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The twisted plywood architecture, known as the Bouligand structure, is a ubiquitous biological and 

synthetic fibrous composite structure, analogous to that of cholesteric liquid crystals. Twisted plywoods  

can show ideal or non-ideal structures  and  are formed via equilibrium or non-equilibrium liquid crystal 

self-assembly processes .  A key to the structure characterisation of plywood films is the specification of 

the local and global helix vector h(x) and pitch p(x) of the cholesteric order. Previous extensive work 10 

demonstrated that oblique cuts of the plywood give rise to arc-patterns that depend both on the unknown 

incision angle α and the unknown pitch p(x), thus making the precise 3D cholesteric reconstruction  

ambiguous. In this paper we present an efficient   method based on geometric modelling and new 

visualisation software that determines unambiguously the cholesteric pitch under spatially homogeneous 

and heterogeneous conditions. The method is applied to films that display two-pitch and spatially non-15 

homogenous structures, as sometimes observed under equilibrium and non-equilibrium self-assembly. 

The method can be extended to other biological materials such that cornea-like , cylindrical, and various 

cuticle plywoods .

1. Introduction 

 Nature’s ability of assembly of complex multiscale 20 

architectures with optimized structural and functional properties 

provides a source of inspiration for creating and designing new 

materials1-6. The ubiquitous material multiscale organization is 

obtained using different precursor building blocks such as 

collagen (vertebrates), chitin (molluscs and insects), and cellulose 25 

(plants). Common precursor’s features in many biological 

materials are the fibrillar shape and rigidity, which turn out to be 

essential ingredients  for mesophase stability and liquid crystal 

self-assembly. In addition to fibrillar rigidity, chemical, 

geometric and electrostatic chirality is a common source of 30 

macroscopic chirality as observed in many self-assembled 

biological materials5. Collagen extracted from living tissue can 

self-assemble into complex architectures in vitro without the 

intervention of any tissue-specific cells4, establishing the deep 

correspondence between biological materials and liquid crystals. 35 

Biological liquid crystals are generally classified into: (i) solid 

analogues (plant cell walls, bones, fish scales, cornea) (ii) in-vitro 

biomacromolecular solutions (collagen, DNA), and (iii) in-vivo 

(silk proteins, membranes)5,7. The interaction between liquid 

crystal physics and biological mesophases is now generating a 40 

better understanding of biological self-assembly and biomimetic 

principles. In this paper we focus on the use of in-vitro precursors 

for producing solid chiral liquid crystal analogues, also referred 

as biological plywoods.   

 Two types of biological plywoods can be distinguished 45 

according to the assembly process.  Equilibrium self-assembled 

plywoods are formed by directed chiral front propagation, where 

the helix propagates from a supporting layer into the isotropic 

phase, leaving behind a defect-free cholesteric which can then be 

cross-linked8-9. Non-equilibrium self-assembled plywoods on the 50 

other hand, require a sequence and synchronization of several 

transport processes to create the plywood. Some stages include 

fluid flow deposition and subsequent solvent evaporation to 

induce the liquid crystal phase transition to become a solid 

analogue10,11. Numerous observations indicate that in both cases 55 

the resulting plywoods can display ideal or non-ideal 

architectures. In the former the helical configuration is spatially 

homogeneous with a constant pitch and fixed helix axis 

throughout the entire domain while non-ideal plywoods display 

variable pitch and/or helix axis.  The equilibrium plywood self-60 

assembly process has been extensively studied8,9,12-14 and the non-

equilibrium process remains unexplored from the theoretical 

point of view15 given the complexity of cholesteric interfaces and 

nematodynamics16. One research driver for the non-equilibrium 

self-assembly process is the relatively shorter times required for 65 

the synthesis of plywoods for biomedical and biotechnological 

applications. The characterization methodology developed in this 

paper can be used for equilibrium and non-equilibrium processes.  

