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Morphologies of genus-1 and 2 toroidal vesicles are studiednumerically by dynamically triangulated membrane models and ex-
perimentally by confocal laser microscopy. Our simulationresults reproduce shape transformations observed in our experiments
well. At large reduced volumes of the genus-1 vesicles, obtained vesicle shapes agree with the previous theoretical prediction, in
which axisymmetric shapes are assumed: double-necked stomatocyte, discoidal toroid, and circular toroid. However, for small
reduced volumes, it is revealed that a non-axisymmetric discoidal toroid and handled discocyte exist in thermal equilibrium in
the parameter range, in which the previous theory predicts axisymmetric discoidal shapes. Polygonal toroidal vesicles and sub-
sequent budding transitions are also found. The entropy caused by shape fluctuations slightly modifies the stability of the vesicle
shapes.

1 Introduction

Vesicles are closed bilayer membranes that show a wide va-
riety of morphologies depending on the lipid architecture as
well as their environment. Since fluid lipid membranes are the
main component of biomembranes, lipid vesicles are consid-
ered as a simple model system of cells. In particular, vesicle
shapes with genusg = 0 have been intensively investigated
and are well understood1–9. For example, the shape of red
blood cells, discocyte, can be formed by a lipid membrane
without proteins. In contrast to the genus-0 vesicles, vesicles
with nonzero genus have been much less explored. In this pa-
per, we focus on vesicles withg = 1 andg = 2.

In living cells, organelles exist in various shapes. In some
organelles, lipidic necks or pores connect biomembranes such
that they have nonzero genus. For example, the nuclear mem-
brane and endoplasmic reticulum are connected and together
form complicated shapes. The nucleus is wrapped by two bi-
layer membranes connected by many lipidic pores. Thus, its
shape is considered as a stomatocyte of a high-genus vesicle
connected with a tubular network. It is important to under-
stand how their topologies affect their morphologies.

Vesicle shapes are determined by the curvature energy and
the area difference∆A of two monolayers of bilayer mem-
branes with a constraint on the reduced volumeV ∗ 1–4, which
is the volume relative to a spherical vesicle of the same surface
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area. It is defined asV ∗ = V/(4π/3)RA
3 with RA =

√

A/4π,
whereV andA are the vesicle volume and surface area, respec-
tively. Since transverse diffusion (flip–flop) of phospholipids
between two monolayers is very slow, the number difference
∆Nlip of lipids between two monolayers can be conserved on a
typical experimental time scale. In the bilayer coupling (BC)
model, the area difference∆A is fixed as the preferred value
∆A0 = ∆Nlipalip, wherealip is the area per lipid in tensionless
membranes. In the area-difference-elasticity (ADE) model, a
harmonic potential for the difference∆A−∆A0 is added as a
penalty for the deviation of the area difference. For genus-
0 vesicles, various observed morphologies can be reproduced
well by both BC and ADE models1–4: stomatocyte, disco-
cyte, prolate, pear, pearl-necklace, and branched starfish-like
shapes. However, shape-transformation dynamics is betterex-
plained by the ADE model8.

The vesicle shapes withg = 1 andg = 2 were studied in the
1990s10–18. For g = 1, the phase diagrams of axisymmetric
shapes were constructed for the BC, ADE, and spontaneous-
curvature models by Jülicher et al.13. They assumed axisym-
metry of the vesicle shape and the region of non-axisymmetric
shapes is only estimated by a stability analysis of the ax-
isymmetric shapes. However, the stability is only examined
with respect to special conformal transformations and non-
axisymmetric shapes were not directly explored. Thus, the
full phase diagram of genus-1 vesicles has not been com-
pleted. Forg = 2, conformational degeneracy was found in
the ground state atV ∗ & 0.7, where the vesicles can trans-
form their shapes without changing their curvature energy
with fixedV ∗ and∆A14,15,17. In this paper, we revisit the phase
diagram ofg = 1 using three-dimensional simulations and find
non-axisymmetric thermal-equilibrium shapes in the region
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where axisymmetric shapes were assumed in Ref.13. In all of
the previous theoretical studies on non-zero genus vesicle, the
thermal fluctuations are neglected. However, experimentally,
neck diffusion of toroidal vesicles and bending and length
fluctuations of lipid tubes were reported16,19,20. We also in-
vestigate the effects of thermal fluctuations and compare our
simulation results with shape transformations observed inour
experiments forg = 1 and 2.

