
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


  

 

 

 

 

Page 1 of 33 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



 1

Effect of Shape on the Self-Assembly of Faceted Patchy 

Nanoplates with Irregular Shape into Tiling Patterns 

Jaime A. Millan
†a

, Daniel Ortiz
†b

, Sharon C. Glotzer*
a,b

  

a
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, 

USA 

 
b
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA, E-mail: 

sglotzer@umich.edu; Tel : 1 + 734 615 6296 

Abstract: Recent reports of the synthesis and assembly of faceted nanoplates with a wide range 

of shapes and composition motivates the possibility of a new class of two-dimensional materials 

with specific patterns targeted for a host of exciting properties. Yet, studies of how nanoplate 

shape controls their assembly – knowledge necessary for their inverse design from target 

structures – has been performed for only a handful of systems. By constructing a general 

framework in which many known faceted nanoplates may be described in terms of four  

anisotropy dimensions, we discover design rules to guide future synthesis and assembly. We 

study via Monte Carlo simulations attractive polygons whose shape is altered systematically 

under the following four transformations: faceting, pinching, elongation and truncation. We 

report that (i) faceting leads to regular porous structures (ii) pinching stabilizes complex 

structures such as dodecagonal quasicrystals (iii) elongation leads to asymmetric phase 

behavior, where low and high aspect ratio nanoplates self-assemble completely different 

structures and (iv) low and high degrees of truncation transform a complex self-assembler into a 

disk-like assembler, providing design ideas that could lead to switchable structures. We provide 
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important insight into how the shape and attractive interactions of a nanoplate can be exploited 

or designed to target specific classes of structures, including space-filling, porous, and complex 

tilings.  

1. Introduction 

Particle shape can influence profoundly the catalytic,
1
 plasmonic,

2,3
 photonic

4
 and mechanical

5
 

properties of complex crystal structures.
6
 In particular, nanoplates

7–9
 - nanocrystal with lateral 

dimensions that are approximately  an order of magnitude larger than one specific orthogonal 

dimension or thickness - have excellent catalytic,
10

 optical,
11

 and antibacterial
12

 properties. Two-

dimensional assemblies of perovskites, such as PbTiO3,
13

 have interesting ferroelectric and storage 

properties.
14

 Truncation can alter the plasmon resonance of silver nanomaterials by red-shifting the 

extinction spectra.
3
 Truncated nanoplates of single crystal berzelianite can alter the near-infrared band 

optical absorption properties of this nonstoichiometric semiconductor.
14

 By controlling the shapes of 

nanoplates, targeted and tunable properties should be possible. 

 

  For a range of materials, nanoplate shape emerges during the growth process in others, shapes below 

several microns (i.e. within the Brownian limit) may be molded, printed, or otherwise obtained. One 

may envision that nanoplates may attain different shapes through either “passive” or “active” means. 

By passive we refer to transformations made from one system to another during synthesis, as in the 

case of parallel studies of two related shapes, but not in the context of a single experiment or during 

the assembly process.
15–18

 By active we refer to in situ morphing, or shape-shifting, of nanoplates 

among multiple shapes.
19-22

 In this work we focused on the passive case, where one considers which 

of many possible synthesizable shapes to make in order to obtain a desired target structure. In both 

scenarios, a fundamental understanding of the relationship between nanoplate shape, the 

thermodynamically preferred state of a system of nanoplates, and the kinetic accessibility of those 

states, is desired. 
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  We consider four shape-related anisotropy dimensions
23

 along which systematic shape 

transformations are possible for facetted, convex nanoplates: faceting, pinching, elongation (aspect 

ratio) and truncation. All four are shown applied to polygons in Fig. 1. Faceting, elongation, and 

truncation (of vertices) are self-explanatory. Pinching is a symmetry-breaking transformation that 

converts a regular polygon into an irregular one (see Fig. S2). All four shape transformations alter the 

directional entropic
24

 and enthalpic
25

 forces between nanoplates by altering one or more edge lengths. 

