactions that control cell

biochemistry. These few examples serve to indicate that cell

biochemistry does not rely on simple diffusion alone to effect

transport; evolution has led to the construction of molecular

machines to overcome the indiscriminate nature of diffusion

to achieve more effective function. The complex biochemical

networks that underlie cellular functions produce, consume

and transport large and small molecular and super-molecular

entities in an inhomogeneous environment using both active

and passive mechanisms.

Currently, a significant research effort is being devoted to

the construction and study of synthetic nanoscale machines

and motors.2 One of the aims of this research is to imitate

some of the desirable transport functions of biological ma-

chines. While nature has designed molecular machines to as-
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sist in carrying out biochemical functions in the cell, much of

condensed phase chemistry relies on simple diffusion to bring

reagents into contact so that chemical reactions can proceed.

This raises the question, can one design synthetic machines or

implement active transport strategies to supplant simple diffu-

sion and target reagents to encounter each other more effec-

tively in order to produce desired products?

In this article we give a simple illustration of how active

transport can be used to greatly reduce the time needed for ring

closure or loop formation in polymeric systems. Loop forma-

tion in a polymer chain is a dynamic process by which two

monomers along the chain approach each other within a small

distance and possibly bind. We show how some of the ideas

that underlie synthetic nanomotor propulsion can be used to

design active polymer chains which contain the components

of chemically-powered motors and undergo rapid ring closure.

Following the fabrication and study of small micron-scale

bimetallic rod motors that use hydrogen peroxide fuel3,4, dif-

ferent types of chemically-powered motors have been made

and their potential applications have been explored2. One

such motor is a sphere dimer motor comprising linked cat-

alytic and noncatalytic spheres.5,6 Reactions at the catalytic

sphere produce a concentration gradient that ultimately gives

rise to directed motion of the motor. An active polymer is

constructed by unlinking the catalytic and noncatalytic spher-

ical particles, attaching them to different portions of a polymer

chain, and allowing them to move in the concentration gradi-

ent generated by reactions at the catalytic sphere. Through

such a mechanism we show that distant portions of the poly-

mer chain can be targeted to encounter each other to form
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loops or rings.

In the next section we discuss the basic mechanism for dif-

fusiophoretic motion in a concentration gradient. Section 3

presents the model for active polymers in detail and describes

how the simulations of the dynamics are carried out. The re-

sults in Sec. 4 show that ring closure times can be greatly re-

duced for active polymer chains, when compared to those of

their inactive counterparts. Other aspects of active polymer

dynamics are also discussed in this section. The conclusions

of the study are given in Sec. 5.

2 Diffusiophoretic particle motion

As an introduction to the mechanism that active polymers use

to achieve rapid ring closure or loop formation, we briefly de-

scribe the simpler situation of the motion of a particle in a

chemical gradient. It is well known that colloidal particles

can move in response to chemical or other (electric field and

temperature) gradients and the macroscopic theory that under-

lies these phoretic mechanisms is well established.7,8 Briefly,

suppose there is an inhomogeneous distribution of solute B

molecules in the vicinity of the colloidal particle. Interactions

of the solute molecules with the surface of the colloid give rise

to body forces, which, because of momentum conservation,

lead to pressure and velocity gradients within a thin boundary

layer around the particle within which the forces act. As a re-

sult, there is a fluid slip velocity, vs, on the outer edge of the

boundary layer, which is given by the expression,

vs =−
kBT

η
(∇||cB(S ))Λ, (1)

where cB(S ) is the concentration of B molecules on the outer

edge of the boundary layer, the gradient is taken along the

surface of this layer, the viscosity of the solution is η and Λ is

a parameter that gauges the strength of the interaction of the

solute molecules with the surface of the particle. The velocity

of the colloidal particle may then be expressed in terms of the

average of this slip velocity over the surface S of the colloidal

particle plus its boundary layer: V =−〈vs〉S .