The simulation and experimental methods are provided in
Sec. 2. In Sec. 3.1, vesicle shapes atg = 1 are described.
First, the stable states for the curvature energy without the
bilayer-coupling constraint or ADE energy is explained as a
starting point. Subsequently the free-energy profiles are calcu-
lated for three values of the reduced volume. This calculation
clarifies discrete shape transitions from non-axisymmetric dis-
coidal shapes to circular toroids in the ADE model. The sim-
ulation results are compared with experimental images. The
budding transitions are also discussed. In Sec. 3.2 the results
for g = 2 are described. The summary and conclusions are
given in Sec. 4.

2 Materials and Methods

2.1 Dynamically Triangulated Membrane Model

We employ a dynamically triangulated surface model to de-
scribe a fluid membrane7,21,22. The vesicle consists ofNmb

vertices connected by bonds (tethers) to form a triangular net-
work. The vertices have a hard-core excluded volume of di-
ameterσ0. The maximum length of the bond isσ1. In order to
keep the volumeV and surface areaA constant, harmonic po-
tentialsUV = (1/2)kV(V −V0)

2 andUA = (1/2)kA(A−A0)
2

are employed. A Metropolis Monte Carlo (MC) method is
used to move vertices.

The curvature energy of a single-component fluid vesicle is
given by23,24

Ucv =
∫ κ

2
(C1 +C2)

2dA, (1)

whereC1 andC2 are the principal curvatures at each point in
the membrane. The coefficientκ is the bending rigidity. The
spontaneous curvature vanishes when lipids are symmetrically
distributed in both monolayers of the bilayer. The integralover
the Gaussian curvatureC1C2 is omitted because it is invariant
for a fixed topology.

In the ADE model, the ADE energyUADE is added1–5:

UADE =
πkade

2Ah2 (∆A−∆A0)
2. (2)

The areas of the outer and inner monolayers of a bilayer vesi-
cle differ by ∆A = h

∫

(C1 +C2)dA, whereh is the distance

between the two monolayers. The BC model can be consid-
ered as the ADE model withkade= ∞. The area differences
are normalized by a spherical vesicle as∆a = ∆A/8πhRA and
∆a0 = ∆A0/8πhRA to display our results. For the spherical
vesicle with∆a0 = 0, ∆a = 1 andUADE = 8π2kade.

The mean curvature at thei-th vertex is discretized as22,25,26

(C1 +C2)ni =
1
λi

∑
j(i)

λi, jri, j

ri, j
, (3)

where the sum overj(i) is for the neighbors of thei-th vertex,
which are connected by bonds. The bond vector between the
verticesi and j is ri, j, andri, j = |ri, j|. The length of a bond in
the dual lattice isλi, j = ri, j[cot(θ1)+ cot(θ2)]/2. The angles
θ1 andθ2 are opposite to bondi j in the two triangles sharing
this bond, andλi = 0.25∑ j(i) λi, jri, j is the area of the dual
cell. The normal vectorni points from inside of the vesicle to
outside.

The bonds are reconstructed by flipping them to the di-
agonal of two adjacent triangles using the Metropolis MC
procedure. Triangle formation of the bonds outside of the
membrane surface is rejected such that the minimum pore in
vesicles consists of four bonds [see the middle snapshot in
Fig. 1(a)]. In the present simulations, we useNmb = 1000,
σ1/σ0 = 1.67, kV = 4, kA = 8, andκ = 20kBT , wherekBT
is the thermal energy. The deviations of reduced volumeV ∗

from the specified values are less than 0.01. We primarily
usek∗ade= kade/κ = 1, which is a typical value for phospho-
lipids3,8. In the previous study13, the phase diagram of genus-
1 vesicles was constructed using this value.

The canonical MC simulations of the ADE model are per-
formed with various parameter sets for the potentialU =
Ucv + UV +UA +UADE. To obtain the thermal equilibrium
states, one of the generalized ensemble MC methods26–28 is
employed for genus-1 vesicles. Instead of the ADE poten-
tial UADE, a weight potentialUw(∆A) is employed for a flat
probability distribution over∆A. Since the weight potential
Uw(∆A) is not known a priori, it has to be estimated using an
iterative procedure. After long simulations, the canonical en-
semble of the ADE model is obtained by a re-weighting pro-
cedure29. In the case of the BC model, the canonical ensemble
for the potentialU0 = Ucv +UV +UA is calculated for a small
bin of ∆a with a bin width of 0.0025. We perform annealing
simulation toT = 0 and the canonical MC simulations with
Nmb = 4000 at several parameter sets to confirm the energy-
minimum shapes and the finite size effects of the triangulation,
respectively.