Fig. 1 shows example experimental manifestations of these four transformations taken from the 

literature. Gold provides an example of the faceting transformation because it can form triangular, 

square, pentagonal, hexagonal, nonagonal, and dodecagonal nanoplates and microplates.
26,27

 The pinch 

transformation is observed in silver nanorods that grow into triangular nanoflags.
28

 Uranium oxide 

hydroxide and gold both can form hexagonal and elongated hexagonal nanoplates, demonstrating a 

passive elongation transformation.
25,29,30,31

 Gold and silver nanoplates provide examples of truncation 

gold forms triangular, truncated triangular, and hexagonal nanoplates,
32

 and silver nanoplates can 

actively transform between triangular and hexagonal nanoplates via truncation under UV irradiation.
33

  

 

   Shape transformations in nanocrystal formed from different materials can lead to the introduction or 

suppression of different types of interaction forces comparable to thermal energies and thus crucial 

during self-assembly. For example, for a specific amount truncation, CdTe truncated tetrahedra exhibit 

a permanent dipole that act as one of the driving forces behind the formation of free-floating 

nanosheets.
34

 Highly elongated CdSe nanorods also show electrostatic dipoles that scales linerarly 

with the volume of the nanorod. 
35,36

 Near field forces can also be introduced with external electric 

fields and can either red-shift or blue-shift the surface plasmon resonance of two-dimensional silver
37

 

or gold
38

 nanoparticle arrangements with varying interparticle distance. However, for a systematic and 

extensive study on the effect of shape, we assume that shape-induced entropic and ligand-induced 

attractive forces mainly govern the self-organization process of nanoplates. 
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Here we investigate the pinch, elongation, and truncation shape transformations applied to the family 

of regular n-sided regular polygons (n-gons) (i.e. the faceting dimension) to understand the role of 

shape on nanoplate assembly. First, we establish that – with the exception of the regular pentagon, 

heptagon and octagon – the regular n-gons self-assemble into Archimedean tilings. We then 

systematically transform each regular n-gon using the pinch, elongation or truncation transformations. 

The effect of each transformation on self-assembly is categorized to identify commonalities and 

trends. This library of shape transformations serves to guide the development of a design framework 

to improve the assembly properties of a faceted nanoplate.  

  

2. Model and Method 

Each nanoplate is modeled as a mathematically hard polygon with short-ranged attractive patches on 

each edge. In the vicinity of two nanoplates, a pair of edges each with characteristic lengths l1 and l2 ( 

l1	≥	l2 ) interacts via a pair potential that depends on three independent parameters (see Supplementary 

Fig. 1): relative orientation angle θ, parallel shift d||, and normal distance d⊥. The potential energy can 

then be written as a product of independent terms so that V(θ, d||, d⊥) = −	�V(θ)V(d||)V(d⊥) with 

attraction strength � > 0, where 

 

 

 

 

 

for cos(θ) < cos(θ0) = 0.95, d|| < (l1 + l2)/2, d⊥ < 2d0 = 0.4 l1 and 0 otherwise.   The attractive strength is 

set equal to � = 1	��� for each patch. The geometric constraint cos(θ) < cos(θ0) = 0.95 enforces the 

interaction between a misoriented pair of edges to vanish in the limit of multiple edges allowing for a 

finite convergence in the energy calculations per particle. The edge-edge interaction potential can be 
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decomposed into three components: parallel, perpendicular, and angular (Fig. S1). Each component of 

the interaction potential models, in a minimal way, different aspects of the ligand-induced van der 

Waals, solvophobic or other attractive interactions (e.g. DNA linkers) that may be present between 

nanoparticles.
33

 The perpendicular component (V(d||)) is chosen to be strongest at twice the length of 

ligand stabilizers, while the parallel (	(��))) and angular (	(�)) components model the contact area 

and steric repulsion between ligands. Assuming ligand-ligand attractive forces dominate over other 

type of forces (electrostatic or magnetic forces), we scale the angular and distance cutoff based on the 

length of the ligands. The angular and perpendicular components scale quadratically with separation 

distance and relative misalignment between adjacent edges, and the parallel component scales linearly 

with the amount of edge-to-edge contact (Fig. S1). The overall attraction is maximized when the edges 

are aligned, centered, and almost in contact. The simplified model we used does not include 

thermodynamic effects such as ligand reorganization (e.g. bundling or ligand crystallization) or 

explicit solvent effects during the self-assembly process. Instead, it provides a “zeroth” order 

modeling of nanoplate-nanoplate interactions based on net attraction and particle shape. 

