
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Response of adherent cells to mechanical perturbations of the sur-
rounding matrix

Dan Ben-Yaakov,a Roman Golkov,b Yair Shokef,b and Samuel A. Safran ∗a

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

We present a generic and unified theory to explain how cells respond to perturbations of their mechanical environment such as
the presence of neighboring cells, slowly applied stretch, or gradients of matrix rigidity. Motivated by experiments, we calculate
the local balance of forces that give rise to a tendency for the cell to locally move or reorient, with a focus on the contribution of
feedback and homeostasis to cell contractility (manifested by a fixed displacement, strain or stress) that acts on the adhesions at
the cell boundary. These forces can be either reinforced or diminished by elastic stresses due to mechanical perturbations of the
matrix. Our model predicts these changes and how their balance with local protrusive forces that act on the cell’s leading edge
either increase or decrease the tendency of the cell to locally move (toward neighboring cells or rigidity gradients) or reorient (in
the direction of slowly applied stretch or rigidity gradients).

1 Introduction

Recent experiments on cell motility on substrates explore the
connection between cell motility, substrate adhesion and ac-
tive contractility, resulting in a generic picture of how these
effects balance to determine cell velocity1–7.

In this paper, we focus on contractile forces in cells such as
fibroblast, muscle or epithelial cells that would be strongly ad-
herent and non-motile in an unstressed and elastically homo-
geneous environment devoid of mechanical perturbations ex-
ternal to the cell8. We show theoretically how these forces are
modified by mechanical perturbations of the cellular environ-
ment, such as other cells, rigidity gradients, and externally ap-
plied stresses. We predict the conditions under which each of
these perturbations will increase or decrease the “backwards”
displacement of the cell and the force exerted on the adhe-
sions by cellular contractility (see Fig. 1), and thus tend to
respectively locally either incrementally impede or promote
local cell motility or reorientation ∗. These results are inti-
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∗We discuss the case where the contractile and adhesion forces are uniformly

distributed on the cell perimeter. We thus focus only on local force balances
in the combined membrane-protrusion-adhesion-contraction system and not
on the global motion of the cell which can depend on the non-uniform distri-
bution of the adhesions and contractility. Our use of the terms “cell motion or
reorientation” refer to local force imbalances that would destabilize strongly
adherent and non-motile cells; our model predicts the tendency to move and
not the subsequent dynamics. Motion in highly motile, non-adherent cells (in
the absence of mechanical perturbations of the matrix) is often determined by
a globally inhomogeneous distribution of contractile and protrusive forces 3.

mately connected to cell activity and homeostasis and we con-
trast this situation with the case of passive inclusions in an
elastic medium; those do not interact for an infinite, isotropic
matrix. Our theory provides insight and generic guidelines for
the tendency of mechanical perturbations of the matrix to re-
sult in local cellular motion (e.g., durotaxis – the tendency of
cells to move or align on more rigid substrates) or reorienta-
tion (in response to nearby cells or externally applied stress).
The adhesions are treated as rigid bodies that displace but do
not stretch in the presence of mechanical perturbations. The
passive elastic response of the cell and its adhesions to me-
chanical perturbations of the matrix can also depend on bio-
chemical feedback and our coarse grained model assumes that
these effects are reflected in the homeostatic boundary condi-
tions that allow the cell to adjust its contractility which affects
the displacement of the adhesions as the cell responds to its
mechanical environment.

Experimental evidence shows that feedback effects in cells
lead to homeostasis in which certain mechanical properties
of the cell are preserved even if the substrate rigidity is
changed9,10 or as the substrate is slowly stretched11. The ap-
plicability of various interpretations of cellular homeostasis to
the observed response of cells to generic mechanical pertur-
bations of the matrix is examined in the Conclusions section.
Homeostasis is possible in cells that can alter their energy ex-
penditure (e.g, by modifying acto-myosin or ATP production
or activity) to maintain their local, homeostatic, boundary con-
ditions even in the presence of changes in their mechanical

For example, in keratocytes, the larger contractility at the back of the cell
tends to promote motion at its front.
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environment. Symmetric, rigid inclusions (that do not regu-
late the forces that the produce in response to their mechanical
environment) in isotropic, infinite and linear elastic matrices,
do not elastically interact via their mutual deformations of the
matrix12. We show below that even in cases where rigid inclu-
sions would not interact, biologically active cells can, in some
cases, elastically interact due to feedback and homeostasis.
Cell elastic interactions have been discussed in previous stud-
ies8 that assumed a constant “force dipole” moment attributed
to the contractile cell and asked how the energy invested by
the cell in deforming the elastic matrix could be minimized.
However, those studies did not account for the force balance
that leads to the adhesion displacement considered here nor
for feedback due to homeostasis by which the force dipole it-
self may change in the presence of mechanical perturbations
of the matrix.

2 Biophysical background and proposed model

Substrate adhesion forces and active contractility are two im-
portant factors that govern cell motility. Actin polymerization
that takes place adjacent to the plasma membrane of the cell
(i.e., at its leading edge) generates protrusion forces that tend
to move the membrane leading edge in the “local forward” di-
rection, see Fig. 1, as well as forces due to actin retrograde
motion that move the adhesions near the leading edge in the
local backward direction. These protrusions are attached at
their non-polymerizing end to the adhesions that couple the
cell to the substrate. Motion of the adhesion along the sub-
strate gives rise to a frictional force 13 (due, in part, to dis-
sociation of bonds between the adhesion complexes and the
surface) as well as elastic stresses in the substrate that may
oppose such motion. The adhesions also experience forces
from cell contractility due, for example, to the actin cortex or
to larger-scale stress fibers. In general, contractility can also
affect actin treadmilling or retrograde motion and thus influ-
ence the magnitude of the protrusion forces. A model for cell
spreading that considers the dynamical forces balance of all
these effects was presented in Ref.14,15. There are additional
forces that arise from the intrinsic tension of the bilayer mem-
brane that resists the protrusion forces. However, experiments
show1 that these do not play an important role in determin-
ing the cell velocity. In addition, the detailed coupling of the
protrusive forces to the membrane also regulate cell motion.
However, these membrane-localized effects are not expected
to change in the presence of the mechanical perturbations of
the matrix considered here. For that reason we focus on the
forces that act on the adhesions which are coupled to the ma-
trix and are thus sensitive to mechanical perturbations of the
elastic surroundings of the cell. In principle, a wide variety
of biochemical, molecular-level changes can all lead to the

same velocity which is determined by the “lumped” effects
of the protrusion, adhesion and contractile forces. Here, we
denote the net protrusive forces as those which move cells in
the locally forward direction and the net contractile forces as
those that oppose this motion. Furthermore, we highlight the
role of mechanical perturbations of the substrate (such as other
cells, rigidity gradients or external static stretch) in destabiliz-
ing well-adhered cells. This means that we consider the cell,
after it has reached its dynamic, mechanical equilibrium and
is now fully spread 14. Perturbations (e.g., stochastic protru-
sions of the cell boundary) of the system away from this state
give rise to a mechanical force that opposes such perturba-
tions and tends to restore the equilibrium state. In addition,
we limit ourselves to the case of well-adhered cells for which
the stochastic protrusions due to sporadic attempts of the cell
to probe its substrate (e.g., via filopodia) are too weak to over-
come the total restoring force that maintains the adhesion of
the cell with the result that the cell remains non-motile, even
while its boundary may still locally and temporarily fluctuate.
It is in this context that we ask how mechanical perturbations
of the matrix surrounding the cell change the force balance
that gave rise to the equilibrium in the absence of the mechan-
ical perturbations. The latter destabilize the quiescent situation
(in which the cell boundary may fluctuate but in which the cell
shows no average motion) and cause the cell to move in a de-
terministic manner either towards or away from the source of
the perturbation. The speed at which this will occur depends
on the cell-substrate friction but here we only focus upon the
destabilizing effect of the mechanical perturbations of the sub-
strate, and limit our predictions to the magnitude and sign (for-
ward or backward with respect to the leading edge of the cell)
of adhesion displacement compared with its position for the
well-adhered and non-motile cell in an unperturbed elastic en-
vironment. This is done by calculating the forces on the adhe-
sion and requires a treatment of the matrix deformations in the
presence of both mechanical perturbations and cellular forces.
Cellular activity implies that these forces can vary in a com-
plex manner and we model the situation for the case where the
cell maintains a homeostatic stress, strain or displacement.

