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Evaporation of a capillary bridge between a particle and a surface†

Michael J. Neeson,a,b Raymond R. Dagastine, b,c,d Derek Y. C. Chan a,b,e and Rico F. Tabor∗ f

The liquid bridge that forms between a particle and a flat surface, and the dynamics of its evaporation are pertinent to a range

of physical processes including paint and ink deposition, spray drying, evaporative lithography and the flow and processing of

powders. Here, using time-lapse photography, we investigate the evaporative dynamics of a sessile liquid bridge between a

particle and a planar substrate. Different wetting characteristics of the particle and substrate are explored, as well as the effects

of contact line pinning and stick-slip boundary conditions. A theoretical framework is developed to quantify and analyse the

experimental observations. For the size range of particles and drops used in this study, gravity is by far the smallest force in the

system when compared to the surface tension and capillary interactions that are present, but in certain circumstances it dictates

the key evolution stages of the geometry of the particle-drop-substrate systems. Analysis of evaporation dynamics and capillary

forces indicate that at low Bond numbers, surface tension forces dominate and provide unique opportunities for the control of

particles on surfaces.

The existence of liquid bridges between solids – either as

particles or extended flat surfaces – is of considerable interest

and importance in a range of fields, which can be crudely sep-

arated into three classes based on their geometry: (i) one or

more small particles can sit at the interface of a much larger

drop, (ii) a small liquid volume sits between two solid sur-

faces forming a ‘capillary bridge’ and (iii) the transitional case

where the sizes of the drop and particle are of comparable

magnitude.

The limit in which the particle radius is much smaller than

the drop radius has been investigated extensively, primarily

in the context of Ramsden or Pickering emulsions,1,2 foams,

‘dry water’3 and liquid marbles,4–6 where many particles are

adsorbed at a liquid interface to confer stability.7,8 The force

between a small particle and a drop (or bubble) interface has

been investigated by various groups using the atomic force

microscope, and the observed behaviour analysed in terms of

wetting and capillarity.9–13 Using a perturbation analysis, the

lateral capillary interactions between particles in a Pickering

emulsion were theoretically investigated.14

For the case of multiple particles joined by liquid capillary

bridges, each bridge can be defined geometrically by its vol-

ume and the contact angle at the particle surfaces. This case
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is of interest when powders are processed and handled, partic-

ularly in moist environments or where hygroscopic materials

are involved.15,16 Common examples include minerals and ce-

ramics processing, foods (e.g. starch and whey powders) and

permeation and moisture retention in soils and sediments.17,18

Recently it was shown that the addition of a tiny amount of

a secondary fluid to a suspension causes large capillary net-

works, greatly altering its bulk rheological behaviour.19

Capillary bridges are of particular importance since they

give rise to the capillary force, which has wide-ranging im-

plications in the study of interfacial forces in atomic force

microscopy,20 particle adhesion21–23 through to nanoscale

applications such as dip-pen lithography24 and micro-

manipulation.25 Several studies have experimentally investi-

gated the forces arising from small capillary bridges between

a particle and a surface.26

Orr et al.27 provided a comprehensive theoretical treatment

of an axisymmetric capillary bridge between a spherical parti-

cle and a flat substrate. More recently Guzowski et al.28 con-

sidered the capillary force that acts on a particle attached to an

initially spherical interface when subjected to an asymmetric

displacement of the particle.

When multiple particles sit on a flat liquid surface, the lo-

cal interface near each particle is deformed, resulting in a lat-

eral capillary force between particles that can be either attrac-

tive or repulsive. The attractive lateral capillary force facil-

itates the self-assembly of large two-dimensional crystal ar-

rays.29–31 Alternatively, colloidal self-assembled arrays can

be formed by initially suspending multiple particles inside a

drop and subsequently evaporating the supporting drop.32–36

Since these capillary forces are extremely large when com-

pared to, for example, particle weights, they provide surpris-

ing and useful behaviours such as adhesives that mimic gecko

adhesion37 and insects that are able to climb ‘uphill’ at liquid

menisci.38

Although the behaviour of both a small particle on a much
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larger spherical drop, class (i), and a small liquid bridge be-

tween a large particle and a surface, class (ii), have both been

studied extensively, the same cannot be said for the interme-

diate class (iii), where the characteristic dimensions of both

the particle and the drop are comparable. Such configurations

share similarities with those for which the particle is replaced

by a third mutually immiscible fluid.39

In this paper we consider, both theoretically and experimen-

tally, the capillary bridge formed between a spherical particle

and a planar substrate. We analyse the cases of pinned contact

line as well as constant contact angle boundary conditions at

both fluid-fluid-surface contacts, as it is seen that both bound-

ary conditions are observed in the presented experiments.

By comparing the Gibbs free energy for each configuration,

we are able to determine the energetically favoured configu-

ration, revealing an important critical volume below which an

axisymmetric collar is formed around the base of the parti-

cle, exerting an attractive force between the particle and the

substrate, whereas above this critical volume the interface is

spherical with no capillary force acting between the particle

and the substrate.