 

Monte Carlo (MC) simulations in the NVT ensemble are used to find equilibrium assemblies from a 

given set of identical nanoplates. Simulations of attractive systems were only performed at 

intermediate densities to be in accordance with experimental protocols as in Ref (25). We use the NVT 

ensemble to simulate at fixed target density. We selected the Monte Carlo method as our approach 

because it allows us to easily include the shape of the particles and quickly reach equilibrium. For our 

systems, we find NVT simulations to be faster than NVT than NPT simulations, as it is usually the 

case. We expect other methods, which exactly capture the particle shape to reach equilibrium 

structures under the same thermodynamic conditions. MC moves consisted of random rotational or 

translational moves applied to each nanoplate that are accepted if no overlap is observed or rejected 

otherwise. Overlap checks are performed using the GJK algorithm as in Ref (25).
 
System sizes range 

from 800 to 2000 particles. For each state point ten independent of 10
7 

MC steps starting from 

different random configurations were performed to the s equilibration of structures by implementing 

established simulation codes.
1,25

 For each case, statistically identical structures were obtained. 
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3. Results and discussion 

We present the results for the four shape transformations – faceting, pinching, elongation and 

truncation – applied to each member of the n-gon, for n = 1-12 at intermediate densities (packing 

fraction values between 0.5 and 0.7). For the faceting transformation, we also studied the cases n = 13-

16 to find the limiting no to find the limiting disk-like behavior of the polygons. To fully elucidate the 

phase diagrams for the pinching, elongation and truncation transformations, we quantify each 

transformation with geometric parameters that range from 0 to 1 and explored these ranges by 

applying 0.1 increments on each characteristic geometric factor. In most cases we obtain ordered 

crystals after proper annealing and snapshots of structures that deviate from those formed from regular 

polygons are shown in Figs 3-5. For any particular system, changes in interaction strength (�) led to 

the same final structure and only affected the thermodynamic properties by rescaling the assembly 

temperature. Each structure is identified by its crystallographic bond network drawn from the centers 

of the nanoplates. 

 

3.1. Faceting 

The faceting transformation alters the number of edges of a regular polygonal nanoplate within a given 

n-gon family (Fig. 2a). Overall, we find the effect of faceting on self-assembly can be divided into 

three cases at intermediate densities: (i) Archimedean tilings results only for n = 3, 4, 6, 8 and 12 

(Archimedean tilings are edge-to-edge tilings of regular tiles with group symmetries that act 

transitively on incident vertex, edges and tiles).  (ii) Frustrated assemblies (structures with no global 

order that show competing local motifs) result at intermediate n for some odd number vertices (n = 5, 

7, 9 and 14). (iii) Effective “rounding” of the nanoplates for n > 9 produces assemblies expected from 

attractive, disk-like particles. 

 

  Members of the n-gon family self-assemble into ordered structures identical to an Archimedean 

tiling when polygons and “gaps” are viewed as independent tiles. For a subset of these polygons, the 
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densest packings are identical to the assembled tilings. It is known that polygons tend to form dense 

periodic packings with quasi 6-fold symmetry.
39

 In those tilings, the packing’s contact types are either 

edge-to-edge or a combination of both edge-to-edge and edge-to-vertex for polygons with even or odd 

numbers of vertices.
39

 Regular polygons with assemblies in the Archimedean tiling class include the 

regular triangle, square, hexagon, octagon, and dodecagon these self-assemble the (3
6
), (4

4
), (6

3
), 

(4.8
2
), and (3.12

2
) Archimedean tilings, respectively (Fig. 2b, c, e, g and k). Our previous work on the 

self-assembly of the Archimedean tilings shows that the (3
6
), (4

4
), (6

3
), and  (3.12

2
) tiling can also 

self-assemble without attraction between the nanoplates and due solely to entropy, whereas the (4.8
2
) 