As a specific illustration of such motion that is relevant for

the polymeric application discussed below, we suppose that

we have two spherical particles in the solution (see Fig 1, left

panel). One particle is catalytic (C) and catalyzes the reaction

A → B. The other particle is chemically inactive or noncat-

alytic (N) but interacts differently with the A and B species

through potential functions VA and VB, respectively. The sys-

tem is similar to that of a sphere-dimer nanomotor with linked

catalytic and noncatalytic spheres.5 Self-diffusiophoresis, or

other types of self-phoresis, provide the mechanism for di-

rected motion.9,10 In the present case, where the C and N

spheres are not linked, the A and B concentration field gra-

dients cause the N sphere to chemotactically move towards

Fig. 1 Left: Catalytic C (red) and noncatlaytic N (green) spheres

along with the B concentration field near the catalytic sphere. The

initial separation between the C and N spheres is R0 = 10. Right:

An instantaneous configuration of a flexible active polymer with

Nb = 20 beads. The B concentration field is also shown.

the C sphere. We also note that the chemotactic response of

synthetic nanomotors to chemical gradients has been observed

experimentally.11,12

The concentration fields of the A and B molecules can be

found by solving the diffusion equation, D∇2cA(r) = 0. This

equation must be solved subject to the “radiation” bound-

ary condition on its surface, k0cA(RC, t) = kDRCr̂ ·∇cA(RC, t),
where RC is the radius at which reaction takes place, and

cA(r → ∞) = c0, corresponding to a continual supply of fuel

at the distant boundaries to establish a steady state. Here

cA + cB = c0, D is the diffusion coefficient of the solute

species, kD = 4πRCD is the Smoluchowski rate constant and

k0 is the intrinsic reaction rate constant. Solution of the diffu-

sion equation yields the concentration field of B:

cB(r) =
k0c0

k0 + kD

RC

r
, (2)

with a similar expression for cA(r) that can be found from the

conservation condition cA+cB = c0 assuming the total density

of the A and B species is locally conserved. The B particle

concentration field is shown in Fig. 1 (left panel).

Suppose at some time instant t the N sphere is at a vector

distance R(t) from the C sphere. To compute the velocity of

N sphere we must average the gradient of the B concentration

field over the outer edge of the surface of the boundary layer

of the N sphere with radius RN . Using Eq. (2) in Eq. (1) and

evaluating the surface average to obtain the velocity of the N

sphere projected along the direction of R(t), Vz(t) = R̂(t) ·
V(t), we find,

Vz(t) =−
2kBT c0Λ

3η

k0

k0 + kD

RC

R(t)2
≡−

α

R(t)2
, (3)

where Λ is given by

Λ =
∫ ∞

0
dr r

(

e−βVB(r)− e−βVA(r)
)

, (4)

with β = 1/kBT . Note that if the A and B particles interact

with the N sphere through repulsive potentials, and the B po-

tential is less repulsive than that of A, the N sphere will move
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towards the C sphere (negative Vz). Since the time evolution

of the separation between the spheres is given by dR(t)/dt =
Vz(t), we can integrate to find how the separation varies with

time given an initial separation of R0: R(t) = [R3
0 − 3αt]1/3.

Thus the C sphere will encounter the N sphere (reach an en-

counter distance Rf) in a time,

τc =
(R3

0 −R3
f )

3α
. (5)

We now link the catalytic and noncatalytic particles by a

polymer chain to make an active polymer chain (see Fig. 1,

right panel). The diffusiophoretic mechanism will operate and

drive the ends of the polymer chain together leading to ring

closure. In this way one may expect that the dynamics and

characteristic times of ring closure, or more generally loop

formation, will be different from those of systems that rely

solely on simple diffusion to achieve similar encounter dis-

tances. The remainder of the paper will examine such active

dynamics in quantitative detail. However, since fluctuations

are an important factor in the dynamics of these molecular

systems, our investigations are carried out using mesoscopic

particle-based simulations where the polymer chain is treated

at coarse-grained level as a collection of beads and the solvent

is evolved using multiparticle collision dynamics (MPCD), the

details of which are given in the next section.