2.2 Experimental Method

We prepared single-component vesicles from DOPC (1,2-
dioleoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids)
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using the gentle hydration method with deionized wa-
ter8. TR-DHPE (Texas Red, 1,2-dihexadecanoyl-sn-glycero-
3-phosphoethanolamine, Molecular Probes) was used as the
dye (1% mole ratio). We kept vesicle suspensions at room
temperature (24-25◦C) and observed them using a fast confo-
cal laser microscope (Carl Zeiss, LSM 5Live). At this stage,
most vesicles spontaneously formed either a spherical or tubu-
lar shape. We observed vesicles with genusg = 1 or 2 by an-
alyzing numerous microscopy images.

We observed shape transformations of the vesicles ofg = 1
and 2. The intrinsic area difference∆a0 is varied without
changing the osmotic pressure. In Ref.8, we calculatedV , A,
and∆a using the 3D images of genus-0 liposomes and found
that during shape transformations,∆a is changed, whereasV
andA are constant. We concluded that small lipid reservoirs
such as small lipid aggregates and bicelles are likely present
on the membrane, and the laser illumination of the micro-
scope induces fusion into either monolayer of the lipid bilayer,
which leads to changes in∆a0. We applied this method to
toroidal vesicles here. It is difficult to measure 3D shapes of
the observed toroidal vesicles owing to smallness of the li-
posomes or low contrast of the images. It is not distinguish-
able only from the experiments whether observed shapes are
in thermal equilibrium or in metastable state. We compare the
experimental vesicle images and simulation snapshots and de-
termine that they are in equilibrium or not.

3 Results and Discussions

3.1 Genus-1 Toroidal Vesicles

3.1.1 Curvature Energy Model. First, we compare the
(meta-) stable shapes of genus-1 vesicles and genus-0 vesi-
cles without the ADE energy or the BC constraint (see Fig. 1).
The vesicles are simulated for the potentialU0. We call this
model the curvature energy model. For the genus-0 vesi-
cles, three axisymmetric shapes–stomatocyte, discocyte,and
prolate– are formed. It is known that stomatocyte, disco-
cyte, and prolate are the global-energy-minimum states for
0 < V ∗ < 0.59, 0.59< V ∗ < 0.65, and 0.65< V ∗ < 1, respec-
tively3. The shape transformations between these shapes are
discrete transitions such that these shapes exist as metastable
states in wider ranges ofV ∗. The free-energy-minimum states
including metastable shapes are indicated by the blue linesin
Fig. 1(b).

The genus-1 vesicles also have three energy-minimum
shapes. For stomatocyte and discocyte, an additional small
neck or pore appears. Instead of the prolate, a circular toroid
is formed. Here, we abbreviate the shapes as ’sto,’ ’disk,’ and
’ring’ for stomatocyte, discocyte, and circular toroid, respec-
tively. The discocyte exists in a narrower range ofV ∗ for g = 1
than forg = 0 [see Fig. 1(b)]. The previous theoretical study11

0.3

0.4

0.5

0.6

0.7

0 1 2

V
*

∆a

b

budding

ring

disk
g=0

disk
g=1

sto

Fig. 1 Stable and meta-stable shapes of vesicles in the curvature
energy model. (a) Snapshots of vesicles of genusg = 1 atV ∗ = 0.5.
The labels ‘sto,’ ’disk,’ and ’ring’ represent stomatocyte, discocyte,
and circular toroids, respectively. The side views of half-cut
snapshots are also shown for disk and ring shapes. (b) Area
difference∆a of (meta-) stable shapes at (red)g = 1 and (blue)
g = 0. The green solid line represents∆a at the budding transition.
The dashed black lines are the results obtained using simple
geometrical models for stomatocye and ring shapes.

Fig. 2 Microscopy images of genus-1 liposomes. (a) Double-necked
stomatycote. (b) Open stomatocyte. (c) Ellipsoidal toroid. (d)
Discocyte with a tubular handle and arm. Scale bar: 10µm.
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Cdisk(ADE)

Cdisk(BC)

Cnsym(BC)

Cnsym(ADE)

D(ADE)

CL

Fig. 3 Shape transition lines of the genus-1 vesicles with the ADE
and BC models. The red and blue solid lines represent the shape
transitions in ADE and BC models, respectively. Cdisk and D
represent the continuous and discrete transitions betweenopen
stomatocyte and disk and between elongated disk and circular
toroid, respectively. The black and gray lines are ADE and BC
boundaries extracted from Jülicher’s phase diagrams in Ref. 13,
respectively. The dashed lines represent phase boundariesbetween
axisymmetric and non axisymmetric shapes (Cnsym). The filled
circle represents the Clifford torus (CL). The magenta line
represents the free-energy minimum states of the ring [the same as
in Fig. 1(b)].

predicts these three types of the vesicles by minimizing the
energy of the axisymmetric shapes. The circular toroid can be
approximated by the revolution of a circle as follows:

r(θ ,φ) = ((r1 + r2cosφ)cosθ ,(r1 + r2cosφ)sinθ ,r2 sinφ).
(4)