Experimental evidence for cellular, mechanical homeosta-
sis in the absence of neighboring cells, rigidity gradients or ex-
ternal stretch has been presented in several studies9–11 where
it was inferred that fibroblast cells maintain a fixed local defor-
mation of the pillars at small to moderate values of the rigidity
of the substrate on which they are placed. These experiments,
done on pillared substrates, found that the average force per
pillar in this regime increased linearly with the pillar elastic
modulus. However, since the stress exerted by the cell (deter-
mined by acto-myosin contractility and the adhesions) cannot
increase indefinitely, the force exerted by the cells saturates to
a constant value above a characteristic rigidity. This suggests
that cells can switch their behavior from homeostatic fixed lo-
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cal pillar displacement to homeostatic fixed force as the rigid-
ity of their elastic surroundings increases16–18. We note that
these experiments, performed on pillars, only provide infor-
mation about the conditions at the cell boundary where the
adhesions are located and on homeostasis with respect to local
rigidity changes of the substrate but not necessarily on cellu-
lar homeostasis in the presence of long-range effects such as
other cells or rigidity gradients. In addition, the translation of
the results of the pillar experiments to cells in an elastic con-
tinuum may indicate 19 that in the continuum, the analogue of
fixed force is fixed stress at the cell boundary while the ana-
logue of fixed pillar displacement may be fixed strain at the
cell boundary. Indeed, since the experimental determination
of cellular homeostasis in the presence of mechanical pertur-
bations is not yet clear, we consider below the three possibilies
of stress, strain and displacement homeostasis.

The homeostasis scenarios for active cells contrast with the
mechanical response of non-responsive (rigid) inclusions in
elastic media. Such inclusions may locally expand or con-
tract their environment (e.g., due to differences in thermal ex-
pansion of the inclusions and the matrix or due to local, elas-
tic matrix deformations induced by the inclusions). However,
they are not be able to regulate the stresses, displacements or
forces (via changes in adhesion area) they impose in response
to the mechanical state of their environment. In addition, we
focus here on effects related to active cell contractility and
not to the passive, elastic stresses that the cell exerts on its
adhesions; for cells that are much more rigid than their envi-
ronment, the passive cell elastic response can be ignored since
the cells are negligibly stretched by mechanical perturbations
of the matrix. It is indeed an interesting challenge to combine
both the passive elastic stress induced in matrix by stretch-
ing soft cells and their active, contractile response4,20 but a
comprehensive theory of both involves physical and chemical
degrees of freedom that are outside the scope of this paper †

To predict how the adhesions are displaced in the presence
of external mechanical perturbations of the matrix, we intro-
duce a simple model that predicts in a unified manner how
cells respond to distant elastic perturbations of their environ-
ment even though they are limited to probing (via local cy-
toskeletal forces and adhesions) only the local displacement
or stress in their immediate neighborhood. The forces that act
on the leading edge of the cell include those due to stochastic
protrusions that push the leading edge in the forward direction,
retrograde flow of actin in the backward direction as well as
those arising from the adhesions that are coupled to the actin

† Cellular adhesions in fibroblasts exert stresses 21 of the order of 5nN/µm2

( equivalent to 5kPa) which is indeed the magnitude of the shear modulus of
such cells on stiff substrates 22. However, the measured modulus includes both
the effect of the passive elasticity of the cross linked cytoskeletal components
as well as the effective stiffening 23,24 due to the molecular motors that give
rise to cellular contractility.

(via transmembrane integrins) as well as to the cytoskeleton
and the substrate. While the details of these forces depend on
the interactions of many molecular components involved here
we denote protrusive forces as the net forces that tend to move
an adhesion in the locally forward direction and contractile
forces as the net forces that tend to move the adhesion in the
opposite manner. In turn, the adhesions are acted upon by cel-
lular contractility (that pulls the upper surface of the adhesion
in the direction of the nucleus) as well as forces that arise from
the mechanical perturbations of the elastic medium; these act
on the lower surface of the adhesion that is in contact with
the substrate. The net force on the adhesions in the presence
of other cells, rigidity gradients or external stress determines
whether the protrusion forces can move or reorient the cell
toward or away from these perturbations. While the calcula-
tions shown here are for a simple, symmetric geometry, we use
them to motivate predictions of the trend for the cell to locally
increase or decrease the contractile force it exerts on its adhe-
sions. This then modifies the balance of protrusive, frictional
and contractile forces on the combined membrane-protrusion-
adhesion-contraction system (see Fig. 1) to determine cellular
motion or reorientation in response to the mechanical pertur-
bations of the cellular environment.

The discussion presented above suggests that the local
dynamics of the combined membrane-protrusion-adhesion-
contraction system can be written phenomenologically as a
Langevin equation for the velocity of a given adhesion, mod-
eled as a point and displaced from its position in the absence
of mechanical perturbations of the matrix; the cells we con-
sider are non-motile when such perturbations are absent. The
displacement is denoted by~uc whose time derivative (denoted
by a prime) is:

γ~uc
′ = ~f c +~f e +~f p (1)

γ is proportional to the dynamic friction between the adhe-
sion and substrate. The contractile force on the adhesion is ~f c

which in general, can be a function of the adhesion position
on the cell boundary as is the protrusive force ~f p. The forces
due to the perturbations of the mechanical environment, ~f e

that are transmitted to the adhesion via the elastic medium or
substrate can also modify the effective value of ~f c depending
on the homeostasis conditions. This equation applies only if
the sum of the forces on the right hand side of the equation
is greater than the static frictional force; otherwise, there is
no local motion or reorientation of the cell contour. This is
because rebinding of the bonds coupling the adhesions to the
substrate stabilizes the system even in the presence of external
force25. We can therefore also consider the case where, in the
absence of mechanical perturbations to the matrix, the static
frictional force dominates the right hand terms and the cell is
strongly adherent and stationary. When the sum of the con-
tractile and mechanical environmental forces are larger than
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the static frictional forces, the cell can move or reorient in the
direction of the local protrusion force. Realistic systems are
not spherically symmetric so that the change in the force bal-
ance induced by the presence of other cells, rigidity gradients,
or external stress only occur in specific directions. In that case,
the protrusion forces will tend to move or reorient the cell in
those directions where the local contractility forces have been
sufficiently decreased by the mechanical perturbations of the
matrix. Whether the friction is dynamic or static is important
to the details of the motion. But our more modest goal here fo-
cuses on the first step: predictions of the direction and magni-
tude of the displacement of an adhesion in a non-motile, well-
adhered cell in the presence of mechanical perturbations of its
elastic environment. To do this in a robust manner that does
not depend on any particular microscopic model, we treat the
biological activity of the cell via a homeostatic, mechanical
boundary condition at the cell-matrix interface; this presents a
well defined scenario which is then analyzed using the theory
of elasticity. Our continuum approach cannot resolve the spac-
ing between the adhesions and the membrane. However, the
advantage of our treatment is its independence of the details
of how the cytoskeletal structure, myosin activity and adhe-
sion size and density are regulated by the cell in achieving the
local deformation or stress dictated by the cell’s genetic pro-
gram.