3 Mesoscopic Dynamics

3.1 Polymer model

The coarse-grained polymer consists of Nb beads with coordi-

nates ri interacting with each other through a potential given

by

Vp(r
Nb) =

Nb−1

∑
i=1

VS(bi)+
Nb−2

∑
i=1

VB(bi,bi+1)

+
1

2

Nb

∑
i, j=1

VLJ(ri j). (6)

The two-body harmonic spring potential VS(bi)=
1
2
k(bi−b0)

2

penalizes departures of the modulus, bi, of the bond vec-

tor bi = ri − ri+1 from its equilibrium value of b0. For

semi-flexible polymers there is a three-body bending poten-

tial VB(bi,bi+1) = κ(1 − cosφi) which penalizes departures

of the angle φi between consecutive bond vectors from its

equilibrium value of zero. The parameter κ = 0 for flexi-

ble polymers. There is also a repulsive Lennard-Jones (LJ)

potential VLJ acting between all pairs of beads. It has the

form, , VLJ(r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4], r ≤ rc, where

rc = 21/6σ is the cutoff distance and σ and ε take values that

depend on the nature of the beads that are involved in the spe-

cific pair interaction. Two of the beads in the polymer are cat-

alytic C and noncatalytic N, as discussed in the previous sec-

tion. Usually these beads are chosen at the ends of the chain

to study ring closure but other choices will be employed to

study loop formation. The remainder of the beads that com-

prise the polymer chain are neutral and do not participate in

the diffusiophoretic mechanism. Both of the end beads have

same diameter dC = dN = 4, while all of the middle polymer

beads have diameter dP = 2. The system size and dynami-

cal time scales are computationally convenient for our choice

of bead diameters, but other choices could have been made.

This will not affect the qualitative features of the phenomena

considered in this paper.

The polymer is immersed in a fluid containing a large num-

ber Ns of A and B “molecules”. These solvent molecules in-

teract with the beads in the polymer chain through repulsive

LJ potentials with the same form as that given above but,

again, the length and energy parameters depend on the spe-

cific pair interaction under consideration. Thus, the polymer

bead-solvent potential takes the form,

Vbs(r
Nb ,rNs) =

1

2

Nb

∑
i=1

Ns

∑
j=1

VLJ(ri j). (7)

The interaction potentials for the A and B molecules with

the C bead and neutral beads have same energy parameter

ε , while these molecules have different energy parameters

εA = ε and εB, for their interaction with the N bead. There

are no solvent-solvent intermolecular potentials. These in-

teractions are embodied in multiparticle collisions discussed

below. Thus, the potential energy of the entire system is

V (rNb ,rNs) =Vp(r
Nb)+Vbs(r

Nb ,rNs).

3.2 Dynamics

The time evolution of the system is carried out using a meso-

scopic hybrid molecular dynamics-multiparticle collision dy-

namics (MD-MPCD) scheme13,14. In this hybrid scheme, the

evolution consists of a concatenation of streaming and multi-

particle collision steps. In the streaming step, the dynamics is

evolved by Newton’s equations of motion governed by forces

determined from the total potential energy V (rNb ,rNs) of the

system. In the collision steps, which occur at time intervals

τ , the point-like solvent particles are sorted into cubic cells

with cell size a0. The choice of cell size is such that the mean

free path λ < a0. Multiparticle collisions among the solvent

molecules are performed independently in each cell, which re-

sults in the post collision velocity of solvent particle i in cell

ξ being given by v′i = Vξ + ω̂ξ (vi − Vξ ), where Vξ is the

center-of-mass velocity of particles in cell ξ and ω̂ξ is a rota-

tion matrix. In order to ensure Galilean invariance for systems
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with small λ , a random grid shift is applied in each direction

of the simulation box15,16. The method described above con-

serves mass, momentum and energy and accounts for the hy-

drodynamic interactions and fluid flow fields17,18, which are

important for the dynamics of the active polymer chain.