In particular, the toroid withr1/r2 =
√

2 is the Clifford torus
and has the lowest curvature energyUCl/κ = 4π2 andV ∗

CL =

3/25/4√π ≃ 0.7110. Note that thermal fluctuations give an
additional curvature energy asUcv ≃ UCL + (Nmb− 1)kBT/2
in the simulations because each bending mode is excited
with kBT/2. It was predicted that the ring vesicles are non-
axisymmetric atV ∗ > V ∗

CL but axisymmetric atV ∗ ≤ V ∗
CL

11.
Our simulation results confirm their prediction for the ring.
Although the circular shapes atV ∗ ≤ V ∗

CL are not exactly ax-
isymmetric, its deviation is small and can be understood as
thermal fluctuations around the circular toroids. The area dif-
ference∆a of the revolution expressed in Eq. (4) is shown in
the right black dashed line in Fig. 1(b). Our simulation results
agree well with this estimation.

The axisymmetric double-necked stomatocyte (called a
sickle-shaped toroid) is predicted as the global-minimum state
at low V ∗ in the previous study11. In our simulations, two
necks (or pores in the top view) of the stomatocyte are
not typically along the center axis [see the left snapshot in
Fig. 1(a)]. Experimentally observed double-necked stoma-
tocytes are also off-center [see Fig. 2(a)]. The narrow neck
shape is nearly catenoid, and its mean curvature is negligibly
small. The energy difference between the axisymmetric and
non-axisymmetric stomatocytes is small unless two necks are
close to each other. The entropy of this diffusion is estimated
asSpore≃ kB ln(A/2d2

pore), wheredpore is the diameter of the
pores andA/2 is the average area of inner and outer spheri-
cal components of stomatocyte. We obtainSpore≃ 5kB from
A = 820σ2 anddsto≃ 2σ in our simulation. This is not a large
value but it seems to be sufficient to overcome the energy dif-
ference. Thus, two necks can diffuse on the surface of the vesi-
cle by thermal fluctuations. Vesicle deformation coupled with
neck diffusion is observed. The membrane between two necks
typically has large curvature [see Figs. 1(a) and 2(a)]. Theen-
tropy of these shape fluctuations and pore shape fluctuations30

may also increase stability of non-axisymmetric shapes of the
stomatocyte. The left black dashed line in Fig. 1(b) shows
the values of∆a of stomatocytes modeled using two spheres.
The shape deformation caused by thermal fluctuations slightly
shift ∆a to larger values.

The pore in the discocyte is also off-center. We discuss
this in detail in the next subsection. In Jülicher’s phase di-
agrams13, the equilibrium shapes are axisymmetric in large
region including the stomatocyte and ring (see Fig. 3). We
will show non-axisymmetric equilibrium shapes in this region
for low V ∗.
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0

0.1
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p>

c

ADE
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BC
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<
U

0>
/κ

, F
/κ b

F

U0

ring
sto

Fig. 4 Dependence of shape on∆a (BC) or ∆a0 (ADE) for genus-1
vesicles atV ∗ = 0.6. (a) Snapshots at∆a = 0.6, 0.9, 1.1, 1.2, and
1.35. The side views of half-cut snapshots are also shown at
∆a = 1.1 and 1.2. (b) Free-energy profileF and mean potential
energy〈U0〉 for the BC model. (c) Mean asphericity〈αsp〉 for the
BC and ADE models withk∗ade= 1. (d) Mean area difference〈∆a〉.
The solid lines represent the ADE models withk∗ade= 0.25, 0.5, 1,
and 2. The dashed line represents the BC model (〈∆a〉 = ∆a). The
error bars are smaller than the line thickness.
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∆a, ∆a0

d

0.250.51

2k*
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BC

0
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<
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c
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k*

ade=1
BC
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/κ

, F
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F

U0

disk
ring

sto

Fig. 5 Dependence of shape on∆a (BC) or ∆a0 (ADE) for genus-1
vesicles atV ∗ = 0.5. (a) Snapshots at∆a = 1.25, 1.4, and 1.55. The
side views of half-cut snapshots are also shown at∆a = 1.25 and
1.4. (b) Free-energy profileF and mean potential energy〈U0〉 for
the BC model. (c) Mean asphericity〈αsp〉 for the BC and ADE
models withk∗ade= 1. (d) Mean area difference〈∆a〉. The data are
presented in the same form as in Fig. 4.
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Fig. 6 Dependence of shape on∆a (BC) or ∆a0 (ADE) for genus-1
vesicles atV ∗ = 0.4. (a) Snapshots at∆a = 1.3, 1.5, 1.7, and 1.9.
The side view of the half-cut snapshot at∆a = 1.3 is also shown. (b)
Free-energy profileF and mean potential energy〈U0〉 for the BC
model. (c) Mean asphericity〈αsp〉 for the BC and ADE models with
k∗ade= 1. (d) Mean area difference〈∆a〉. The data are presented in
the same form as in Fig. 4.