Having developed a theoretical solution for an equilibrium

capillary drop interface, we present a series of experiments

with a small particle at the air-water interface of a water ses-

sile or pendant drop. By allowing the drop to evaporate and

tracking the evolution of the drop shape by time-lapse pho-

tography, we are able to investigate the dependence of system

geometry on volume as well as hysteresis effects, using the

theoretical model to obtain relevant physical parameters for

comparison.

1 Theory

When a spherical particle of radius a is placed at the interface

of a sessile drop of fluid 2, surrounded by an outer fluid 1, a

liquid capillary bridge is formed between the particle, p and

the substrate, s (Fig. 1). The characteristic dimension of the

drop over which gravitational force can deform the interface

is the capillary length λ =
√

γ12/∆ρg, where γ12 is the inter-

facial tension of the 12-fluid interface, ∆ρ is the density dif-

ference between the two fluid phases and g is the gravitational

acceleration. For drop dimensions well below the capillary

length (∼ 2.7 mm for a water drop in air) its shape will be

determined by the Young–Laplace equation without the grav-

itational term,

γ12

(

1

R1
+

1

R2

)

= ∆P ≡ Pin −Pout (1)

that relates the pressure difference, ∆P, across the interface

and the principal radii of curvature R1 and R2 of the drop.

By expressing R1 and R2 in terms of the co-ordinates of the

interface we obtain a differential equation for the drop shape.

The solution for the drop shape is determined by the drop

volume and by the physical condition at the three-phase con-

tact lines at the substrate and at the particle. In the present

context of how the shape of the liquid bridge evolves as the

drop evaporates, we consider two possibilities: (I) the contact

angle at the three-phase contact line remains constant as evap-

oration progresses and is given by θp at the particle and by θs

the substrate, according to the Young-Dupré equation, or (II)

the position of the contact line is fixed during evaporation. In

the latter case, the position of the pinned contact line is pre-

scribed by the angle, α , subtended at the centre of the particle

and by the radial position, rs, of the contact line measured

along the substrate (see Fig. 1).

We can now consider the two possible drop or liquid bridge

shapes that can form depending on the location of the parti-

cle relative to the sessile drop and the substrate. The charac-

teristic dimension of the drop or liquid bridge is assumed to

be small compared to the capillary length so that gravity does

not affect the drop shape through the Young-Laplace equation.

However, as we shall see, the small gravitational force plays

an important role in determining the position of the particle

in relation to the substrate through density difference between

the particle and the fluid phases.

1.1 Spherical drop interface

If the spherical particle does not make contact with the sub-

strate and is located in a symmetrical position about the apex

of the sessile drop (Fig. 1), the drop interface will be a portion

of a sphere with radius R1 = R2 ≡ R = 2γ12/∆P, the Laplace

radius, see eqn (1). The particle can be maintained in this

symmetrical position by gravitational force that is negligible

in deforming the interface. We now show that this solution

can also satisfy the required boundary conditions at the parti-

cle and the substrate.

The spherical liquid interface makes contact with the sub-

strate at the contact radius rs where the contact angle is θs and

also from the cosine rule for the triangle formed between the

centre of the particle, centre of the spherical interface and the

three phase contact line at the particle we can obtain the fol-

lowing equations, see Fig. 1,

rs = Rsinθs (2a)

l2 = a2 +R2 −2aRcosθp (2b)

R2 = a2 + l2 −2al cosα (2c)

where l is the distance between the centre of the particle and

the centre of the spherical interface. If the constant contact

angle condition holds at the three phase line at the substrate

and at the particle, θs and θp will be prescribed. Thus eqn (2)

can be used to determine unknowns (α,rs, l,R) when the drop

volume is specified. On the other hand, if the positions of the

2
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The meridional curvature, 1/R1 = −dφ/ds and the az-

imuthal curvature, 1/R2 = sinφ/r can be expressed in terms of

the tangent angle φ , and trigonometry gives dr/ds = −cosφ
and dz/ds = −sinφ . The origin of the arc length s = 0 is at

the particle, with s increasing away from the particle. Using

eqn (1) we obtain a system of 3 ordinary differential equations

dφ

ds
=−

(

2H − sinφ(s)

r(s)

)

(8a)

dz

ds
=−sinφ(s) (8b)

dr

ds
=−cosφ(s) (8c)

to be solved with the following boundary conditions at the par-

ticle, p and at the substrate, s

p : φ = α +θp, r = asinα, z = a(1− cosα), s = 0 (9a)

s : φ = π −θs, r = rs, z = 0, s = smax. (9b)

The volume V c of the collar, and the surface areas of the

12-, 2s- and 2p-interface (Ac
12, Ac

2s, Ac
2p respectively) can be

calculated from

V c = π

∫ smax

0
r2 dz

ds
ds− vcap(a,α) (10a)

Ac
12 = 2π

∫ smax

0
r ds (10b)

Ac
2s = π

(

asinα +
∫ smax

0

dr

ds
ds

)2

(10c)

Ac
2p = scap(a,α). (10d)

An iterative method is required to solve the coupled dif-

ferential equations in order to determine the unknown H that

is consistent with the prescribed volume and either the pre-

scribed contact positions or contact angles at the two three

phase contacts.