A chemical reaction A+C → B+C takes place on the cat-

alytic end of the polymer whenever A encounters C and leaves

the boundary layer region. In this reaction the species identity

is changed from A to B, but the position and velocity are not

changed. The multiparticle collisions will change the mag-

nitude and velocity of the particles so that the combination

of species change and multiparticle collision may be regarded

as a coarse-grained reactive event. Since the species change

takes place just outside the boundary layer where interactions

are zero, there are no discontinuous changes in the forces. In

the absence of fluxes of chemical species, reactions on the C

sphere would lead to the total conversion of A to B, and when

this occurs the diffusiophoretic mechanism will cease to op-

erate. In order to maintain the system in a nonequilibrium

steady state, B molecules are converted back to A molecules

when they diffuse sufficiently far from the catalytic sphere.

In the simulations described below, all quantities are re-

ported in dimensionless units based on energy εA, mass mA

and distance σA. In these units the masses of both A and B

species are m = 1 and the masses of the C and N spheres and

polymer beads, mC, mN and mP, respectively, were adjusted

according to their diameters to ensure density matching with

the solvent. Periodic boundary conditions were applied on the

cubic simulation box with sides L = 50. We chose the average

number of particles per cell to be n0 ≈ 10 in all simulations.

The rotation operator for MPC dynamics is taken to corre-

spond to rotation about a randomly chosen axis by an angle

of π/2. The system temperature was fixed at T = 0.2. For

integrating the Newton’s equation of motion with the velocity

Verlet algorithm, the MD time step is taken as ∆t = 0.01, and

the MPC time is τ = 0.5. Unless specified the repulsive LJ

potential has εA = 1.0 and εB = 0.1 for interactions with the N

sphere.

4 Polymer ring closure and loop formation

Ring closure and loop formation in polymers are dynamical

processes with broad applications. For example, often loop

formation is induced in DNA by a protein or protein com-

plex that binds to two different sites of DNA simultaneously.