3.1.2 BC and ADE Models. To clarify the phase behav-
ior of the genus-1 toroidal vesicle, the generalized ensem-
ble MC simulations are performed atV ∗ = 0.4, 0.5, and 0.6
(see Figs. 3–6). The free-energy profilesF are calculated us-
ing probability distributionsPcv(∆a) of the curvature energy
model:F(∆a) =−kBT ln(Pcv(∆a))+C. The constantC is un-
known. Thus, we cannot obtain the absolute values ofF but
can compare its relative values. In Figs. 4–6(b), we shiftF to
be close to〈U0〉 in order to make the comparison of two curves
easier. The difference between∆a dependences ofF and〈U0〉
is caused by the entropy of membrane fluctuations.

To quantify the vesicle shapes, a shape parameter called as-
phericity,αsp, is calculated. It is defined as31

αsp =
(λ1−λ2)

2 +(λ2−λ3)
2 +(λ3−λ1)

2

2(λ1 + λ2+ λ3)2 , (5)

whereλ1 ≤ λ2 ≤ λ3 are the eigenvalues of the gyration tensor
of the vesicle. The asphericity is the degree of deviation from
a spherical shape;αsp = 0 for spheres,αsp = 1 for thin rods,
andαsp = 0.25 for thin disks. The stomatocytes haveαsp≃ 0.
The disk and ring shapes haveαsp ≃ 0.15, 0.19, and 0.21 at
V ∗ = 0.6, 0.5, and 0.4, respectively.

For V ∗ = 0.6 with increasing∆a, a neck of the stomato-
cyte opens, and subsequently the stomatocyte transforms into
a discocyte (see Fig. 4). As∆a increases further, the pore in
the discocyte becomes larger, and ultimately a circular toroid
is formed. As∆a increases even further, the toroid elongates
in one direction. This elongated shape is also observed in
our experiment [compare Figs. 2(c) and 4(a)]. These trans-
formations are continuous in both BC and ADE models with
k∗ade≥ 1. When the vesicle transforms from the discocyte to
the open stomatocyte, mirror symmetry breaks, and the slops
of F(∆a) and the other quantities are changed. This is a
second-order type of the transition, but the transition point is
rounded by the finite energy increase. Since the curvature en-
ergy is independent of the vesicle size, the transition is not
sharp even atNmb = ∞. The area differences∆a and∆a0 at
this transition point are estimated from the second derivative
of αsp curves in Fig. 4(c). They agree with Jülicher’s results
for both ADE and BC models (see the curves denoted by Cdisk

in Fig. 3). The pore of the discocyte appears near the center of
the disk. As the vesicle is annealed toT = 0, the pore moves
to the center. Thus, it is considered that the stable shape is
the axisymmetric discocyte predicted in Ref.13 and that the
discocyte is slightly deformed by thermal fluctuations. The
discocyte does not have a minimum in the free-energy profile
in Fig. 4(b), and no clear transitions are observed between the
discocyte and circular toroid. The neck in the open stoma-
tocyte can also be off-center. Such a non-axisymmetric open
stomatocyte is experimentally observed, as shown in Fig. 2(b).

At V ∗ = 0.5, the vesicle transforms from a stomatocyte to
a circular toroid via a discocyte [see Figs. 1(a) and 5]. The
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Fig. 7 Time-sequential microscopy images of genus-1 liposomes.
(a) Transformation from a circular toroid to racket shape via a
handled discocyte. From left to right:t = 0, 160, 180, 188, and 192
s. (b) Transformation from a handled discocyte to stomatocyte via a
discocyte with a small pore and open stomatocyte. From left to
right: t = 0, 62, 80, 91, and 131 s. Scale bar: 10µm.