We outline an iterative method for generating interfaces for

the case where both contact angles are constant. To begin, we

pick a value for α and choose an initial value for the mean

curvature H0. An interface can now be generated by solv-

ing eqns 8, subject to the initial conditions 9a. The differen-

tial equations are solved numerically until z = 0, with the arc

length at this point being denoted smax. We now form an ob-

jective function based on the boundary condition, in this case

g(H) = φ(smax)− (π −θs), which we require to be zero. The

quantity Hi can now be updated using the secant method. This

process is repeated until the boundary condition at the sub-

strate is satisfied to within a specified tolerance. Changing the

filling angle α results in interfaces corresponding to different

drop volumes.

1.3 Evaporation dynamics

The evaporation rate for a sessile drop undergoing diffusion-

driven evaporation was first solved by Picknett and Bexon.
40 By drawing an analogy between the equations govern-

ing diffusion-driven evaporation and electrostatic potential,

they developed a differential equation for the evaporation rate

which involved a contact angle dependant parameter h(θ) ≡
C(θ)/R, with C(θ) being the capacitance of a lens of the same

shape that can be expressed analytically as an infinite series.

For numerical work, Picknett and Bexon40 presented an ap-

proximate polynomial expression for the capacitance of the

scaled lens in terms of the angle θ ,

h(θ)=











0.6366θ +0.09591θ 2 −0.06144θ 3, 0 ≤ θ ≤ 0.175

0.00008957+0.6333θ +0.1160θ 2

−0.08878θ 3 +0.01033θ 4, 0.175 ≤ θ ≤ π

that is accurate to within 0.2% of the analytical result. The

evaporation rate can then be expressed as

ρ
dV

dt
=−2πrsD(cs − c∞)

sinθs

h(θs) (11)

where D is the molecular mass diffusion constant, while cs and

c∞ are the vapour concentrations at the interface and in the far

field, respectively. The volume of a sessile drop can be written

as

V =
πr3

s

3

2−3cosθs + cos3 θs

sin3 θs

≡ π

3
r3

s ν(θs) (12)

where we have used eqn (2a). This expression depends only

on the contact radius and the contact angle, one of which is

constant depending on the substrate contact condition.

Pinned contact line: For the pinned contact line case, rs is

specified so the drop volume depends only on the contact an-

gle θs, and thus combining eqns (11) and (12) gives the differ-

ential equation

dθs

dt
=−2D(cs − c∞)

ρr2
s

(1+ cosθs)
2

sinθs

h(θs). (13)

Taking the time scale ts = ρr2
s /2D(cs − c∞), and t f as the

time when the drop vanishes, the solution of eqn (13) can be

written as

t̄ f − t̄ =
∫ θs

0

sinθ ′

(1+ cosθ ′)2h(θ ′)
dθ ′ ≡ G(θs) (14)

where t̄ = t/ts is the scaled time. For more details see Dash

and Garimella41 and Gelderblom et al.42

4
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Constant contact angle: For the constant contact angle case,

θs is specified so the solution of eqns (11) and (12) is

r2
s =

4D(cs − c∞)

ρ

h(θs)

ν(θs)sinθs

(t f − t) (15)

that differs from the evaporation rate presented by McHale

et al.43 (see their eqn (6)), that neglected the local geometrical

behaviour near the three-phase contact line. Taking the length

scale as the initial contact radius Lc ≡ rs(t = 0), together with

the time scale

ts =
ρL2

c

4D(cs − c∞)

ν(θs)sinθs

h(θs)
(16)

the solution of eqn (15) for the constant contact angle case can

be written in the simple nondimensional form

r̄s =
√

1− t̄. (17)

Thus the result in eqn (14) gives the variation of the con-

tact angle at the substrate with time as the drop evaporates

under the pinned contact line condition, whereas the result in

eqn (17) gives the variation of the position of the contact line

at the substrate with time as the drop evaporates under the con-

stant contact angle condition.

2 Materials and methods

Water was obtained from a Millipore Direct-Q 5 system (min-

imum resistivity 18.4 MΩ cm). Polystyrene spheres (Amber-

lite XAD-4, Sigma) with a radius of ∼150 µm were used as

received. Glass microparticles with radii 100–400 µm were

obtained from Polysciences, Inc (#18903) and used as re-

ceived. Poly(methyl methacrylate) (PMMA, 99%, Sigma) was

spin-coated onto glass microscope slides at 3000 rpm from a

20 mg·mL−1 solution in chloroform. Gold surfaces were gen-

erated by sputtering 5 nm of chromium (as an adhesion layer)

and 50 nm of gold using a Quorum Q150T-S sputter coater.

A polystyrene tissue culture dish was used as the polystyrene

substrate and a poly(tetrafluoroethylene) (PTFE) surface was

made by stretching a length of PTFE tape over a glass micro-

scope slide.