 The objective of the present work is to generalize the twisted 

plywood architecture models first formulated by Bouligand 6,21 70 

and Giraud-Guille and co-workers 17-20,28-31 and to develop  a tool 

for the  3D reconstruction of ideal and non-ideal plywood  
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Fig.1 Schematic of the twisted plywood architecture, corresponding 

to a chiral nematic N* phase,  rectangular coordinates (x,y,z).  The 

average molecular orientation or fibrillar units are denoted by the 

director n(z). The helix axis h=δδδδz is normal to the parallel planes, 

whose distance is half the pitch po. A 2D cross-sectional cut of the 15 

3D plywood results in arced patterns whose periodicity is L.  

 
Fig. 2 Schematic showing a constant periodicity in the microfibril mutual 

angles (a), non-homogeneous mutual angle leading to a variable 

periodicity in the arcs (b) and a bimodal pattern that results in a two-20 

pitch plywood (c). Adapted from 22 

 
Fig. 3 (a) Arced pattern for a bimodal (two-pitch ) plywood , and (b) 

arced pattern for ideal single pitch plywood [6]. Copyright permission 

(3434860436593) from Springer. 25 

architectures from typical experimental 2D cross-sectional 

micrographs.  

 The organization of this paper is as follows. The twisted 

plywood architecture model is first briefly reviewed and then the 

previously presented method of 3D cholesteric reconstruction 30 

from 2D arc-patterns is extended by introducing the intrinsic 

geometry and curvature of the arcs. Applications of the extended 

method that highlights the critical resolving power of curvature 

are presented. Finally materials with pitch heterogeneities and 

multiple pitches as observed experimentally22,23 are analysed to 35 

demonstrate the practical utility of the method.  Spatial variations 

of the helix axis h (see Fig.1) are beyond the scope of this paper 

and left for future work. 

 

1.1 Twisted Plywood Architecture and Structure 40 

Determination 

 The plywood model for biological tissues was described 

by Bouligand21. One of the first observations was made in 

oblique sections of the organic matrix of crab cuticle in 

which arced structures were observed throughout the entire 45 

sample. These arcs were visible under the light microscope 

but better resolved by classic TEM4 and it was later observed 

that it was not exclusive of chitin, but also observed in plant 

cell walls and even the collagenous matrix of hard bone 

tissue. This gave rise to the twisted plywood architecture 50 

model which idealises the arrangement of the molecules or 

fibrillar units in a series of planes in which the fibrils are 

more or less parallel one to another and whose average 

orientation (director n)  rotates in going from plane to plane, 

corresponding to the chiral nematic N* (cholesteric) phase. 55 

The cholesteric helix is defined by the pitch or distance for 

2π rotations (po), the helix orientation axis h, and the sense 

of rotation (left/right) , as shown in Figure 1. 

 The observed arced patterns5,21 , shown in the right panel 

of Figure 1, are a 2D periodic structure of wave-length L,   60 

visible when the cutting angle ‘α’ is between 0 and 90o 

degrees and each arc corresponds to a 180o rotation in the 

several nematic planes that make up the entire structure. 

However when 180o < α < 360o the arcs reverse to their 

mirror image, which is why the manifestation of these arcs 65 

could be thought as the “fingerprint” of supra-molecular 

chiral structure. Other patterns were identified in bone 

osteons17 due to the specific arrangements of collagen fibrils 

such as the orthogonal plywood architecture and the 
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cylindrical plywood architecture which can be twisted or 

orthogonal. The resulting arrangement of at least in vitro 

collagen is a highly pH-dependent process24,25; pH ≈ 2.5 

leads to the twisted plywood architecture but an increase to 

3.5 results in the orthogonal plywood24. 5 

 Later goniometric studies showed that these arcs changed 

its periodicity L and when observed at a particular angle 

these arcs seemed to disappear22. This apparent loss of 

periodicity is an optical effect that was first observed 

experimentally20 highlighting the crucial fact that the 2D 10 

periodicity “L” of the arced patterns is a function of the 

unknown pitch and unknown incision angle α: L = L(α,p0), 

revealing the difficulty to reconstruct the 3D fibrillar chiral 

organisation from 2D observations. 