3 Cell response to mechanical perturbations of
the matrix

3.1 Theoretical model

We analyze the simplest possible geometry of a spherical, con-
tractile cell so that the contour, of a cell centered at the origin,
is specified by a constant radius Rc. The previous discussion
of the force balance and homeostasis is applicable to a spher-
ical average over the entire cell; our model does not resolve
effects on the scale of a single adhesion and coarse grains over
the entire ensemble. Recent experiments also show that home-
ostasis involves global effects26. Homeostasis implies that the
contractile apparatus of the cell is biologically programmed to
respectively exert either (i) a fixed, local stress (force in the
radial direction on the cell boundary, per unit area) σc, (ii) the
trace of the strain εc, equivalent to the local volume change or
(iii) local radial displacement u(R = Rc) = uc of the adhesion,
that we assume is identical to the displacement from mechan-
ical equilibrium of the matrix at the cell boundary due to a
non-slip bond between them (see Fig. 2). Note that σc is the
stress the cell exerts on the matrix and is opposite in sign to the
matrix response to this stress (defined below as σrr). An im-
portant case that we consider below is where the periodic unit
cell boundary at R = Rb is held fixed. For cells that apply ra-
dial contractile forces, σc < 0, the elastic counter stress in the

matrix is then positive which tends to compress the matrix and
pulls the adhesion in the forward direction. If the cell is itself
compressed by its own contractile, radial forces, the displace-
ment uc < 0 and the resulting strain in the matrix is stretched,
εc > 0 which will be attained by the adhesion being displaced
in the backward direction. If the cell is not itself compressed,
(applicable to a very rigid cell relative to the matrix), but estab-
lishes strain homeostasis that locally compresses the (possibly
much softer) matrix, the strain in the matrix, εc will be nega-
tive; this will be accomplished by the adhesion being displaced
in the forward direction. Since, as shown below, the adhesion
displacement is linearly proportional to the homeostatic stress,
strain or displacement, different signs for these quantities will
result for different displacements of the adhesion by mechan-
ical perturbations of the matrix, in some cases representing an
attraction (or motion towards other cells, rigidity gradients or
alignment in the direction of applied stress) and in others a
repulsion.

We consider the matrix as an isotropic and homogeneous,
linearly elastic medium. A calculation of the interaction be-
tween two such cells including the homeostasis condition of
fixed displacement or stress at the boundary of each cell, even
in the presence of the other, is complex and requires one to
consider an infinite series of “induced force dipoles”27. How-
ever, the symmetry of the problem dictates that at the mid
plane between the two cells, the perpendicular displacement
of the matrix should vanish. We use that to motivate a particu-
larly simple and tractable geometry by considering the interac-
tions of a periodic array of contractile cells in an elastic matrix
as in Fig. 2a. At the mid plane between cells – each of which
pulls in opposite directions – the matrix displacement in the
direction perpendicular to the mid plane is zero. The small-
est volume contained by the intersection of all the mid plane
boundaries (termed in condensed-matter physics, the Wigner-
Seitz or periodic cell bounding volume) is the region in which
the elastic problem must be solved. We use the term cell to de-
note the biological cell and denote the Wigner-Seitz bounding
volume as the periodic unit cell. For simplicity of calculation
and exposition, we replace this volume by a sphere of diame-
ter 2Rb, which is proportional to the center-to-center distance
between nearest-neighbor, but somewhat distant cells.

Within this geometry, we calculate the stresses exerted at
the adhesion site for the different homeostasis conditions.
Stress (strain) homeostasis means that the cell regulates its
contractility so that even in the presence of mechanical per-
turbations to its environment, the stress (strain) exerted by the
cell at the adhesion located at Rc is fixed at σc

‡ (strain fixed
at a value of εc). Displacement homeostasis means that the
cellular contractility adjusts itself so that the displacement of
the adhesion at the cell boundary, R = Rc, is fixed at a value

‡ The stress in the matrix at Rc is thus −σc.
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of uc, independent of the cell’s mechanical environment. This
predicts that if the cell was non-motile in the absence of other
cells, rigidity gradients or slowly varying external stretch, that
it would remain so even after these perturbations are applied
since the adhesions will not move. The force balance on the
adhesion that determines whether and how the cell moves or
reorients in response to changes in its mechanical environ-
ment is obtained by solving for the matrix stress in the re-
gion Rc < R < Rb using the equations of linear elasticity with
the boundary condition u(Rc) = uc and u(Rb) = 0 for the case
of a periodic array. Since the speed of sound in the matrix
is typically very fast (1000m/s for the longitudinal mode and
1m/s for the shear mode28 which imply times of microseconds
for micrometer distances), the forces due to the other cells,
rigidity gradients or external stretch and the contractile forces
rapidly reach mechanical equilibrium and determine the dis-
placement of the adhesion, ~ue

c, due to these effects relative to
the adhesion position, ~u0

c , in the absence of the mechanical
perturbations of the cellular environment.

Thus, when ~u =~ue
c the sum of the contractile and environ-

ment forces, ~f c + ~f e, vanishes; this is equivalent to minimiz-
ing the elastic and contractile energies with respect to uc . We
next consider the quasi-stochastic protrusive forces that act on
time scales of seconds or longer4, much slower than the equi-
libration times of the contractile and mechanical perturbations
of the matrix (such as other cells, applied stretch or rigidity
gradients). We also predict whether the elastic, matrix force
that opposes the protrusive forces is increased or decreased,
relative to its value in the absence of mechanical perturbations
of the matrix. The force that opposes the protrusions, δ~fm, is
equal to the change in the contractile and the matrix pertur-
bation forces when the adhesion (or matrix) displacement is
different from ue

c due to the protrusive forces. In our spherical
geometry, δ fm = (∂ ( fc + fe)/∂uc) |uc=ue

c (uc−ue
c). Assum-

ing that the protrusion forces are ineffective (due to friction
and contractility) in causing cell motility in the absence of the
mechanical perturbations of the matrix, fc and fe predict the
tendency of the cell to respectively move/reorient or remain
adhered in the presence of other cells, rigidity gradients or ex-
ternal stretch.

We next consider the mechanical equilibrium of the con-
tractile and matrix perturbation forces that include the effect
of an elastically coupled cellular array that implies zero dis-
placement of the matrix at the boundary of the periodic unit
cell, u(Rb)= 0; this is dictated by symmetry since neighboring
cells pull the medium in opposite directions. For cells in the
same periodic array but with no elastic coupling between them
(e.g., due to disconnection of the matrix at the periodic bound-
aries), the boundary condition is one of no stress: σ(Rb) = 0;
this is applicable to an isolated cell in a matrix of finite extent,
Rb. The difference between the equilibrium displacements of
the adhesion or matrix at R = Rc for the isolated cell (or elas-

tically disconnected array) and the elastically coupled array
indicate how cellular interactions influence the tendency for
the adhesion to displace toward or away from the other cells.
This can be interpreted as an attraction or repulsion of the cells
from each other that takes into account contractility, elasticity,
interactions and homeostasis. The protrusion forces function
as a type of noise that allows the cell to explore its surround-
ings so that the friction can be overcome to allow motion of
the adhesions.