For each experiment a water pendant or sessile drop was

formed on the required substrate. The small gravitational force

was used to ensure the initial position of the particle is at the

apex of the pendent or sessile drop on the substrate. The evap-

oration rate depends on the combination of the parameters

D(cs − c∞) that varies with temperature and relative humid-

ity (see eqns (14) and (17)). However, no special steps were

taken to control these values in the laboratory.

Experiments were visualised using a CCD camera (Flea3,

Point Grey, Richmond, BC, Canada) coupled to a Kozo XJP-

300 microscope. The optical system was calibrated with a

known size standard, measured using laser diffraction. Dif-

fuse illumination was provided using a white LED source and

a diffuser. Each experimental image was first binarised to ex-

tract the drop-particle profile, and then a routine developed

in Mathematica (Wolfram Research) was used to fit the the-

oretical solution. A Levenberg–Marquardt optimisation rou-

tine was used to ensure rapid convergence of the experimental

and theoretical drop profiles. Physical quantities were then

extracted from the optimised parameters.

3 Results and discussion

Here we present and discuss the geometric and evaporative

characteristics of four key systems that serve to illustrate

the complex range of behaviours available to particle-drop-

substrate systems. Material combinations were chosen to pro-

vide a range of different surface wettabilities, in order to ex-

plore conditions in which the droplet contact angle and solid-

water-air van der Waals force (relevant to the wetting be-

haviour) vary widely:

1. Silica-water-poly(tetrafluoroethylene), PTFE: the water

droplet adopts a spherical solution throughout, and the

silica particle does not come into contact with the sub-

strate until the end of the evaporation process.

2. Silica-water-gold: the water droplet transitions from a

spherical to axisymmetric collar configuration.

3. Polystyrene-water-polystyrene: the water droplet adopts

a collar configuration throughout, including geometries

where the meridional curvature of the interface changes

sign resulting in an inflection in the function z(r).

4. Silica-water-poly(methyl methacrylate), PMMA: the wa-

ter droplet transitions from an asymmetric spherical so-

lution to an axisymmetric collar configuration.

In each experiment, a water drop was deposited onto the

substrate, forming either a pendant (experiments 1–2) or a ses-

sile (experiments 3–4) drop depending on the orientation of

the substrate. A particle was then placed onto the immobilised

drop, resulting in either a collar or a spherical configuration.

Fig. 3 shows time-lapse photographs of the evaporation pro-

cess for experiments 1–3. Videos of evaporation experiments

are available in the ESI.†As discussed later, the evaporation

time-scale is sufficiently slow that each instantaneous config-

uration can be accurately described by the equilibrium Young–

Laplace equation.

Time-lapse images were compared to interfacial profiles

predicted by the Young–Laplace equation. The accuracy of

the fit was demonstrated by overlaying predicted interfaces on

top of time-lapse photographs, as shown in Fig. 4.
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0 s 25 s 50 s

75 s 100 s 125 s

150 s 175 s 200 s

225 s 250 s 275 s

300 s 325 s 350 s

375 s 400 s 425 s200 mµ

In contact

Silica–water–gold

(b)

125 s100 ss75

50 s25 ss0

200 s175 s150 s

275 s250 s225 s

350 s325 s300 s

425 s400 s375 s200 mµ

In contact

Polystyrene–water–polystyrene

(c)

0 s 25 s 50 s 75 s

100 s 125 s 150 s 175 s

200 s 225 s 250 s 275 s

300 s 325 s 350 s 375 s 200 mµ

In contact

Silica–water–PTFE

(a)

Fig. 3 Time-lapse images of the evolution of three different axisymmetric particle-drop-substrate systems. (a) A water pendant drop hanging

from a hydrophobic PTFE substrate with a silica particle resting at the apex of the drop, with the particle touching the substrate in the final

frame. (b) A water pendant drop hanging below a gold substrate, with a silica particle initially at the apex of the drop. The particle touches the

substrate after 285 seconds, after which an axisymmetric collar rests around the particle-substrate contact. (c) A polystyrene particle in contact

with a polystyrene substrate with an axisymmetric collar formed around the contact for the duration of the experiment. The blue shaded

regions denote the experimental images for which the particle is in contact with the substrate. See ESI†for videos of each experiment.

0 s 200 s

Silica–water–PTFE (a)

(b)

(c)

(d)

325 s0 s

Silica–water–gold

s0 325 s

Polystyrene–water–polystyrene

180 s
0 s

Silica–water–PMMA

Fig. 4 Two representative experimental drop profiles for each of the

four experiments are compared to the Young–Laplace solution.

The extracted data allows the contact radii and contact an-

gles to be calculated at both the particle and the substrate,

together with the drop volume, air-water interfacial area and

Laplace pressure. Using these quantities, it is then possible to

calculate the capillary force Fcapillary between the particle and

the substrate

Fcapillary = Finterfacial tension −Fpressure

= (2πrs)(γ12 sinθs)− (∆P)(πr2
s ), (18)

chosen to be positive when the force is attractive. The ex-

tracted quantities are plotted against time in Fig. 6 and 7, and

discussed in detail in the sections below.