 Structural anomalies can be present due to variations in 15 

the relative angle of the fibrils22. Some characteristic 

examples, presented in Figure 2, have been identified in 

nature17,22: (a) ideal architecture (p = p0 = const) with a 

constant periodicity, (b) non-uniform pitch (p0 = p0(z)) and 

(c) bimodal (two-pitch: p1 and p2)) twisted plywood patterns; 20 

examples of (a) and (c) are shown in Figure 3.  In the two 

latter examples L is not constant since L(z) = L(α,p(z)) and 

Li = Li (α,pi) ; {i=1,2}, respectively.  It is worth noting that 

in the case of the two-pitch plywood, the large arc represents 

only 180o rotation while the smaller arcs a full rotation of the 25 

microfibrils is observed. In non-equilibrium self-assembly 

processes such as the solution casting of collagen  

 

Fig. 4 Helix-fixed rectangular coordinates (x,y,z) , chiral and periodic 30 

cholesteric structure, and incision plane (x-s) with an angle α. The short 

lines segments normal to the z axis represent the helical rotation of the 

macromolecules or fibrils  about the helix z-axis.  

films10,11,15, these non-idealities (i.e. p(z),pi ; {i=1,2}) will  

arise from non-homogenous flow-kinematics and/or from 35 

uneven solvent evaporation10,15 or even other process 

conditions such as pH24,25, however the mechanisms remain  

poorly understood.  

 As revealed by  Figures 1,2 and the fact that the 2D 

periodicity contains complex information (for example,  L(z) 40 

= L(α,p(z)) and Li = Li (α,pi) ; {i=1,2}), the reconstruction of 

the 3D plywood organization from 2D micrographs is not a 

trivial task for  either ideal or non-ideal plywoods,  and as 

shown below it requires closer examination of the arcs 

themselves. 45 

2. Geometric Model  

2.1 Ideal Plywood Model 

 The geometric model used to describe the twisted 

plywood is similar to that reported by Bouligand21,26, in 

which a coordinate system is chosen such that the fibrils are 50 

parallel to a unit helix vector n that rotates about the 

perpendicular coordinate ‘z’ along the helix vector h, as 

 

x 

z 

α 

s 
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shown in Figure 4. This director field n that describes a 

cholesteric phase is parameterized by the twist angle ϕ(z): 

 

0

2 z
( , , ) (cos ,sin ,0);x y zn n n

p

π
ϕ ϕ ϕ= = =n  (1a,b) 

 In Eqn. (1) the pitch “p0” is  of  the order of 10 µm. As per 

Eqn.(1b), for ideal plywoods there is a linear relationship 5 

between the spatial coordinate ‘z’ and the twist angle ‘ϕ’. 

 Taking an oblique cut at an angle α, shown in Figure 4, 

defines the incision plane (x – s), where s is the in-plane 

spatial coordinate whose orientation depends on α.  The 

projection of n(z) to the (s-x) plane is the planar vector field 10 

u(α,s): 

 ( ) ( ) ( )
0 0

2 sin 2 sin
( , ) cos , cos sin ,0

    
=          

s s
s

p p

π α π α
α αu

 (2) 

The streamlines x = x(s) of u(α,s) are the experimentally 

observed 2D arced patterns given by the solution of: 

 

( )
0

2 sin
cot

cos

s

pdx

ds

π α

α

 
 
 =  (3) 15 

Using the boundary condition x(0) = x0, the space curve 

x(s,{α,p0}), given first by Bouligand,  is: 

 { }( ) ( )0
0 0 0

0

, , , ln sin 2 sin
2 sin cos

p s
x s x p x

p
α π α

π α α
 

= +  
 

 (4) 

where x0 is a constant that defines the location of each arc in 

the x – s plane and Eqn.(4) describes the trajectories 20 

followed by the arced patterns structure and is a periodic 

function as anticipated; to obtain the 1D periodicity we 

equate the argument of the logarithmic term to zero and 

solve for s. From the first non-trivial solution to the resulting 

equation, a linear relationship between the periodicity of the 25 

structure L and the pitch p0 can be extracted: 