Fig. 8 Snapshots of genus-1 vesicles. (a)(V ∗,∆a0) = (0.3,2.2). (b)
(V ∗,∆a0) = (0.4,1.9). (c) (V ∗,∆a0) = (0.5,2.2). (d)
(V ∗,∆a0) = (0.5,2.2).

difference fromV ∗ = 0.6 is that the discocyte is at a minimum
of F(∆a) and non-axisymmetric elongated discocytes appear
between two energy minima of the discocyte and ring. In the
stable discocyte [the middle snapshot in Fig. 1(a)], the pore is
off-center and stays on the edge of the dimple. As the vesi-
cle is annealed toT = 0, the pore remain on the edge. We also
confirmed the formation of these non-axisymmetric discocytes
at Nmb = 4000. Michalet and Bensimon experimentally ob-
served this off-center discocyte18. They reported that it is an
energy minimum state by using the energy minimization, but
they did not clarify whether it is the global- or local- minimum
state18. Our simulation revealed that the off-center discocyte
is the global-minimum state in both BC and ADE models. In
the axisymmmetric discocyte, the pore opens in the almost
flat membranes at the middle of the dimples. As the pore ap-
proaches the edge of the dimples, the curvature of the edge is
partially reduced. Similar pore formations on the edge of the
highly curved structures are obtained in membrane-fusion in-
termediates. The fusion pore opens at the edge of hemifusion
diaphragm32,33 and at the side of a stalk neck connecting two
bilayer membranes34,35.

As ∆a increases atV ∗ = 0.5, the pore in the disocyte is ex-

Probability

0

0.0001

0.0002

1
1.5 0

0.2

0.4

∆a αsp

Probability

Fig. 9 Probability distribution of asphericityαsp for genus-1
vesicles in the BC model atV ∗ = 0.4.

panded at this off-center position, and the vesicle becomesan
elliptic discocyte [see the left snapshot in Fig. 5(a) and the
peak at∆a = 1.25 in Fig. 5(c)]. In the BC model, the vesicle
then becomes a circular toroid via an elongated circular toroid
[see the middle snapshot in Fig. 5(a)]. In contrast, in the ADE
model withk∗ade= 1, the vesicle exhibits a discrete transition
from an elliptic discocyte to a circular toroid at∆a0 = 1.36.
This transition point agrees with the prediction in Ref.13 (see
Fig. 3), despite the fact that only axisymmetric shapes are
considered in Ref.13. This good agreement might be due to
the small energy difference between the axisymmetric disco-
cyte and elliptic discocyte.

At V ∗ = 0.4, the vesicle forms pronounced non-
axisymmetric shapes between the off-center circular discocyte
and circular toroid (see Fig. 6). The pore is not in the dimples
of the discocyte but outside of the discotye, which is similar
to a handle, as shown in the right snapshot in Fig. 6(a). We
also observed this shape experimentally (see the left images
in Fig. 7). Such handled discocyte has not been reported pre-
viously. With decreasingV ∗, the elliptic discocyte becomes
more elongated, and subsequently the large flat parts form
dimples. As∆a increases, the pore becomes larger and the dis-
coidal part becomes narrower. When∆a is further increased
in the BC model, the vesicles form a tubular arm similar to
the grip of a racket [see Fig. 6(a)] and subsequently becomes
a circular toroid. In the ADE model, the racket-shaped vesi-
cle is skipped in the phase diagram, and a discrete transition
from the elongated handled discocyte of∆a = 1.25 to the cir-
cular toroid of∆a = 1.81 occurs at∆a0 = 1.77 [see Fig. 6(c)].
The transition point is slightly shifted from the previous pre-
diction for the transition from axisymmetric disk and ring13

(see Fig. 3), because of a large deviation of the discocyte from
the axisymmetric shape. The racket-shaped vesicle exists as
a local-minimum state at larger values of∆a0 [see Fig. 8(b)].
In the experiment, a handled discocyte with a tubular arm is
observed [see Fig. 2(d)]. A similar shape is obtained as a lo-
cal energy-minimum state in the ADE model [see Fig. 8(a)].
A circular toroid connecting two tubular arms is also obtained
(data not shown). At lowV ∗, tubular arms often remain once
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they are formed such that several local-minimum states ap-
pear.

Figure 7 shows time-sequential microscopy images of shape
transformations of genus-1 vesicles. These transformations
from a handled discocyte to a racket shape and stomatocyte
are well explained by gradual changes of∆a0 at V ∗ = 0.3:
from ∆a0 = 2.2 to 2.6 [Fig. 7(a)] and from∆a0 = 2.3 to 0.6
[Fig. 7(b)], respectively. Movies of corresponding simulations
are provided in ESI (Movies 1 and 2).

The entropy of the shape fluctuations slightly modifies the
phase behavior. The area difference∆a at the minimum free
energy is smaller than that at the minimum of the mean po-
tential energy〈U0〉 by 0.01 atV ∗ = 0.5. The entropy of the
shape fluctuations is large for the elongated discocyte because
the difference of the curves〈U0〉 andF are large at∆a ≃ 1.4
and 1.75 atV ∗ = 0.5 and 0.4, respectively. The fluctuations of
asphericityαsp are also large in these regions, andαsp exhibits
broad distributions, as shown in Fig. 9.