3.1 Initial configuration

When a particle is placed at the interface of a sessile drop,

the analysis presented in Sec 1 predicts that one of two basic

configurations will be assumed. If the sessile drop volume is

less than the critical volume for spherical drop formation, then

an axisymmetric collar around the particle-substrate contact

will form, whereas if the volume is above the critical volume

the air-water interface will be spherical. This spherical case

can be split into energetically equivalent but geometrically re-

solved homologues, as the particle can sit at any point on the

interface without energetic penalty. Therefore the effects of

gravity (i.e. buoyancy) must be considered, even though the

gravitational force is several orders of magnitude smaller than

6
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0 s
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135 s
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S
c

a
le

d
 c

o
n

ta
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ra

d
iu
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r s

Collar solutions

Spherical solutions

(a)

Scaled time t

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t=155 s

t=0 s

spherical solutions

Silica–water–PMMA

Fig. 5 (a) A silica particle on a PMMA coated substrate with a

water drop around the base. Time-lapse images taken 15 s apart

show the progress of the evaporation. The system is initially

asymmetric due to the density of silica being greater than water. As

the volume of the drop decreases, the system evolves towards an

axisymmetric collar, which is achieved at approximately 160 s into

the experiment. Thereafter, the system remains in the axisymmetric

collar configuration until the water completely evaporates. The

shaded red region denotes the region where the experimental

interfaces deviate from the theoretically predicted interfaces due to

surface non-ideality, while the blue line delimits the region where

the interfaces are spherical from those which are axisymmetric

collar. (b) The scaled substrate contact radius evolution versus

scaled time (brown symbols) for which the interfaces are spherical

interfaces. The black line represents the theoretical evolution of the

contact radius for diffusion-driven evaporation neglecting the

presence of the particle. See ESI†for a video.

the capillary force (gravitational force / capillary force = Bond

number ∼ 0.01).‡

When the particle is more dense than both liquid phases,

the particle will experience a downward net force, position-

ing it either axisymmetrically at the nadir of a pendant drop,

or asymmetrically to the side of a sessile drop. This effect

is demonstrated in Fig. 3 and 5, where experiments 1 and 2

‡Bond number = (L/λ )2, where λ is the capillary length and L is a typical

length scale for the system (L ∼ 200µm).

(Fig. 3a and b) show a heavy silica particle at the apex of a

pendant drop, while Fig. 5 shows the particle at the base of a

spherical sessile drop. The reverse is true for a particle less

dense than both liquid phases. For the intermediate case, it is

possible to find a volume dependant expression to determine

the particle position. Details of this calculation are provided

in ESI.†
It is clear that the initial condition adopted is a direct re-

sult of both the relative volumes of particle and drop, and the

system surface chemistry (that is, the contact angle on both

the substrate and particle). Exemplar are the cases of a sil-

ica particle and water drop on a PTFE or polystyrene sur-

face (Fig. 3a and c). Due to the high water contact angle of

the PTFE substrate, a spherical interface with small contact

radius is favoured throughout, whereas the less hydrophobic

polystyrene results in collars with large contact radii.

3.2 Boundary conditions

The theory presented above was derived for the boundary con-

dition of either a pinned contact line where the initial liquid-

solid contact line is fixed and evaporation results in a change

in air-water-solid contact angle; or a constant contact angle

where the liquid-solid contact line is free to move and retain

the thermodynamically favoured air-water-solid contact angle.

In reality however, the boundary condition for a given sys-

tem depends largely on the microscopic geometry and surface

chemistry of both surfaces, and a combination of both pinned

contact line and constant contact angle cases may be observed

within the same experiment. For the systems explored here,

the situation is further complicated by the different solid ge-

ometries (i.e. a curved particle and flat substrate) and dissimi-

lar material combinations chosen to emphasise the importance

of wetting effects.

For the axisymmetric systems presented, throughout the

spherical evaporation process the three-phase contact at the

substrate has a pinned contact line (see uppermost panels in

Fig. 6), while the particle contact condition is not as easily de-

termined with the same precision due to its geometry and free-

dom of rotation. Given that the particle contact radius remains

constant well into the collar mode of evaporation, it appears

that the contact line at the particle is also pinned.

Perhaps the clearest case is that of silica-water-PTFE (ex-

perimental images shown in Fig. 3a, with the extracted physi-

cal quantities shown in Fig. 6a), where the drop contact radius

on the substrate is effectively constant throughout the entire

evaporation process, resulting in an increasingly pronounced

decrease in substrate contact angle as evaporation proceeds.