 

0

2sin

p
L

α
=

 (5) 

We emphasize that L depends on the pitch p0 and the 

incision angle α.  This relationship of L and p0 can be used 

for characterisation purposes restricted to knowing p0 or α. 30 

To remove this degree of freedom or uncertainty, since 

neither the pitch nor the incision angle is known a priori, we 

use the curvature κ(s,α,L) of the arced patterns: 

 

( )
2

3
2 2

csc

, ,

cos 1 cot / cos

s

L
s L

s

L

π

κ α
π

α α

 −  
 =

    +   
    

 (6-a) 

It is worth noting that the maximum curvature depends only on 35 

the incision angle: 

 
max

1

cos
κ

α
=  (6-b) 

The proposed extended Bouligand model21,26 for ideal plywoods 

then is: 

 { }( )
( )

0 0, , ,
  :

, ,

x s x p
Ideal Plywood Structure

s L

α

κ α

  
 
  

 (7) 40 

The arced patterns given by Eqn. (4) depend on three parameters: 

x=x(s,{x0,α,p0}). The two important limiting cases not resolved 

by the analytical model are: α = 0, π/2. In the former case no 

arced patterns emerge because the cut is taken exactly in any of 

the x–y plane of the cholesteric structure, and apparently what 45 

would be observed is one of the nematic planes of the whole 

structure, i.e. an infinite arc represents a straight line parallel to 

the orientation of the fibrils at any of these nematic planes. 

 

 50 

 

 
Fig.5 Computational visualisations of a twisted plywood architecture 

with no arc-patterns, for α= 0
o
 (a,b) and α= 90

o
 (c). For more details see 

ESI. 55 

In the latter case no arced patterns can be identified, however the 

typical cholesteric representation is observed and the periodicity 

of the structure is L = p0/2. To overcome these analytical 

restrictions and to obtain quick 2D patterns and hence 3D 

reconstructions for any cutting angle α , we developed  60 

computational visualization software (see supplement for 

information on implementation of the Mayavi visualization 

software).  

2.2 Non-ideal Plywood Model 

 For non-uniform pitch (L(x)=L(α,p(z))) or multiple pitch 65 

structures  (Li=Li (α,pi);{i=1,2}), an extended methodology must 

be applied. Instead of considering a linear relationship between 

the ‘z’ coordinate and the twist angle ‘ϕ’ (see Eqn.(1b)), the 

following twist angles are introduced for the two-pitch and non-

uniform plywoods, respectively: 70 
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 (9) 

Where H(z) is the Heaviside step function. In both expressions 

the slope is periodic with regular domain lengths of p0/2 for the 

two-pitch plywood and irregular domains decreasing periodically 5 

for the latter. By modifying Eqn. (1) with Eqns. (8-9) the 

following general equation is to be solved for each particular non-

ideal case: 

 ( ){ }
0

cot ,
, (0)

cos

f H zdx
x x

ds

α

α

  = =  (10) 

Where f[H(z,α)]   corresponds to Eqns. (8-9) in terms of ‘s’ and 10 

‘α’.  The corresponding curvature κ is: 

 ( ){ } ( )

( ){ }
3

2 2

,
csc ,

cot ,
1

cos

df H s
f H s

ds

f H s

α
α

κ

α

α

  −   
=

      +       

  (11) 

For a given incision angle α the 2D periodicity L is not a constant 

throughout the entire structure because p0 = p0(z); such 

expression is particular to each non-ideal plywood and can be 15 

periodic as in the case of the two-pitch plywood but also can be 

monotonous as in the case of the non-homogeneous pitch 

plywood. To have a modelling closure for these plywoods, the 

spatial variations of the periodicity can be obtained 

experimentally. This leads to a generalized scheme for non-ideal 20 

plywoods in terms of space curve (x(s)), curvature (κ) and 2D 

periodicity (L): 

 

 
{ }( )

( )
( )

0 0

0

, , , ( )

  : , ,

, , ( )

x s x p s

Non ideal Plywood Structure s L

L L s p s

α

κ α

α

 
  −  
 =  

 (12) 

3. Results and Discussion 25 

3.1 Ideal Constant Pitch Plywoods 

 Figure 5 (a, b) shows two nematic planes corresponding α = 0o 

and Figure 5 (c) shows the typical cholesteric structure 

corresponding α  = 90o, obtained using the computational 

visualization software. When α is close to zero, wide arcs start to 30 

appear, which narrow as the angle increases and approaches 90o. 