We have shown the discrete transition between elongated
discocyte and circular toroid atV ∗ = 0.5 and 0.4 for the ADE
model withk∗ade= 1. The transformation between stomatocyte
and discocyte becomes a discrete transition at lower valuesof
k∗ade [see Figs. 4(d) and 5(d)]. With decreasingV ∗, a lower
value ofk∗ade is needed to obtain the discrete transition. Thus,
the values ofk∗ademay be estimated by systematically observ-
ing the transformation dynamics under changes in∆a0 or V ∗.

As ∆a increases further from the circular toroid, the toroid
deforms into ellipsoid, triangle, and pentagon atV ∗ = 0.6, 0.5,
and 0.4, respectively. Thus, a higher undulation mode be-
comes unstable and grows at lower values ofV ∗. When the
vesicle is approximated as the circular revolution expressed
in Eq. (4), the length ratio of two circumferences arer1/r2 =
1.99, 2.86, and 4.48 atV ∗ = 0.6, 0.5, and 0.4, respectively.
Therefore, the unstabilized mode is determined by the wave-
length of 2πr2. Whenr1/r2 → ∞, the toroid is approximated
as a cylinder of radiusr2. It is known that for cylindrical mem-
branes of spontaneous curvatureC0 the undulation mode of
wavelength 2πr2 becomes unstable atC0r2 = 136. Our simu-
lation results show that this relation holds for finite values of
r1/r2.

3.1.3 Budding. The toroidal vesicles exhibit a budding
transition in a manner similar to genus-0 vesicles. The area
difference∆a at the budding transition forg = 1 is shown as a
green line in Fig. 1(b). This line is obtained though canonical
MC simulations of the ADE model. The budding is a dis-
crete transition, and the error bars show the hysteresis regions,
where budded or unbudded shapes are obtained on the basis of
initial vesicle conformations. The intrinsic area difference∆a0

at the transition points are larger than∆a: ∆a0 = 2.6±0.1 and
1.29± 0.02 atV ∗ = 0.3 and 0.75, respectively. An example
of the budding transition is shown in Fig. 10. Our simulation

Fig. 10 Shape transformations of a genus-1 vesicle atV ∗ = 0.55.
(a) Time-sequential microscopy images of liposomes. From left to
right: t = 0, 45, 95, 97, and 144 s. Scale bar: 10µm. (b) Sequential
snapshots of the triangulated-membrane simulation. Intrinsic area
difference∆a0 is gradually increased withd∆a0/dt = 1×10−8,
wheret represents MC steps. From left to right:∆a0 = 1.73, 1.8,
1.87, 1.97, and 2.35.

reproduces the dynamics of the liposome very well.
Since the budded compartments are divided by small necks,

large free-energy barriers can exist between meta-stable and
stable states. Thus, it is difficult to identify the most stable
state. The snapshots in Figs. 8(c) and (d) show two free-
energy-minimum states at(V ∗,∆a0) = (0.5,2.2). The triangu-
lar and straight shapes are typically obtained as∆a0 increases
and asV ∗ decreases, respectively. These two shapes have al-
most identical potential energy with〈U〉/κ = 120. As∆a0

gradually decreases from∆a0 = 2.2, the straight shape is re-
tained better than the triangular budded shape at lower values
of ∆a0. A bud connected by two necks appears to be more
robust than one connected by a single neck. To calculate the
free energies using a generalized ensemble method, order pa-
rameters to connect these budded states and circular toroidare
required. However, typical shape parameters such asαsp are
not suitable, since the budding occurs in local regions of the
vesicle.

3.2 Genus-2 Toroidal Vesicles

The genus-2 vesicles form closed and open stomatocytes, dis-
cocytes, and budded shapes (see Figs. 11 and 12). These
shapes are similar to those of genus-1 vesicles described in
the previous section. A significant difference is that no ax-
isymmetric shapes exist forg = 2. Two pores cannot align at
the center of the discocyte.

A discocyte with two handles is observed experimentally.
The time-sequential shape transformation from a budded
toroid to handled discocyte is well reproduced by our simu-
lation [compare Figs. 12(a) and (b)].

The size of two pores in the vesicles can be different. An
extreme example is shown in Figs. 11(a,iii) and (b,v). The
ends of a tubular vesicle are connected by two necks. This
shape is metastable and obtained in the region slightly below
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Fig. 11 (a) Microscopy images of liposomes of (i–iii)g = 2 and (iv)
g = 5. Scale bar: 10µm. (b) Snapshots for the toroidal vesicle of
g = 2. (i) (V ∗,∆a0) = (0.5,0.8). (ii) (V ∗,∆a0) = (0.5,1). (iii)
(V ∗,∆a0) = (0.5,1.5). (iv) (V ∗,∆a0) = (0.5,1.8). (v)
(V ∗,∆a0) = (0.35,2.7).

the budding transition. Atg > 2, more complicated shapes
are expected. Figure 11(a,iv) shows an example of genus-5
liposomes.