The radial stress σrr(Rc), exerted by the elastic medium on
the cell, is – in mechanical equilibrium – the negative of the
stress exerted by the cell on the matrix, σc. The local stress is
written29,30 in terms of the local matrix displacement, u(R) as
:

σrr(R) =
4µ

3

(
∂u(R)

∂R
− u

R

)
+K

(
∂u(R)

∂R
+2

u
R

)
(2)

where µ is the shear modulus and K is the bulk modulus of the
matrix. At the boundary of the biological cell, the matrix stress
is thus σrr(Rc). The term proportional to K is the compression
while the term proportional to µ is the shear stress. The com-
pressive strain is

ε(R) =
(

∂u(R)
∂R

+2
u
R

)
(3)

The term which multiplies 4µ/3 in Eq. 2 is the shear strain
and it is reasonable to assume that contractile cells with home-
ostatic strain impose a fixed compressive strain at the cell-ma-
trix boundary and not a fixed shear strain.

The stress is calculated from the equations of mechanical
equilibrium of the elastic medium. For our spherically sym-
metric situation of radial displacements of the matrix due to
cell contractility29,30, the displacement is determined from the
equilibrium equation:

d2u(R)
dR2 +

2
R

du(R)
dR

−2
u(R)
R2 = 0 (4)

The equilibrium elastic equation for radial displacements
in spherical geometry, Eq. 4 predicts u(R) = αR + β/R2:
where α and β are determined from the boundary conditions
at R = Rc and R = Rb. The term proportional to α repre-
sents a volume change, while the term proportional to β is
a shear (shape) change. This can be seen from Eq. 2: the local
compression in spherical geometry is equal to ∂u(R)/∂R+
2u(R)/R which vanishes for u(R) = β/R2. The shape change
or shear in spherical geometry is equal to ∂u(R)/∂R−u(R)/R
which vanishes when u(R) = αR. The radial stress given by
Eq. 2 is then:

σrr(R) =−
4µ β

R3 +3α K (5)
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We use the subscript uu to denote solutions of the elastic
equations appropriate for boundary conditions in which the
displacement is fixed at boundaries of both the biological cell
(where u(Rc) = wc) and the periodic unit cell (where u(Rb) =
wb) and find:

uuu(R) = wc R2
c

(R3
b−R3)

R2(R3
b−R3

c)
+wb R2

b
(R3−R3

c)

R2(R3
b−R3

c)
(6)

which yields uuu(R) = αuuR + βuu
1

R2 with αuu ≈(
wb−wc (Rc/Rb)

2
)
/Rb and βuu ≈ R2

c (wc−wb (Rc/Rb)).
This is a simplified formula, appropriate to the case in which
the cell density is dilute, Rc� Rb. The general case is easily
calculated using the method described here.

For the case where the cell imposes a fixed stress at its
boundary, πc = −σrr(Rc), we use Eq. 2 to write the bound-
ary conditions and denote the displacement by the subscripts
σu to indicate that the biological cell imposes fixed stress but
the periodic unit cell boundary imposes a fixed displacement.
We find:

uσu(R) = πc R3
c

(R3
b−R3)

R2(3KR3
c +4µR3

b)
+wb R2

b
(3KR3

c +4µR3)

R2(3KR3
c +4µR3

b)
(7)

When the cell imposes a fixed compressive strain at its bound-
ary, we use the subscript ε to indicate this and find:

uεu(R) =

(
R3−R3

b

)
εc

3R2 +
R2

bwb

R2 (8)

Note that for a contractile cell whose homeostasis is achieved
by compressing (densifying) the matrix in its vicinity, εc < 0
so that when the boundary at R = Rb is held fixed (wb = 0 in
Eq. 8) the cell adhesion is displaced in the forward direction
(uεu(Rc)> 0). The cell indeed imposes a negative compres-
sive strain at the cell-matrix interface due to the fixed displace-
ment boundary condition at R = Rb. If the cell is contractile
and relatively soft, one can consider a case where the cell itself
contracts and the matrix is stretched near the cell, correspond-
ing to εc > 0.

If instead of displacement, an external stress πb is fixed at
R = Rb, we indicate this with a second subscript of σ . The
solution of the elastic equations predicts:

uuσ (R)=wc R2
c

(
3KR3

b +4µR3
)

R2
(
3KR3

b +4µR3
c
)+πb R3

b

(
R3−R3

c
)

R2
(
3KR3

b +4µR3
c
)

(9)
While,

uεσ (R) =
εc
(
3KR3

b +4µR3
)

12µR2 −
R3

bπb

4µR2 (10)

and

uσσ = πc R3
c

(
4µ R3 +3K R3

b

)
12Kµ R2

(
R3

b−R3
c
) +πb R3

b

(
3K R3

c +4µ R3
)

12Kµ R2
(
R3

b−R3
c
)

(11)
Once the matrix strain is determined for the different bound-

ary conditions, Eq. 2 is used to determine the corresponding
expression for the stress in the medium.

3.2 Cell-cell interactions

We begin with the most dramatic example of how activity and
homeostasis sometimes result in elastically mediated cell-cell
interactions in situations where non-active inclusions in elastic
matrices do not interact and show below how a similar illus-
tration can also explain durotaxis. The solutions for the radial
matrix displacement as given above are now analyzed for var-
ious boundary conditions. For the case of the periodic array of
cells the symmetry boundary condition at R= Rb is u(Rb) = 0.
At the cell boundary, R = Rc, we consider the cases of fixed
homeostatic cell stress, σc, strain εc and fixed homeostatic cell
displacement, uc. The local displacement of the matrix at each
point is given by Eqs. 6-11 with wb = 0

In an infinite system, the results of the previous section
show that a single cell that exerts a fixed stress σc im-
poses a displacement of the medium at its boundary of u∞

c =
Rcσc/(4µ). For a cellular array with a homeostatic cellular
stress, σ(Rc) = −σc, Eq. 7 gives the displacement, uσu(Rc),
of the adhesion or the medium at the cell boundary in me-
chanical equilibrium. We define ue

c = uσu(Rc) evaluated for
πc = σc and wb = 0 (zero displacement of the boundary at
R = Rb): ue

c = u∞
c − Rc

(
σc (3K +4µ)/(16µ2)(Rc/Rb)

3
)

in
the limit Rc � Rb. Since σc < 0 for contractile cells, the ad-
hesion is displaced in the forward direction compared to an
isolated cell; this represents an attractive interaction between
cells in a periodic array. This will tend to move the cells closer
to each other or to orient towards each other in the case of
anisotropically shaped cells. If the cells in the array were dis-
connected elastically from each other, an elastically incoher-
ent system, equivalent to a finite medium of size Rb with a
stress-free boundary, the equilibrium displacement at the cell
boundary would be from Eq. 11 with πc = σc and πb = 0 to
yield: ue

c = u∞
c +Rc

(
σc (3K +4µ)/(12Kµ)(Rc/Rb)

3
)

(in the
limit Rc� Rb) which displaces the adhesion in the backwards
direction (closer to the nucleus) compared to an isolated cell
in an infinite medium. Thus, the interactions of cells in an
elastically connected array leads to effective attractions com-
pared with both a single cell in either an infinite medium or
a finite, stress-free matrix. § Strain homeostasis for the case

§ As shown in Appendix A, for the case of homeostatic stress, the attraction
of the central cell to its neighbors is also reflected in the expression for the
total elastic energy which decreases as the distance between cells in the array
decreases and scales as (Rc/Rb)

3.
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of εc < 0 results in the same qualitative trend of attraction but
now the displacement of the adhesion (compared to its dis-
placement in an infinite matrix) is independent of the elastic
constant of the surrounding medium and for the periodic cellu-
lar array ue

c = εc (R3
b−R3

c)/R2
c which implies displacement of

the adhesion in the forward direction since εc < 0 is expected
if the cell is fairly rigid relative to the matrix and regulates its
activity to compress its elastic surroundings.