The resulting loop formation may regulate aspects of DNA

metabolism.19,20 In addition to loop formation in biopoly-

mers, studies of ring closure and loop formation in other poly-

meric systems, as well as in carbon nanotubes, have been car-

ried out.21–23 The presence of long-range interactions can in-

fluence chain closure dynamics and it has been suggested that

such long-range interactions may play a role in protein fold-

ing rates.24 In other studies related to long-range interactions,

it was shown that the presence of a viscoelastic fluid around

the polymer changes the manner in which the polymer relaxes

and this influences loop formation dynamics.25 The presence

of hydrodynamic interactions and denaturants in the solution

also modifies the mean first passage time of the polymer that

characterizes the ring closure rate.26,27 Other factors which

affect the cyclization dynamics are the polymer structure, the

“goodness” of the solvent and solvent viscosity.28–30

The average end-to-end ring closure time, τ̄c, scales with the

number of polymer beads, Nb as τ̄c ∼N
γ
b , and the details of the

scaling structure depend on the factors governing the motion

of the chain ends, the connectivity of the chains and solvent

effects. A very simple model for polymer cyclization is the

free particle model of Brereton and Rusli31, where the motion

of the chain was treated as that of independent particles which,

at equilibrium, satisfy the same Gaussian distance distribution

that they would obey if they were connected by a chain with

Nb segments. This model predicted the value γ = 3/2 for a

polymer in a θ solvent and γ = 9/5 for a good solvent. Wilem-

ski and Fixman (WF)30 showed that γ = 2 for a free-draining

Rouse chain, which is different from the prediction of Szabo,

Schulten and Schulten (SSS)21 who found γ = 3/2 for this

type of chain. Later, it was pointed out by Portman32 that

the SSS theory gives a lower bound to the chain closing time

while the WF theory gives an upper bound; the discrepancy

between two models can be resolved by a proper choice of

the effective diffusion coefficient in the SSS theory to yield a

γ = 2 dependance.33 Another theoretical study34 probing the

effect of hydrodynamics on ring closure using renormalization

group calculations predicted γ = 3/2 for a θ solvent, which is

in good agreement with the result obtained for a Zimm chain

in θ solvent conditions treated within the WF framework.26

Experimentally, a value of γ = 1.62± 0.10 was found for

polystyrene in cyclohexane28 at 34.5◦C, the θ condition for

the polymer, which matches very well with the predictions

made in theoretical models. Another study of the cyclization

of polystyrene in toluene35 in a good solvent found γ = 1.35,

a value that is smaller than that predicted by models for cy-

clization dynamics under similar conditions; the discrepancy

was attributed to the polydispersity of the polymer samples.

In a study of the cyclization of polypeptides of the alanine-

glycine-glutamine trimer, the closure time scaling exponent

was found to be γ = 3/2 for peptides having lengths more than

15 residues.36 All of these results indicate that the exponent γ
is anticipated to fall in the range 1.5 ≤ γ ≤ 2.0, and that its

precise value depends on the nature and length of the polymer

chain, its interactions and the solvent.
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4.1 Chemically-inactive polymer chains

The flexible polymer chains considered in this study exist in

extended conformations under equilibrium conditions. The

ring closure time for a polymer chain was computed from our

MD-MPCD simulations as follows: Initial polymer configura-

tions were selected from an equilibrium distribution of chain

conformations with a given number Nb of beads; thus, each

initial conformation of the chain has a different value of the

end-to-end distance R0. Such initial conditions are possibly

more easily realized in the laboratory than those correspond-

ing to chains with a fixed end-to-end length. The probability

distribution of R0 values obtained from this sampling proce-

dure is shown in Fig. 2 for chains of several lengths. The solid

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

 0  5  10  15  20  25  30  35

p
(R

0
)

R0

Nb= 8
Nb=12
Nb=16

Fig. 2 The distribution of the end-to-end distance R0 for flexible

polymer chains having Nb = 8, 12 and 16 beads. Each distribution

was determined from 100 initial conformations.

lines are fits of the data with Gaussian distributions whose

mean, R̄0, increases with Nb (Table 1).

Nb 6 8 10 12 14 16 20

R̄0 8.8 11.6 12.0 14.2 16.1 17.8 21.2

Table 1 The initial value of the mean end-to-end distance R̄0 for

polymer chains having Nb monomers.

The dynamics of each realization of the polymer chain was

then followed until its end beads reached a predetermined final

separation distance Rf = 5, and the time τc for this “closure”

event was recorded. The ring closure time τ̄c was then taken to

be the average value of these τc times. From its definition, we

see that the average over realizations used to obtain τ̄c includes

an average over a distribution of initial end-to-end separations

R0 with mean R̄0. The results of our simulations for flexible

polymer chains show that τ̄c ∼ N
3/2

b (Fig. 3).

 100

 1000

 10000

 100000

 5  10  20

lo
g
 (

− τ
c)

log(Nb)

Nb
1.5

Inactive
Nb

2.1

Active

Fig. 3 Log-log plot of the ring closure time τ̄c vs Nb for flexible

chemically inactive (red) and active (green) polymers. The values of

the parameters are εA = εB = 1.0 for the inactive polymer and

εA = 1.0,εB = 0.1 for the active polymer. Each value of τ̄c in the

plot is the result of an average over 100 realizations.