For a given α, the arcs widen as the pitch increases. This leads to 

the possibility of having two different 3D cholesteric structures 

with the same 2D periodic structure, which could lead to a wrong 

characterisation. This uncertainty is demonstrated in Figure 6. 35 

Figure 6 (a, c, and d)   show   the effect on the periodicity L as α 

increases with a constant pitch and figure 6 (a, b) when the pitch 

increases at constant α. Hence it is indeed possible to find: 

 
1 2 0,1 1 0,2 2

/ sin / sinL L p pα α= ⇔ =  (11) 

Figure 7 shows the 2D periodicity  L as a function of the pitch p0 40 

for several α’s, calculated from Eqn. (5). Increasing p0 has a 

stronger effect at smaller α’s; a horizontal L-constant line proves 

Eqn. (11).  

 Another notable case arises when two different incision planes 

are taken from the same plywood; the first cut being at an angle α 45 

< 90° and the second at the supplementary angle π-α. This is 

shown in Figure 8 where the arcs have the same periodicity L 

however the direction of the arcs are reversed. This orientation 

 

 50 
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Fig. 6 Arc patterns of ideal plywoods for increasing incision angle at constant pitch (a, c, and d) and arc patterns for increasing  pitch at constant  incision 

angle (b, c).

 

 5 

Fig. 7 Arc periodicity L as a function of the pitch (po)  for several incision 

angles (α) for ideal plywoods. The increase of L with po increases with α. 

 
Fig. 8 Arc patterns of a single ideal plywood obtained from (a) α = 10

o
 

and (b) α = 170
o
. The arc’s are mirror images because the cutting angle 10 

complementarity.  

 

behaviour had already been observed experimentally where 

goniometric observations were carried out on fixed samples 

(constant incision angle) but when tilting the sample in the 15 

goniometric stage the arcs cancelled out at a particular angle and 

the inverse arcs were obtained by further increase in the tilting 

angle22.  In Figure 8 the incision angle is not constant and the 

image reversal is observed because the cutting angle’s 

complementarily. 20 

3.2 Non-ideal Plywoods 

 (a) Two-pitch plywood (Eqns.(8-10,12)). Figures 9 and 10 

show the twist  angle ϕ(z) profile and arced patterns s(x), for 

a two-pitch plywood.  The twist angle ϕ(z) is constant in 

each domain of length po, but it oscillates from domain to 25 

domain. The smaller (larger) slope corresponds to wider 

(narrower) arcs. This results replicates Figure 3a. 

 (b) Non-homogenous plywood (Eqns.(9-10,12)). Figures 

10 and 11 show the twist angle ϕ(z) profile and arced 

patterns s(x) for a non-homogenous plywood. The twist 30 

angle has a constant slope in each domain but it increases 

from to domain to domain. In addition the domain length 

also decreases.  The corresponding arced pattern periodicity 

L decreases with “s”. 

3.3 3D Structure Reconstruction Procedure 35 

 In order to rebuild the true cholesteric 3D structure by 

simply using 2D images from experimental micrographs, the 

curvature κ(s,α,L) of the arcs is introduced as per Eqn.(6-a). 
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The 3D reconstruction procedure consists of: 

 

(a) fit of the experimental curvature κ with  the eq. (6-

a) and obtain α; 

(b) measure the experimental 2D periodicity L; 5 

(c) solve equation (5) to find the pitch po. 