For the case of stress homeostasis, the change in the sum
of the contractile and elastic forces when the adhesion is dis-
placed from its mechanical equilibrium position due to pro-
trusion forces, δ fm, is proportional to σc if there is suffi-
cient time during a protrusion for σc to maintain its home-
ostatic value. In that situation, the stress that opposes the
protrusion does not depend on the boundary conditions at
R = Rb (i.e., free or clamped, ub = 0 conditions due to the
cell array). If homeostasis cannot be achieved during the
protrusion, δ fm is proportional to inverse of the derivative
of the displacement as a function of σc. This is equivalent
to the derivative of the stress with respect to the displace-
ment. In this case, a single cell in an infinite elastic medium,
δ fm ∝ −4µ/Rc (uc−u∞

c )/Rc where uc is the instantaneous
displacement in Eq. 1. For an elastically coherent, periodic ar-

ray δ fm ∝−
(

4µ +(3K +4µ)(Rc/Rb)
3
)
(uc−ue

c)/Rc, in the
limit Rc � Rb. The negative sign indicates that the residual
stress opposes the protrusion forces that tend to move or orient
the cell in the forward direction. We see, however, that for the
periodic array, the cellular stress is more negative compared
with the corresponding stress for the single cell in an infinite
medium or for a disconnected, periodic array, where we find
that the term in 1/R3

b is positive, thus reducing the absolute
magnitude of the matrix stress that opposes the protrusions.

We now consider the case of homeostatic displacement of
the adhesions at the cell boundary. The solution of the elas-
tic equations for the periodic array using Eq. 6 with bound-
ary conditions u(Rc) = uc and u(Rb) = 0 predicts that the
stress in the medium due to cell contractility at R = Rc is
σ(Rc) = −4µ uc/Rc − R2

c uc (3K + 4µ)/R3
b in the limit that

Rc � Rb. For the case of free (zero stress) boundary con-
ditions σ(Rb) = 0, applicable for a cell in a periodic ar-
ray of cells that are elastically incoherent or for a cell in
a finite matrix of size Rb with stress-free boundary condi-
tions, the stress in the medium due to cell contractility is
σ(Rc) = −4µ uc/Rc + 4R2

c uc µ (1+4µ/(3K))/R3
b. The net

stress that opposes the protrusion forces that tend to displace
the adhesions from ue

c = uc is obtained from the derivative
of the stress at the cell boundary with respect to uc times
uc − ue

c. The opposing force defined in the text is δ fm ∝(
−4µ− (3K +4µ)(Rc/Rb)

3
)
/Rc, for Rc�Rb. The medium

stress that opposes the forward motion of the protrusion force
is thus larger (more negative) than its value for an isolated cell

in an infinite medium or for a cellular array that is elastically
incoherent where the term proportional to 1/R3

b is positive and
reduces the stress that opposes the protrusions.

In summary, stress or strain homeostasis that act to com-
press the medium near the cell, (σc < 0 or εc < 0 respec-
tively) tend to displace the adhesion in a periodic, elastically
coherent cellular array in the forward direction compared to
its displacement in the case of a free (or elastically discon-
nected) boundary at R = Rb by an amount proportional to
Rc (σc/µ)(Rc/Rb)

3. This represents an effective attraction
between cells and is consistent with the total elastic energy
(see Appendix A) which decreases as the cells are brought
closer together. However, for stress homeostasis, the stress
that opposes the protrusive forces for a cell array is either the
same or larger (by an amount proportional to µ (Rc/Rb)

3 )
than the free case, depending on whether the cellular stress
can achieve homeostasis or not on the time scale of the pro-
trusion. In the latter case, the larger stress reduces the effec-
tiveness of the protrusions in moving the cells closer together.
However, for small displacements of the adhesion from their
equilibrium position, this stress is small and the protrusions
can be effective in providing the destabilization that moves
the cell in the forward direction. For the situation in which the
displacement is fixed due to homeostasis, the adhesion dis-
placement is fixed at a constant value of ue

c = uc independent
of the boundary conditions far from the cell. Thus, the ad-
hesion position remains the same whether the cell is isolated
in an infinite medium or is in a periodic array of other cells,
independent of whether they are elastically connected. The
stress that opposes the protrusions is larger for the case of an
elastically connected, periodic array. This represents an effec-
tive repulsion between cells and is consistent (see Appendix
A) with the total elastic energy of this system which increases
as the cells are brought closer together.

The elastic interactions of active cells that can regulate their
contractility to maintain stress, strain or displacement home-
ostasis at their boundaries are dramatically different from the
lack of interaction of spherically symmetric, rigid (that can-
not change their shape or forces they exert) inclusions in an
isotropic and infinite elastic matrix. In the latter case, each in-
clusion exerts a fixed local displacement or local stress which
is independent of the presence of the other inclusions (see
Fig. 3a). There is no regulation of the stress, strain or dis-
placement by the rigid inclusion as there is for biological cells,
expressed in our model by keeping the local conditions fixed
at either uc, εc or σc even in the presence of other cells. For an
infinite system, the solution of the equilibrium equations pre-
dict that the matrix displacement varies as 1/R2 with no term
linear in R. Thus,12 the matrix deformation induced by each
rigid inclusion in an infinite system is a pure shear which does
not couple the purely compressive stress or displacement of its
spherically symmetric neighboring inclusion. Therefore, the
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ability for an inclusion to respond to changes in its mechani-
cal environment by varying the stress, strain or displacement
at its boundaries is crucial to mediate elastically driven, cell-
cell interactions, for the symmetric geometry considered here.
In the context of biological systems, this ability is related to
cell activity while in the context of non-biological inclusions
this might be related to the ability of the inclusion to modify
its shape or elasticity in response to the matrix stresses gener-
ated by mechanical perturbations. An explicit calculation that
shows that the interactions between rigid inclusions in a pe-
riodic array vanishes, is given in Appendix B. This demon-
strates that for the periodic geometry considered here, it is the
regulation of the boundary condition by the inclusions that re-
sults in a non-zero interaction between them. A calculation
of the interactions between two inclusions that can adjust (or
actively regulate, in the case of cells) the stress that they ex-
ert on the medium in order to maintain fixed stress, strain or
displacement boundary conditions (see Fig. 3b) will be pre-
sented elsewhere 27. This case is analogous to a force dipole
moment on one inclusion that is induced by the stress field due
to its neighbor, which yields the elastic analogy of the van der
Waals interaction. We find that the interaction energy between
two such inclusions, each of which maintains a fixed displace-
ment at its boundary even in the presence of the other, is re-
pulsive and decreases with cell separation D as 1/D6. For a
three-dimensional arrangement of inclusions with typical dis-
tance D between neighbors, we can integrate this interaction
energy over all the interacting pairs in the system and find that
the incremental force scales as 1/D3, which is consistent with
the elastic energy of our spherical-unit-cell approximation of
the many-cell, periodic system, Fig. 2. The 1/D6 behavior of
the incremental force or interaction energy is reminiscent of
the van der Waals interaction; both effects are due to induced
polarizations of the dipoles in the two bodies31.