4.2 Chemically-active polymer chains

A chemically-active flexible polymer chain with catalytic and

noncatalytic end groups displays considerably different ring

closure dynamics. The chemical gradient generated at the cat-

alytic C end induces a chemotactic response at the noncat-

alytic N end of the chain, which tends to drive the polymer

to the closed ring conformation by the diffusiophoretic mech-

anism discussed in Sec. 2. Examples of initial (left) and final

(right) configurations of a flexible polymer chain, along with

the concentration field of the B product molecules that plays

an essential role in the mechanism, are shown in Fig. 4.

One signature of a chemotactic response is the existence of

a non-zero value of the average velocity of the N end bead

projected on the instantaneous unit vector distance from the

C to N beads, Vz = R̂ ·V. From Eq. (3) for independent C

and N spheres, we expect that this velocity will depend on the

instantaneous end-to-end distance R(t) in the polymer chain.

We first consider a simpler and more global measure of the

response by computing the probability distribution, p(Vz), de-

termined from a time average over the entire history of the

evolution, from the initial to final values of R(t), for each tra-

jectory in an ensemble of trajectories. This distribution will

have a non-zero mean for chemotactic motion, and the mean

velocity, V̄z, will be the average of the velocity over the dif-

ferent histories in the ensemble. This probability distribution
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Fig. 4 Instantaneous configurations of a polymer chain in the

extended initial (left) and closed final (right) states. The figure also

shows the B particle concentration field due to the A → B reaction at

the catalytic (red) bead.

is plotted in Fig. 5, which presents results for both chemically

active and inactive flexible polymer chains. For the inactive

polymer the velocity distribution has an equilibrium Maxwell-

Boltzmann form with width,
√

kBT/mN , and zero mean. By

contrast, the active polymer chain has a distribution of the

same form with the same width but with a non-zero mean of

V̄z = 0.012 for Nb = 8 and V̄z = 0.005 for Nb = 16.

 0

 5

 10

 15

 20

-0.1 -0.05  0  0.05  0.1

p
(V

z)

Vz

-
Vz=0.012

-
Vz = 0.0

Fig. 5 Velocity probability distribution p(Vz) versus Vz for flexible

chemically inactive (filled circles) and active (open circles)

polymers with Nb = 8.

The dynamics of the end bead can be probed further by con-

sidering the time evolution of the end-to-end distance aver-

aged over realizations, R̄(t), which is plotted in Fig. 6, bottom

panel.

For independent freely-moving C and N spheres, we

showed in Sec. 2 that R(t)3 should vary linearly with time.

Consequently, for the active polymer we have chosen to plot

R̄3
0 − R̄(t)3 versus time for several values of R̄0 (Nb). In the

simulations, R̄(t) was determined from an average over an en-

semble of trajectories; when a trajectory reached the closure

 2000

 4000

 6000

 0  1000  2000  3000

(- R
0
3
-- R

(t
)3

)

t

R0=20
R0=15
R0=10

 0

 2000

 4000

 2000  4000

(- R
0

3
-- R

(t
)3

)

t

Nb= 8 
Nb=12
Nb=16

Fig. 6 Top: Plots of R̄3
0 − R̄(t)3 versus time for independent C and

N spheres for various values of R̄0. Bottom: Plots of the same

quantity for a flexible active polymer having Nb = 8 (red squares),

Nb = 12 (green circles) and NB = 16 (blue triangles) beads.

separation Rf it continued to carry this value for subsequent

times. Thus, using this definition, for sufficiently long times

the average R̄(t) will take the value Rf. For comparison with

the polymer data, in top panel of the figure, we show time evo-

lution of R̄3
0 − R̄(t)3 for independent C and N spheres, again

for several values of R̄0. (In this case the initial condition can

be chosen to be R̄0 for each realization.) The results show

a linear variation with time at short times, before the plateau

leading to the final R̄3
0−R3

f value is reached. The initial slopes

are independent of R̄0 as predicted by the deterministic theory.