4 Conclusions

Various morphologies of the genus-1 and 2 toroidal vesicles
are clarified numerically and experimentally. Forg = 1, new
stable non-axisymmetric shapes are revealed from the free-
energy profile calculation. As∆a increases atV ∗ = 0.5, a
circular discocyte with an off-center pore transforms intoan
elliptic discocyte and then into a circular toroid. AtV ∗ = 0.4,
between the circular discocyte and circular toroid, the dis-
cocyte with a handle and racket shape are formed. The dis-
crete transition occurs between the elliptic discocyte andcir-
cular toroid in the ADE model. The handled discocytes are
also observed forg = 2. As increasing∆a further, the forma-
tion of polygonal toroidal vesicles and subsequential budding
are also found. Number of polygon edges are increased with
decreasingV ∗ and are understood by the bending instability.
Our simulation results agree with our experimental observa-
tion very well. The following shapes are experimentally ob-
served for the fist time: Stomatocytes and racket-shaped vesi-
cle for genus-1 and handled discocytes for genus-1 and 2.

As the genus of vesicles increases, the regions of non-
axisymmetric shapes are expanded in the phase diagram. For
g = 1, the non-axisymmetric discocytes are stable in the region
where the axisymmetric discocytes are formed forg = 0. For
g = 2, all of obtained shapes are non-axisymmetric. Although
the phase diagram of the genus-2 vesicles is investigated on
the basis of symmetry analyses in Refs.14,15, thermal fluctu-
ations are neglected. A hexagonal array of pores is observed

Fig. 12 Shape transformations of a genus-2 vesicle atV ∗ = 0.25.
(a) Time-sequential microscopy images of liposomes. From left to
right: t = 0, 84, 197, and 244 s. Scale bar: 10µm. (b) Sequential
snapshots of the triangulated-membrane simulation. Intrinsic area
difference∆a0 is gradually decreased withd∆a0/dt = 2×10−8.
From left to right:∆a0 = 4, 3.46, 2.6, and 2.

in polymersomes37. Shape transformations of the vesicles of
genus 2 and higher under thermal fluctuations are an interest-
ing problem for further studies.
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15 F. Jülicher,J. Phys. II (France), 1996,6, 1797–1824.
16 X. Michalet, D. Bensimon and B. Fourcade,Phys. Rev. Lett., 1994,72,

168–171.
17 X. Michalet and D. Bensimon,Science, 1995,269, 666–668.
18 X. Michalet and D. Bensimon,J. Phys. II (France), 1995,5, 263–287.
19 X. Michalet,Phys. Rev. E, 2007,76, 02914.
20 A. Yamamoto and M. Ichikawa,Phys. Rev. E, 2012,86, 061905.
21 G. Gompper and D. M. Kroll,J. Phys. Condens. Matter, 1997,9, 8795–

8834.
22 G. Gompper and D. M. Kroll,Statistical Mechanics of Membranes and

Surfaces, World Scientific, Singapore, 2nd edn, 2004.
23 P. B. Canham,J. Theor. Biol., 1970,26, 61–81.

24 W. Helfrich,Z. Naturforsch, 1973,28c, 693–703.
25 C. Itzykson, Proceedings of the GIFT seminar, Jaca 85, Singapore, 1986.
26 H. Noguchi and G. Gompper,Phys. Rev. E, 2005,72, 011901.
27 Y. Okamoto,J. Mol. Graph. Model., 2004,22, 425–439.
28 B. A. Berg, H. Noguchi and Y. Okamoto,Phys. Rev. E, 2003,68, 036126.
29 A. M. Ferrenberg and R. H. Swendsen,Phys. Rev. Lett., 1988,61, 2635–

2638.
30 O. Farago and C. D. Santangelo,J. Chem. Phys., 2005,122, 044901.
31 J. Rudnick and G. Gaspari,J. Phys. A: Math. Gen., 1986,19, L191–L193.
32 H. Noguchi,J. Chem. Phys., 2002,117, 8130–8137.
33 H. Noguchi,Soft Matter, 2012,8, 3146–3153.
34 H. Noguchi and M. Takasu,J. Chem. Phys., 2001,115, 9547–9551.
35 M. Müller and M. Schick,Curr. Top. Membr., 2011,68, 295–323.
36 Z. C. Ou-Yang and W. Helfrich,Phys. Rev. A, 1989,39, 5280–5288.
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