3.3 Durotaxis

Similar elastic calculations in the spherical geometry can also
be used to understand the conditions under which cells may
exhibit durotaxis – the tendency to migrate from soft to rigid
environments – as well as the propensity of cells on a rigid
substrate to align parallel to the boundary with softer sub-
strate32–34. We consider a cell in a finite elastic matrix of
radius Rb with bulk modulus K and shear modulus µ . If the
medium outside this matrix (i.e. in the region R > Rb) is in-
finitely rigid, the boundary condition of zero displacement,
u(Rb) = 0, at R = Rb applies. The presence of a very soft
medium in the outer region, R > Rb, can be approximated by
a zero stress boundary condition, σ(Rb) = 0, for R = Rb. The
problem then maps to the case of cells in a periodic array
where a very soft medium for R > Rb corresponds to elas-
tically incoherent cells (or a single cell in a finite matrix of

size Rb with stress-free boundary conditions) and a very rigid
medium for R > Rb corresponds to the elastically coherent sit-
uation in which the cells interact via their mutual deformations
of the matrix. Using the results of the previous section allows
us to predict that cells that fix their boundary stress or bound-
ary strain are attracted to the rigid medium (at the boundary
R = Rb) while cells with homeostatic displacement would be
repelled from a neighboring medium with very large rigidity
The attractive interaction results in cells that tend to migrate
towards the rigid medium and the repulsive interaction would
predict the opposite. In the Conclusions section, we relate
these predictions to experimental observations.

3.4 External matrix stretch

We now consider incremental forces applied by biological
cells to their adhesions in the presence of external mechan-
ical stresses that are applied slowly enough so that the cell
can adjust its contractility and the homeostatic stress, strain or
displacement are reached adiabatically (i.e., at each step of the
process). We assume that the external stress is applied after the
cell has achieved its homeostatic stress, strain or displacement
after being plated on the substrate. In the spherical geometry,
the external stress or displacement is isotropic and we take it
to have a constant value of σb or ub at the boundary of the peri-
odic unit cell that delineates the matrix surrounding each cell.
Eqs.6-8 are used with these boundary conditions for the cases
of homeostatic cellular displacement, stress and strain. If the
distance between cells in the periodic array is large enough,
the intercellular forces may be negligible compared with the
applied stresses.

As above we see that cells with a homeostatic displacement
at their boundary adiabatically maintain this value and their
adhesions are not displaced by the external stretch. Thus, if
the cell was adherent and non-motile before application of the
external stretch, it remains in this state and does not “react”
to very slowly applied, externally applied displacements or
stresses. On the other hand, cells with a homeostatic stress
or strain at their boundary do modify their displacements in
the presence of slowly applied stretch. The elastic equations
are solved with the boundary condition u(Rb) = ub that cor-
responds to the displacement due to the external stretch; the
strain in the spherical geometry is ub/Rb and the equilibrium
position of the adhesion, ue

c is shifted forward by an amount
Rc (1+3K/(4µ)) (ub/Rb). If the quasi-stochastic protrusive
forces that drive cell motion in the forward direction are in-
stantaneously larger on one part of the cell boundary, the cell
will then tend to move in the direction of the stretch. The
residual stress that resists the protrusive force is the same as
for the case of the cellular array with no external stretch where
u(Rb) = 0.
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4 Conclusions and comparison with experi-
ment

Our results predict that stress or strain homeostasis results
in cells whose adhesions are displaced closer to neighbor-
ing cells, to a medium which is more rigid, and in the di-
rection of slowly applied stretch for cases where cell home-
ostasis results in a local compression of the medium near the
cell; in the opposite case, cells are repelled by their neighbors
or rigidity gradients. Since cells may translate very slowly
in viscoelastic matrices, a more practical comparison of the-
ory and experiment for asymmetrically shaped cells can be
obtained by observations of how the relative orientation of
non-spherical cells such as fibroblasts or muscle cells changes
in the presence of other non-spherical cells34,35; the attrac-
tions we predict imply orientations in the direction of nearby
cells or the direction of slowly applied stretch. The resid-
ual stress that opposes protrusion-induced cell motility is op-
posed by an elastic stress that is independent of the location
of the other cells, more rigid medium or orientation of the
applied stretch when the homeostasis can be established dy-
namically during the protrusion process. Otherwise, the stress
that opposes the protrusions is increased by a factor propor-
tional to (Rc/Rb)

3. Displacement homeostasis implies that
the adhesions are not displaced by mechanical perturbations
of the elastic medium but the residual stress that opposes the
protrusions is even more negative by a term proportional to
(Rc/Rb)

3. This makes the protrusive forces less effective in
the direction of the other cells, rigidity gradients or applied
stretch, consistent with an effective repulsion. We note that
our results indicate that displacement homeostasis implies that
the cell expends more energy in maintaining fixed displace-
ment when it is closer to other cells, increasing rigidity regions
or slowly applied stretch; stress homeostasis implies the oppo-
site (see the energy calculations in Appendix A). However, the
present discussion focuses on forces and displacements of the
adhesions since these are indeed mechanical responses even
in living cells. Whether the expenditure of more (or less) en-
ergy to maintain homeostasis results in cell motion away from
(or towards) the mechanical perturbation of the environment
is an interesting question that deserves further experimental
attention.

We now address the experiments10 that measured whether
the force or displacement of pillars onto which cells adhered
was fixed as the elasticity of pillar was varied in order to elu-
cidate whether we should consider fixed stress, strain or dis-
placement boundary conditions in our predictions of cellular
response of relatively distant, mechanical perturbations of the
matrix. The pillar experiment demonstrated either fixed force
or displacement only with respect to rigidity changes of the

pillars. ¶. As mentioned in the introduction, the translation of
the results of the pillar experiments to cells in an elastic con-
tinuum suggest that in the continuum, the analogue of fixed
force is fixed stress at the cell boundary while the analogue of
fixed pillar displacement may be fixed strain at the cell bound-
ary. Finally, we note that recent experiments suggested that the
homeostatic quantity that is independent of substrate rigidity
is the work done by a cell in deforming its environment (in
the absence of mechanical perturbations) 37. This is not a lo-
cal quantity and implies global coordination of the cytoskele-
tal forces and adhesions in response to rigidity changes. Of
course, both this experiment as well as those that measured
the local cellular forces or displacement of pillars examined
homeostasis only as far as substrate rigidity changes are con-
cerned. Whether this homeostasis persists in the presence of
mechanical perturbations such as other cells, rigidity gradi-
ents (at a distance from the cell) or static stretch, remains to be
measured. For this reason, we have presented our predictions
for the three most likely types of homeostasis of stress, strain
and displacement. Experiments that directly measure which
homeostasis is applicable in response to mechanical perturba-
tions have yet to be done; however, we can still discuss how
comparison of our predictions with existing experiments on
cell response to other cells, durotaxis or other cells can shed
light on whether the cells keep fixes stress, strain or displace-
ment as their mechanical environment if modified.