Table 2 shows the comparison of τ̄c obtained from simulations

and deterministic theory for both independent C and N spheres

and flexible polymers. In the deterministic theory, the τ̄c val-

ues were taken to be the times at which the extrapolated linear

region of R̄3
0 − R̄(t)3 reaches the value R3

0 −R3
f .

The polymer results for R̄3
0 − R̄(t)3 in Fig. 6 (bottom) also

display a roughly linear behavior at short times; however, in
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Independent C and N spheres

R̄0 10 15 20

τ̄c(simulation) 442 1449 2089

τ̄c(theory) 340 1200 2100

Flexible active polymers

Nb 8 12 16

τ̄c(simulation) 891 2352 3812

τ̄c(theory) 898 2587 2720

Table 2 Comparison of τ̄c obtained from simulation and

deterministic theory for independent C and N sphere capture and

active flexible polymer chains.

this case the slopes are no longer equal. Evidence for the cubic

dependence on R̄(t) can be seen in spite of now averaging over

a Gaussian distribution of initial R0 values. Since intermediate

polymer chains with differing numbers of beads link the C

and N end beads, the evolution of the end-to-end distance will

depend on the characteristics of the intermediate chain. This

feature can lead to R̄3
0 − R̄(t)3 curves with different slopes for

different values of Nb.

4.2.1 Scaling of ring closure time with Nb: Active poly-

mers undergo ring closure much more rapidly than their inac-

tive counterparts. As shown in Fig. 3, the small active polymer

chains considered in this paper scale with the chain length as

τ̄c ∼ N2.1, in contrast to the τ̄c ∼ N3/2 scaling found for our

inactive chains. Since, according to Eq. (2), the B concen-

tration field decays as the reciprocal of the distance from the

catalytic end bead, there is an effective attractive long-range

interaction between the end beads. In this connection it is

interesting to note that the theoretical description37 of ring

closure dynamics for polymers with nonlocal interactions in

theta solvent conditions yielded a ring closure time exponent

of 2.09, similar to that for our active polymers. The probabil-

ity distribution of closing times, p(τc), provides more detailed

information on the ring closure dynamics. Figure 7 plots his-

tograms of p(τc) for flexible polymers with lengths of Nb = 8

and 16. For both polymer chains one can observe distribu-

tions of τc values with long tails, especially for the polymer

with a longer chain length. The spread in initial R0 values in

realizations of the dynamics, in conjunction with the fact that

the velocity Vz(t) depends on the instantaneous separation as

R(t)−2, will give rise to a wide dispersion ring closure times:

realizations with shorter R0 values will be strongly chemotac-

tically driven to close while those with larger R0 will only be

driven very weakly. This feature is supported by the fact that

p(τc) for independent C and N spheres with a fixed initial R0

separation does not display a very long tail.

Equation (5) showed that the capture time for independent

C and N spheres scaled as R3
0. Even though the flexible poly-

 0

 10

 20

 30

 40

 50

 0  2000  4000  6000  8000  10000

p
(τ

c)
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Nb=16

Fig. 7 The distribution p(τc) of capture times τc for flexible active

polymers having Nb = 8 and Nb = 16 beads determined from 100

realizations of the dynamics. The energy parameters are

εa = 1.0,εb = 0.1.

mer initial conditions include sampling over a distribution of

R0 values with mean R̄0, this scaling persists. Figure 8 plots

the τ̄c as a function of R̄0 on a log-log scale and shows that

τ̄c ∼ R̄3
0. This further confirms the operation of the diffusio-

phoretic mechanism for end-to-end capture and its effect on

the structure of p(τc).

The scaling behavior changes for the semiflexible polymers.

Figure 8 also shows τ̄c versus R̄0 for a semiflexible polymer

with κ = 0.5. Semiflexibility makes the closure dynamics

slower and we find τ̄c ∼ R̄2.5
0 . Stiffness hinders closure, espe-

cially for smaller polymer chains. Increasing κ further makes

it more difficult for the polymer to close and, while it takes

more time to close, the overall the scaling remains the same.