Similar behaviour is seen for the early, spherical stages of

the silica-water-gold experiment (experimental images and ex-

tracted physical quantities shown in Fig. 3b and 6b, respec-

tively), although after the particle touches the substrate and
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Fig. 6 Time variations of (i) the drop substrate contact radius, (ii) the contact angles at both the substrate θs and particle θp together with the

filling angle α which the meniscus makes with the centre of the particle measured through the water, (iii) the volume of the water drop (left

hand axes) and the air-water interfacial area (right hand axes), (iv) the Laplace pressure across the interface and (v) the (attractive) capillary

force between the particle and the substrate for each of the three experiments presented in Fig. 3. From left to right, the extracted quantities

correspond to the experiments shown in Fig. 3a, b and c, respectively. All quantities were extracted by fitting the theoretical solution to the

experimental photographs (the blue shaded region represents the evaporation regions where the drop is an axisymmetric collar around the

particle-substrate contact). Representative error bars are shown on the centre column plots.

collar configurations become applicable, accompanied with

significant changes in the position of the contact line. Most

notably, the drop contact line on the substrate de-pins, with

the substrate contact condition transitioning to a constant con-

tact angle (∼ 15◦).

In the case of polystyrene-water-polystyrene (experimental

images and extracted physical quantities shown in Fig. 3c and

6c, respectively), the boundary conditions are not as clearly

defined during the experiment, as the contact angles and con-

tact radius both change throughout. Perhaps most interest-

ingly, there is a discontinuity in both of these parameters at

a distinct point that appears to be consistent with the inver-

sion of the droplet Laplace pressure from positive to negative.

This results in a more rapid retraction of the contact radius, al-

though this may also be connected to the low substrate contact

angle (< 20◦) at this stage.

If the pinned contact line condition applies at both the parti-

cle and the substrate, it is possible to find the rate at which the

contact angles at the substrate and particle vary with respect

to each other by differentiating eqn (3), which gives

dθp

dθs

=
tan(α +θp)

tanθs

. (19)

This useful relation predicts the direction of change of con-

tact angle for given surface chemistries. Importantly, for the

silica-water-gold experiment, dθp/dθs ∼−0.1, which implies

that for θs to decrease by 40◦, the particle contact angle will in-

crease by 4◦, accurately matching the presented theory. This

relationship also predicts that for the silica-water-PTFE ex-

periment the particle contact angle decreases with decreasing
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Fig. 7 Silica-water-PMMA: Time variations of (i) the substrate

contact radius, (ii) the contact angle at both the substrate θs and at

the particle θp together with the filling angle α , (iii) the drop

volume (solid symbols, left hand axis) and air-water interfacial area

(open symbols, right hand axis), (iv) the Laplace pressure of the

evaporating drop and (v) the (attractive) vertical capillary force

between the particle and the substrate. The vertical line at 160

seconds separates the spherical interface regime (left hand side)

from the axisymmetric collar region (right hand side). The shaded

red region represents the region where the experimental system

deviates from the theoretical solution due to surface non-ideality.

The open circles in this region show quantities extracted by

considering the local behaviour of the interface. Representative

error bars are shown in each plot.

substrate contact angle (dθp/dθs ∼ 0.6), which matches ex-

perimental data.

Perhaps most curiously, the case of a silica particle-

sessile water drop composite on a spun coated

poly(methylmethacrylate) (PMMA) surface (Fig. 5) shows a

constant contact angle during most of its evaporation process,

and for all of the states in which the drop adopts a spherical

interface (Fig. 7). However, the contact angles at both particle

and surface appear to pin at the point when collar geometries

are formed, associated with both a decrease and sign change

in Laplace pressure and a strong capillary force between the

particle and surface. The reasons for this change in boundary

condition are not entirely clear, but appear to be associated

with the evaporation dynamics, as the volume and surface

area continue to change smoothly despite the abrupt changes

in contact angle and capillary force. It is conceivable that in

diffusion-driven evaporation, the system contact angles must

adjust to maintain the correct pressure-to-surface area ratio,

although further experiments would be required to understand

this more fully. A more decisive analysis is thwarted by

minor deviations from ideality (shown as the shaded region in

Fig. 7) wherein uncertainties arise due to minor asymmetric

pinning of both the particle and substrate contact lines.

3.3 Capillary force

When the drop interface is spherical, there is no force act-

ing on the particle. For an axisymmetric collar, however, the

interface exerts a force on the particle. Orr et al.27 showed

theoretically that depending on the drop volume, the result-

ing capillary force could be either attractive or repulsive. The

spherical solution separates these two cases, as it results in no

capillary force.

As shown in the theory section, when the drop volume is

above the critical volume, the configuration can either form

a spherical interface, or a collar interface exerting a repulsive

capillary force on the particle. Clearly the case of a repulsive

capillary force is only physical in the instance that the particle

is ‘held’ onto the surface, otherwise the system will revert to

the energetically favoured spherical interface.