Experiments38 have reported that cells on soft substrates at-
tract each other while those on rigid substrates do not. While
in some experimental studies cells aligned parallel to the di-
rection of a static or quasi-static stress field11,39–41, other ex-
periments find that some types of cells remain randomly ori-
ented42; the rigidity dependence of these observations has not
yet been fully quantified. Our predictions can be summa-
rized as follows: (i) For homeostatic stress or strain: Adhe-
sions are displaced towards those of neighboring cells (cells
are attracted to nearby cells) when the cell activity homeosta-
sis results in a counter force in the matrix that locally com-
presses the medium near the cell. This occurs either for a
cellular stress σc < 0 or an imposed strain εc < 0 that tends
to locally densify the matrix (in the case that the cell is more
rigid than the matrix); the same physics explains that cells are
also attracted to regions of higher rigidity. Our expressions

¶ We note that it is also possible that in the experiments in which the pillar
rigidity was changed the cells modulate maintained fixed force on the pillars
for both rigid and deformable pillars, but modified their mechanical coupling
to the pillars as a function of the pillar bending rigidity An example of this
has been discussed 16,36 where the experiments on soft pillars are interpreted
in terms of homeostatic cell stress that is applied to adhesions whose size
increases with rigidity so that the force applied by an adhesion to the pillar
(product of the stress and adhesion area) increases with rigidity. But this is
not the only possible type of feedback that can allow for explanation of the
experiments that differ from the “naive” interpretation of fixed displacement
homeostasis.
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for the displacement and stress predict that for fixed homeo-
static stress the incremental strain at the cell boundary in these
cases scales as (Rc/Rb)

3 which can be tested experimentally
by varying the intercell spacing, Rb in the periodic array. For
homeostatic stress of the order of the matrix rigidity, this pre-
dicts an incremental strain of a few percent for intercellular
spacings that are three times larger than the cell size. Simi-
lar predictions can be made for homeostatic strain. In addi-
tion, the theory suggests that cells will align with the direction
of static stretch. If the homeostatic strain or stress imposed
by the cell tends to result in a local expansion of the matrix
near the cell due to a cellular stress, σc > 0, or a locally im-
posed strain εc > 0 (perhaps due to the cell itself contracting
in the case that it is softer than the matrix), the adhesions are
displaced in the backward direction and the cell is repelled
from nearby cells or from a region of higher rigidity. This
also suggests that cells will not tend to align with the direction
of static stretch. (ii) For homeostatic displacement, cells do
not respond to the mechanical perturbations induced by other
cells, rigidity gradients or static stretch since the adhesions are
always displaced in the same manner no matter what the me-
chanical state of the surroundings. Determining in some first-
principles manner whether cellular homeostasis in a given sys-
tem fixes the stress, strain or displacement at the cell bound-
ary is outside the scope of the elastic theory presented here
since by definition, homeostasis depends on cellular activity.
Experiments 10 on discrete, pillared substrates where it is rel-
evant to discuss the force or displacement of a pillar, indicate
homeostatic displacement for soft substrates and homeostatic
stress for rigid substrates. The translation of this to a contin-
uum elastic matrix may allow for control of the local stress,
strain or displacement at the cell boundary. However, home-
ostatic displacement is more difficult to justify in continuum
elastic matrices where the relative displacements of the ma-
trix or cell (i.e., the strain) should govern the physics. Models
that include the cell, substrate and adhesion elasticity 19 are
consistent with homeostatic strain on substrates that are softer
than the cell and homeostatic stress on more rigid substrates.
These models include cell activity as an effective pre-stress
of the cell due to its contractility, but do not account for bi-
ological feedback effects. For this reason, we have chosen a
minimal elastic theory in which the homeostasis enters as a
boundary condition which is obtained from observations.

Our prediction of cell-cell attractions for either homeostatic
stress or strain can be compatible with observations 38 which
showed attractions on soft substrates but short-ranged repul-
sions upon contact on rigid substrates. The displacement of the
adhesions under homeostatic strain εc < 0 that results in a lo-
cal compression of the matrix (applicable to substrates that are
softer than the cell), are independent of substrate rigidity and
predict attractive interactions – at a distance – of nearby cells.
The induced negative strain in the matrix is reasonable even

for contractile cells, so long as the cell is more rigid than the
matrix. In that case, it is elastically more favorable for the ma-
trix to be compressed compared with the cell; when the matrix
is compressed, it pulls the adhesions towards the neighboring
cells as shown quantitatively in our theory. When the home-
ostasis switches to constant stress σc < 0, (applicable to sub-
strates that are more rigid than the cell) in which the relatively
softer cell itself may contract under its own contractility, the
reaction stress in the matrix is positive and tends to compress
the medium; the displacements of the adhesions are again
in the forward (attractive) direction, but are predicted to de-
crease inversely with the substrate rigidity. For very rigid sub-
strates, the elastic interactions are negligible compared with
the “noise” that dictates random cellular motion and the cells
are therefore observed to move randomly, repelling each other
by their excluded volume only upon contact. Typical exper-
iments on durotaxis 32 indicate that cells are attracted to the
more rigid regions of their surroundings; this is consistent with
our predictions for homeostatic contractile stress (σc < 0) or
strain (with εc < 0) but not displacement.

For slowly applied stretch, the experimental situation is
not completely clear. In some experimental studies cells
aligned parallel to the direction of a static or quasi-static stress
field11,39–41, other experiments find that some types of cells
remain randomly oriented42; the rigidity dependence of these
observations is only now beginning to be quantified43. On soft
substrates (relative to the cell) we expect the passive elastic re-
sponse of the cell to be negligible and for the cell to respond
to external stretch via its coupling to cellular contractility. For
this case, our model suggests that the cell will align parallel to
the direction of static stretch for either strain or stress home-
ostasis with εc < 0 or σc respectively. On rigid substrates (rel-
ative to the cell), the cell itself is stretched and the combined
response of its own passive elasticity and active contractility
may be more complex.

Finally, we remark that for rapidly varying cyclic stress,
neither stress nor displacement homeostasis may be able to
be maintained; the cell contractility cannot “catch up” to the
instantaneous value of the matrix displacement. To under-
stand cell alignment under applied cyclic stretch with fre-
quencies in the range of 1Hz or larger, it may be necessary
to more deeply examine the biological mechanisms that regu-
late homeostasis44–46 and how these can or cannot respond to
rapidly varying mechanical perturbations of the cellular envi-
ronment. Such a “biological penalty” may be the reason that
cells subjected to cyclic stretch tend to align away from the
stretch direction42,47–52. A more specific model of the molec-
ular effects and time scales that govern cell reorientation in
response to cyclic stretch has also been considered 53. More
recent quantitative measurements of such effects54 have been
interpreted in terms of the passive elastic response of the cell
that then reorients the cytoskeleton. In any case, this dynam-
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ical problem is outside the scope of our work that focuses on
the role of homeostasis and how it controls cellular response
to mechanical perturbations of its elastic environment. Further
experiments on all three types of environmental perturbations
under controlled conditions of cell density and matrix rigid-
ity may distinguish between the different homeostatic cases.
Such measurements will provide information how an external
mechanical probe can be used to infer information about cell
activity and function.
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A Elastic energy of the medium due to cell con-
tractility

In the body of this paper, we presented explicit calculations of
the displacement of the cell boundary due to the presence of
mechanical perturbations of the medium such as other cells,
rigidity gradients and external, slowly applied stretch. These
forces act to move the adhesions at the cell-matrix interface.
Here we also present calculations of the elastic energy of the
matrix due to cell contractility. Minimization of this energy by
the elastic medium gives rise to the driving stresses that result
in the displacement of the adhesions.