While a thorough study of scaling would require more exten-

sive simulations for polymers with larger Nb, the main result of

our study, more rapid ring closure for active chains, is demon-

strated by our simulations.

4.2.2 End-to-end versus internal-to-end loops: Studies

of polymer cyclization have focused primarily on the forma-

tion of “external” or end-to-end loops; however, for biopoly-

mers the appearance of “internal” loops where two interior

points on the chain make contact, is perhaps a more rele-

vant process. For example, in DNA internal loops play a key

role in various aspects of gene expression.38 The formation

of an internal-to-end loop is another possibility. Studies re-

lated to internal chain looping are limited.39,40 In general, one

expects that loop formation involving internal sites will be

slower than that for end-to-end loops of equal contour length

due to the restricted conformational freedom of the internal

polymer groups.
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Fig. 8 Plot of τ̄c vs the average initial distance between the end

beads R̄0 for flexible (red) and semiflexible (green) chemically

active polymers. The values of the parameters are εa = 1.0,εb = 0.1.

Each τ̄c time is the result of an average over 100 realizations. Each

R̄0 corresponds to certain number of beads of polymer which is

given in Table 1.
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Fig. 9 Loop length dependence of the loop formation time. Filled

circles are for end-to-end loop formation while unfilled circles are

for internal-to-end loop formation for flexible active polymers with

Nb = 12.

Figure 9 shows the loop length dependence of the loop for-

mation time for a flexible active polymer. To study internal-to-

end loop formation, we consider the polymer having Nb = 12

beads and make one of the the internal beads the noncatalytic

sphere. The average time it takes to form an internal-to-end

loop of length j is denoted by τ̄0 j(Nb), while the time it takes

to form an end-to-end loop in a polymer of the same length

j is τ̄0 j( j). The time τ̄0 j(Nb) is always longer than τ̄0 j( j) for

a loop of the same length j because of the restricted confor-

mational freedom of the interior noncatalytic sphere, as noted

above. Greater values of the internal-to-end loop formation

time compared to end-to-end loop formation of same length

has been observed in recent experiments.40

5 Conclusions

The results presented in this paper demonstrated that

chemically-active polymers which undergo ring closure or

loop formation more rapidly than inactive polymer chains can

be constructed. Our studies of ring closure showed how the

long-range nature of the chemical concentration gradients,

self-generated by the presence of a catalytic bead on which

a chemical reaction A → B occurs, could cause a distant bead

which responds to this gradient to chemotactically move to-

ward the source of the gradient. Thus, the chemical gradient

serves both to guide the beads to encounter each other and

provides the source of the directed motion.

Apart from presenting detailed documentation on the nature

and magnitude of ring closure dynamics for active polymer

chains, our study addresses the broader issue of how phoretic

mechanisms that synthetic self-propelled nanomotors use to

execute directed motion can be exploited to design systems

where chemical reagents are targeted to find each other in

order to carry out specific chemical reactions. In this con-

text, the polymer ring closure problem is simply an exam-

ple designed to illustrate potential applications to other types

of reactive systems. One can imagine situations where this

mechanism could be used to enhance reaction rates. The mo-

tor components could be attached to different molecules or

macromolecules in order to bring them into contact so that

they could react, and, subsequent to the reaction, the active

groups could be removed by other means. Possibly through

investigations of this type insight may be gained into how ac-

tive motion could be used to more efficiently carry out reactive

process that normally rely on simple diffusion-influenced ki-

netics.
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Title: Ring closure dynamics for a chemically active polymer 
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Our studies on ring closure of polymer showed how the long-range nature of the chemical 
concentration gradients, self-generated by the presence of a catalytic bead on which a 
chemical reaction occurs, could cause a distant bead to chemotactically move towards to 
the source of the gradient. Such chemically-active polymers hence undergo ring closure 
or loop formation more rapidly than inactive polymer chains. 
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