We can compare the surface energies of the two configu-

rations by first taking the particle to sit axisymmetrically at

the apex of a spherical drop. If the particle is then moved

toward the substrate to form an axisymmetric collar, the po-

tential energy, U , of the system has been increased since

dU/dz = −Fcapillary with the capillary force acting in the op-

posite direction to the displacement. For an idealised system,

conservation of energy results in an increase in the surface

energy. Since each of the interfacial areas (and therefore the

interfacial energies) for a spherical interface are independent

of the position of the particle at the apex or base of the drop,

we find the important result that the spherical drop interface is

more energetically favourable than the axisymmetric collar for

drop volumes above the critical volume. Therefore for a drop

volume above the critical volume, a spherical interface will

be formed with no capillary force acting on the particle. As

the drop volume decreases below the critical volume, an ax-

isymmetric collar is formed with an attractive capillary force

between the particle and the substrate.
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The capillary force for evaporating particle-drop-substrate

geometries analysed here follows expected behaviour based

on interfacial curvature (Fig. 6). For silica-water-PTFE, the

large substrate contact angle results in drop geometries that

are spherical and convex until the final experimental photo-

graph shown. It is possible that a very small liquid bridge (that

cannot be visually resolved) still remains between the particle

and the surface at the end of the experiment. This would ex-

plain why the particle remains adhered to the substrate despite

the gravitational force acting to remove it. Such microscopic

capillary bridges have been indicated before as an explanation

for large adhesion forces seen for particles at substrates.44 For

silica-water-gold where the drop is pendant, the system transi-

tions from a spherical interface to a collar, and in doing so ex-

periences an attractive capillary force that rises approximately

linearly from 0 to ∼ 50 µN. The same is true for a silica par-

ticle on a sessile drop upon a PMMA substrate (Fig. 7). For

polystyrene-water-polystyrene, the droplet configuration is an

axisymmetric collar throughout, and thus the particle experi-

ences a continual attractive capillary force, again with a nearly

linearly increasing trajectory from ∼ 20−110 µN.

Orr et al.27 calculated the capillary force between a particle

and a surface for a liquid bridge whose volume tends to zero.

They calculated the maximal capillary force

Fmax
capillary = 2πγa(cosθs + cosθp)≤ 4πγa (20)

giving a maximum value of 75 µN for the silica particle, and

120 µN for the polystyrene particle, which agrees well with

the maximum capillary forces calculated for our experiments.

For comparison, the force on the silica particle due to grav-

ity (i.e. the weight) F = ρV g ∼ 50 nN, which is 3 orders

of magnitude smaller than the capillary force. Thus for the

length-scales studied here (and below these dimensions), cap-

illary interactions are enormous compared to gravitational in-

teractions, and even more so for very small capillary bridges.

This explains how a comparatively massive particle can be

held up by a pendant drop that is a small fraction of its vol-

ume. The relative strengths of these interactions are undoubt-

edly important in the precise evaporative (self) assembly of

colloidal particles.

3.4 Evaporation dynamics

Having developed a comprehensive theoretical understanding

of the configuration of a static particle-drop-substrate system,

it is pertinent to extend this to explore the dynamics of the

droplet evaporation, a central theme for real-life systems in

which particle-drop-surface attachments are encountered.

Starting from the analysis of a ‘naked’ sessile drop evapo-

rating under diffusion-limited conditions as provided by Pick-

nett and Bexon,40 we can compare our experiments wherein a

particle is placed at the interface. For the pinned contact line

case, eqn (14) gives a universal curve for the contact angle θs

in terms of the scaled time t̄. By taking the time when the drop

vanishes to be 0 then gives θs(t̄) = G−1(−t̄), which allows the

evolution of θs for the spherical drops in Fig. 3a and b to be

compared to the theory for a naked sessile drop. For each ex-

periment, the initial and final contact angles set the initial and

final scaled time and hence the time scale, ts. The substrate

contact angle evolution with respect to the scaled time is pre-

sented in Fig. 8, showing good agreement between theory and

both the silica-water-PTFE and silica-water-gold. Similarly,

the evolution of the substrate contact radius for the constant

contact angle case can be compared to eqn (17), and is pre-

sented in Fig. 5b. Both time scale expressions comprise the

unconstrained diffusion rate parameter, D(cs − c∞), with the

values used in scaling each of the experiments shown in Ta-

ble 1. It is clear that within the experimental uncertainty in-

herent in the extraction of parameters from image fitting, the

evaporation dynamics of spherical interfaces with a particle

present are indistinguishable from the equivalent ‘naked’ ses-

sile or pendant drops for both gold and PTFE surfaces.

Table 1 Diffusion rate parameters used in modelling droplet

evaporation rate for the pinned contact line (PCL) and the constant

contact angle (CCA) systems.

Experiment PCL/CCA D(cs − c∞)/kg m−1 s−1

Silica-water-PTFE PCL 7 ×10−8

Silica-water-gold PCL 1.3 ×10−7

Silica-water-PMMA CCA 1.3 ×10−7

Having established that the evaporation of the liquid bridge

can be described by the evolution of a ‘naked’ sessile drop,

we consider the evaporation when the liquid bridge is in an

axisymmetric collar configuration. The silica-water-gold and

silica-water-PMMA experiments demonstrate both spherical

and collar configurations at different drop volumes, and illus-

trate the differences between the two modes of evaporation.

During the silica-water-gold experiment, both the particle and

substrate contact lines are pinned, with the substrate contact

angle decreasing linearly, while the particle contact angle vari-

ation is well described by eqn (19). Once the particle makes

contact with the substrate, the particle contact angle rapidly

decreases with both contact lines initially remaining pinned.