 

 

 10 

Fig. 9 Twist angle ϕ as a function of the spatial coordinate z for a 

bimodal (two-pitch) plywood. The slope oscillates from domain to 

domain. The domain length is constant. 

 
Fig.10 Arced patterns  for the two-pitch  plywood, corresponding to 15 

Fig.9. The results replicate those of Fig.3a. 

 
Fig. 11 Twist angle as a function ϕ of the spatial coordinate z for a  

representative non-uniform pitch. The slope increases from domain to 

domain. The domain length decreases with z.  20 

 
Fig. 12 Arced patterns s(x) corresponding to a twist angle given in  Fig.11. 

Next we show a representative example to demonstrate the 

reconstruction capacity of the proposed new procedure 

(Eqns. (4-7)) using two plywoods with pitches differing by 25 

an order of magnitude (p0,1 = 10p0,2) but showing the same 

2D periodicity (L1 = L2).  Figure 13 shows one arc for p0,1 = 

1.0, α = 30o and another for p0,2 = 0.1, α = 3o.  The arcs are 

nearly indistinguishable, correspond to drastically different 

plywoods, but are made to appear identical by the 30 

experimental sectioning. These two plywoods are properly 

identified when plotting the curvature κ(s) computed from 

Eqn. (6) as it is shown in Figure 14.  The maximum 

curvature difference is about 15%.  It is clear that if the 

curvature of the arcs is ignored, incorrect predictions can be 35 

extracted from the model. This proposed analytical-

computational procedure shows significant advantages over 

the classical pitch determinations which rely on optical 

measurements that are sometimes restricted to certain pitch 

ranges27. The procedure is applicable to both: equilibrium 40 

and non-equilibrium self-assembly plywood formation 

processes. For plywoods presenting anomalies, as shown 

with Eqns. (10-12), we proceed with the local determination 

of Li, as it varies as shown in Figure (E5) (see ESI), in these 

cases α is available through any of the visible arcs (Eqn. 6 a-45 

b) and the pitch can be calculated in a piecewise manner in 

each arc, similarly to the ideal case and by appending all the 

calculated pitches it is possible to know its spatial variations 

hence, the gradients of the pitch can be identified by 

constructing a plot like figures (9) and (11), leading to a 50 

fuller characterization of the morphology of the twisted 

plywood. 

4. Conclusions 

 The twisted plywood architecture model originally developed 

by Bouligand21,26 was revisited and extended to describe ideal and 55 

non-ideal structures arising from pitch gradients and multiple 
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pitches.   

 A characterisation tool based on analytical results (Eqns.(3-

12)) and computational visualization software (see supplement) is  

 
Fig. 13 Comparison between two arcs with the same periodicity and a 5 

pitch difference of one order of magnitude. 

 
Fig.14 Curvature κ as a function of spatial coordinate “s” for the two 

plywoods shown in Fig. 13, with different pitch po and with the same 

periodicity L.  The maximum  curvature difference between the two 10 

cases  is about 15%  and easily differentiates the two plywoods. 

proposed to reconstruct the 3D cholesteric structure of various 

plywoods from 2D arc-patterns obtained from experimental 

oblique cuts, which is an alternative procedure to optical 

measurements of the pitch which may be restricted to certain 15 

values of p0. A unique and novel feature of our extension is the 

introduction of curvature and the maximum value of κ (Eqn.6 a-

b)) in the observed arcs to eliminate the seldom recognised 

degree of freedom that exists, since the arcs’ periodicity  depend 

on both  the incision angle and the pitch (Eqn.5). 20 

 This characterisation tool can be used in ideal and non-ideal 

plywoods (Figs. 6,10,12) by taking into account commonly 

observed pitch variations in a systematic way (Eqn.(8,9)). Since 

there is a wide variety in helical arrangements found 

experimentally (Figs.3), these effective 3D reconstruction 25 

computation and visualization tools can be easily extended and 

applied to any experimental observation of such biological 

plywoods including the orthogonal cornea-like plywood, the 

cylindrical plywood configuration, and those found in various 

cuticles. 30 
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