The energy of the medium, W is given by one-half of the
volume integral of the strain and the stress which (for the cases
of interest where either the displacement or the stress at the
unit cell boundary Rb is zero) can be transformed by integra-
tion by parts into the product of the displacement and force
(the product of the stress and area) at the cell boundary:

Wαβ =−2πR2uαβ (Rc) σαβ (Rc) (12)

where α = u,σ and β = u,σ denote the four possible bound-
ary conditions at Rc and Rb respectively. Since the corrections
to the displacement due to the boundary conditions at Rb (due
to other cells, a rigid external matrix or applied stress) scales
as 1/R2 and the stress scales as the displacement divided by R,
the corrections to the energy due to the boundary condition at
Rb are expected to scale as 1/R3

b as we now show from explicit
calculations.

In the limit that Rb � Rc, we find that for the case where
there is no applied stretch so that either the displacement (Wuu,

Wσu) or stress (Wuσ , Wσσ ) at R = Rb is zero:

Wuu = 8πµRcu2
c +

π R4
c u2

c (6K +8µ)

R3
b

+ ... (13)

Wσu =
π R3

c σ2
c

2µ
− π R6

c σ2
c (3K +4µ)

8µ2R3
b

+ ... (14)

Wuσ = 8πµRcu2
c−

8π µ R4
c u2

c (4µ +3K)

3K R3
b

+ ... (15)

Wσσ =
π R3

c σ2
c

2µ
+

π R6
c σ2

c (3K +4µ)

6KµR3
b

+ ... (16)

We see from these equations that compared with the en-
ergy (Wuσ , Wσσ ) in the free boundary case where the stress
at R = Rb is zero, the elastic energy (Wuu, Wσu) of a cell in a
periodic cell array or for a cell with an infinitely rigid medium
in the region R > Rb where the displacement is zero at R = Rb,
is lower for the case of stress homeostasis (Wσu) and higher
for the case of displacement homeostasis (Wuu). This respec-
tively represents an effective attraction or repulsion of the cell
to the other cells in the array or to the infinitely rigid medium
(durotaxis). However, since cell behavior is not necessarily
governed by energy minimization but rather by the response
to force, this paper focuses on the forces on the adhesions and
whether they displace the adhesions toward or away from the
boundaries.

B Elastic interaction of responsive vs. rigid in-
clusions

The interaction energy of two rigid inclusions each of which
induces a fixed, symmetric force that deforms the surrounding
matrix,12 vanishes. For a realistic geometrical arrangement of
such spherical inclusions in space, the displacement field gen-
erated by each inclusion, although isotropic around it, is non-
isotropic with respect to the center of a neighboring cell some
distance away (see Fig. 3) For multiple rigid inclusions, the
displacements generated by all neighboring spheres will not
cause the total displacement to be isotropic for each cell, as
in our spherical-unit-cell approximation. Nonetheless, we can
consider active biological cells or responsive non-biological
inclusions that sense the anisotropy in the total displacement
field due to the presence of other cells around them, and regu-
late their active displacement so that the sum of the displace-
ments generated by other such cells or inclusions and by them-
selves will be isotropic. To achieve this, it is necessary that the
active or responsive system generate an anisotropic displace-
ment (to cancel the displacements at the cell boundary induced
by the other contractile cells). Therefore, the incremental elas-
tic energy has a non-zero term due to the interactions between
cells, similarly to the interaction between a single cell and the
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spherical wall which we used above in our one-dimensional
model for the boundary condition that simulates the effects of
the neighboring cells. Details of such a calculation for two
responsive inclusions will be presented elsewhere27.

To explicitly demonstrate that the interaction of rigid in-
clusions vanishes even in the many-body case of a periodic
array of cells, we have calculated cell-cell interactions in a,
non-spherical (e.g., cubic) Wigner-Seitz periodic unit cell ap-
propriate to cuboidal inclusions on a cubic lattice. The inclu-
sions are described by an eigenstrain tensor ε∗i j, for which the
Fourier components are given by55:

ε
∗
i j(p,q,r)=

8φ

π3

sin( pπa
L )(sin( qπa

L )sin( rπa
L )cos( pπx

L )cos( qπy
L )cos( rπz

L )

pqr
δi j ,

(17)
leading to the Fourier components of the displacement field:

ux(p,q,r) = λ
sin( rπa

L )sin( pπx
L )cos( qπy

L )cos( rπz
L )

(p2 +q2 + r2)qr
(18)

uy(p,q,r)= λ
sin( qπa

L )sin( rπa
L )sin( pπa

L )sin( qπy
L )cos( rπz

L )cos( pπx
L )

(p2 +q2 + r2)rp
(19)

and

uz(p,q,r)= λ
sin( rπa

L )sin( pπa
L )sin( qπa

L )sin( rπz
L )cos( pπx

L )cos( qπy
L )

(p2 +q2 + r2)pq
(20)

Here

λ =
8

π4
3λ +2µ

λ +2µ
Lφ , (21)

where p,q,r are the Fourier components indices, φ is the rela-
tive length change, 2L is the distance between two inclusions
(and the size of a Wigner-Seitz cell), and 2a is the cuboidal
inclusion linear size.

The total elastic energy is given by a volume integral:

U =
∫

dVσij
(
εij− ε

∗
ij
)

(22)

where εi j =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
is the strain tensor, and σi j =

λTr(ε− ε∗)δij +2µ(εij− ε∗ij) is the stress tensor. Substituting
Eqs. 17-20 into the stress and strain tensors, and calculating
the integral shows that the elastic interaction energy vanishes.
This particular example shows that for rigid inclusions each
of which introduces a pure volumetric deformation, the elastic
interactions vanish27.
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Fig. 1 (a) Top view of an initially spherical, contractile cell which develops protrusions. (b) Side view of the cell on a line from the protrusion
to the nucleus. The local balance of forces on the combined membrane-adhesion system that determine whether the cell locally would tend to
move or reorient or whether it remains adherent and stationary. The protrusions generally exert local forces in the “forward” direction on the
cell membrane and are connected, via the adhesions, to the contractile forces that generally (see text) act toward the cell nucleus. The arrow
shown in the elastic substrate represents the forces due to elastic perturbations of the cellular environment (that can displace the adhesion in
either direction) such as other cells, rigidity gradients or external stretch that are coupled to the adhesions via the elastic medium or substrate.
(c) Schematic of an initially spherical cell (thin blue line) with a protrusion that tends to move the cell to the right (thick red line). (d)
Schematic of protrusions that tend to orient the cell along the horizontal direction (thick red line). If the cell is initially well adhered and
stationary, the motion (c) or orientation (d) will only occur if the forces due to the presence of other cells, external stress or rigidity gradients
tend to move the adhesion in the forward direction sufficiently reduce the contractile forces to allow the protrusion forces to move or orient the
cell.

Fig. 2 (a) Periodic array of contractile cells. The Wigner-Seitz, periodic unit cell is approximated by a sphere at R = Rb. (b) Contractile cell
of radius Rc in medium bounded by Rb. Homeostasis implies that the stress or strain that the cell applies at its boundary R = Rc are fixed.
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(a)

(b)

Fig. 3 Two contractile spheres in an infinite elastic medium: The solid black lines show the displacement of each sphere before it becomes
contractile and the solid blue lines show the displacements upon interaction and regulation. The gray dashed line is the self displacement of
each sphere (caused by its own, local contractility), and the green dashed line is the displacement caused by the neighboring sphere. The red
arrows depict the contractile forces applied by each sphere. For illustration purposes, the initial distance between the spheres was taken set to
2.5Rc, and the self displacement to 0.25Rc. (a) Passive spheres that apply a fixed isotropic elastic stress at the sphere boundary R = Rc. (b)
Active spheres that regulate the force they apply in order to maintain a fixed value of the local displacement at R = Rc even in the presence of
other cells.
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