Soon thereafter, as the pressure decreases to zero, the system

reconfigures itself, with the substrate contact radius rapidly

decreasing with a concomitant decrease in the air-water inter-

facial area. Finally, the Laplace pressure changes sign with

the particle contact depinning. Throughout the collar phase,

the capillary force acting on the particle increases in magni-

tude.

The polystyrene-water-polystyrene experiment illustrates

the collar evaporation further, however the particle contact
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Fig. 8 The evolution of the substrate contact angle θs for a ‘naked’

sessile drop with a pinned contact line undergoing diffusion-driven

evaporation. The black curve represents the universal curve

presented in eqn (14). The blue symbols are the substrate contact

angles for the silica-water-PTFE experiment and the red symbols are

the substrate contact angles for the silica-water-gold experiment,

showing good agreement between the functional form of the

drop-particle substrate contact evolution and that of a plain sessile

drop.

condition is different. Initially, the polystyrene is completely

wetted by the particle, with the contact radius on the particle

moving. Similar key behaviours are again observed; namely,

the Laplace pressure decreasing to zero causes the system to

reconfigure itself, after which point both contact angles remain

relatively constant. The capillary force between the particle

and the substrate is also attractive and increasing in magni-

tude.

For the silica-water-PMMA experiment, the initial configu-

ration is a spherical interface with the particle in contact with

the substrate. The substrate contact angle is initially constant

(θs ∼ 60 ◦) with both the particle contact angle and radius re-

main constant within experimental uncertainty. Interestingly,

90 s into the evaporation process the experimental interface

deviates from the spherical interface, however the interface

is clearly not an axisymmetric collar either. This is appar-

ently caused by pinning at both particle and substrate con-

tacts, together with non-zero horizontal forces between the

particle and the substrate, presumably resulting from surface

non-ideality. For the frames between 90 s and 155 s, fitting

spherical interfaces to these frames provides a broadly accu-

rate estimate of the volume and interfacial area, but does not

accurately capture local behaviour such as the contact angles

and the curvature (and hence the Laplace pressure). To ob-

tain a more accurate estimate of the contact angle and Laplace

pressure, the curvature of the drop profile to the right of the

particle was calculated (as pinning occurred primarily on the

left side of the silica particle). These extracted quantities are

plotted in open circles on both plots, with the pinning region

indicated by the shaded red in Fig. 5 and 7.

The interfacial area decreases linearly with time for the en-

tirety of the experiment, and is notably independent of the

Laplace pressure which, unlike a ‘naked’ sessile drop, changes

sign.

3.5 Implications and opportunities for surface chemistry

Having analysed the possible geometries available to particle–

drop–surface composites, and the dynamics of their evolution

as the drop evaporates, it becomes pertinent to highlight the

opportunities that are apparent in system design and control.

Clearly surface chemistry and morphology is of overriding

importance in determining the parameters that control the drop

geometry - that is, contact angles via surface chemistry. How-

ever, the substrate also acts to determine the boundary condi-

tion - either pinned contact line (with a varying contact angle)

or constant contact angle (with the contact line free to move).

In the cases examined experimentally here we did not purpose-

fully select materials with the expectation of different bound-

ary conditions. For greater precision, it would be possible to

use patterned or micro-engineered substrates to introduce sur-

face chemical or physical heterogeneities in order to facilitate

contact line pinning of the drop at a certain position. Similarly,

particles with hemispheres that exhibit different wettabilities

(Janus particles) could be advantageous in controlling the con-

tact line and obtaining specific geometric characteristics.

4 Conclusion

We have analysed experimentally and theoretically the config-

urations available to a particle-droplet-substrate system. The

preferred state can be easily predicted for any combination

of fluid and particle densities, contact angles and volume ra-

tios. An understanding of this behaviour is of great impor-

tance when designing systems that can take advantage of such

composite colloids, such as evaporative lithography and mi-

croelectromechanical systems.

When comparing the measured geometry of real systems

to the theoretical expectation, the effects of non-ideality be-

come clear, and the extent of these departures from prediction

vary depending on the surface chemistry of the systems used.

In particular, the effects of liquid contact line pinning due

to surface inhomogeneities are significant and have a strong

influence over the geometries observed. In most cases, de-

spite the effects of pinning, the theory can still be applied to

obtain physical parameters with sufficient accuracy for most

purposes. Significantly, for all systems, a critical volume is

determined, below which a strongly attractive capillary force

is ‘switched on’, providing unique opportunities for surface

modification and assembly. In all cases explored here, and
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indeed for all low Bond numbers, surface tension forces dom-

inate the behaviour of liquid bridges; however, when all other

forces are balanced, gravity can still play a role in determining

the geometry of the system (i.e. whether the particle rests at

the base or apex of the drop).

Interestingly, an analysis of the liquid evaporation of these

systems indicates that the presence of a particle at the interface

has very little influence on the evaporation rate when com-

pared to a ‘naked’ sessile drop, providing access to a well-

understood description of evaporation dynamics. The exis-

tence of a remaining microscopic capillary bridge between the

particle and surface that cannot be visualised in these exper-

iments is posited, and remains to be experimentally investi-

gated.
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