Archimedean tiling requires enthalpic patches.
40

  

 

  The regular pentagon, heptagon, and nonagon (See Fig. 2d, f and h) do not form ordered assemblies 

on the time scale of our simulations. These polygons have five-fold, seven-fold, and nine-fold 

rotational symmetry, respectively, rendering them inconsistent with the standard Bravais lattice 

coordination. Theoretical work on the five- and seven-fold coordinated nearest-neighbor defects 

indicate increased frustration and crystallization inhibition.
41

 Experimental work on the assembly of 

five-fold symmetric hydrocarbons has shown glass formation.
42

 Liquid crystals can form five-fold, 

seven-fold, and nine-fold quasicrystals.
43

 This propensity in nature for five-, seven-, and nine-fold 

symmetric entities to self-assemble disordered and/or quasicrystal structures argues for frustration and 

competition to be prevalent in the assembly of pentagons, heptagons, and nonagons, and this is indeed 

what we observe.  

 

  The more vertices a polygon has, the more the shape approximates that of a disk.  At small n < 9, n-

gons that do assemble into space filling structures exhibit a density-driven transition upon 

compression at constant temperature from the previously discussed structures (at intermediate 

densities) to the densest packing structures. For example, a phase transition between the (4.8
2
) 

Archimedean tiling and the (3
6
) packing occurs at high packing fraction for the regular octagon. For n 

> 9, the assemblies resemble the expected assembly for hard disks. The regular decagon assembles the 

(3
6
) tiling at higher density but a rhombic crystal at lower density (see Fig. 2i and m). The undecagons, 
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tridecagons and hexadecagons each form a sheared (3
2
.4.3.4) Archimedean tiling (Fig. 2f, k and o), 

also known as the snub square (SS) tiling or sigma phase, a periodic approximant of a 12-fold 

quasicrystal. Tetradecagons form center rectangular lattices and pentadecagons formed a disordered 

structure with no global order (Fig. 2n). A transformation between the sheared (3
2
.4.3.4) Archimedean 

tiling to the (3
6
) Archimedean disk tiling occurs for n ≥	17.  

 

3.2. Pinching 

The pinch transformation alters the geometry of an n-gon by moving a vertex radially from the center. 

We investigate the pinch transformation while preserving the convexity of the building block. 

Pinching transforms a regular polygon with n vertices into two limiting shapes: an irregular n-sided 

polygon with an extended vertex or an irregular � − 1 sided polygon (see symbols in Fig. 3a and 

Supplementary Fig. S2). This shape transformation is analogous to the transformation between a 

sphere and a cone. Previous work on self-assembly of sticky cones has shown that a precise sequence 

of convex clusters form at magic numbers determined by the cone shape.
44,45

 To quantify the 

transformation, we introduce a deformation parameter ξ as defined in Fig. S2a. This parameter 

provides a means of geometrically connecting the two limiting cases, the n-1 sided polygon (ξ = 0) 

and the pointy n-sided polygon (ξ = 1), which can exhibit very different phase behavior. Notice that 

the maximum amount of lateral vertex displacement towards and away from the polygon center is 

determined by the inward pinching (ξ = 0). Fig. 3a shows the faceting vs. pinching phase behavior of 

transformed polygons. At ξ = 0.5, the regular n-gons are shown and colored based on the crystal 

structures observed in Fig 2. If a pinched n-gon self-assembles structures that are crystallographically 

distinguishable from that of the regular (unpinched) n-gon, the polygonal symbol in the phase diagram 

is colored differently from that of the regular polygon at ξ = 0.5. We find that at low n, the pinch 

transformation can have a dramatic effect on assembly leading to degenerate (low pinching) and 

aperiodic (pinched heptagons) structures. In contrast, at higher n the assembly is not affected because 

the n-gon becomes concave for small inward pinching deformation and we only focused on convex 

shapes (See Model and Method Section), thus the amount of pinching is negligible at high n. 
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Pinched triangles self-assemble hierarchical rhombic tiling, where triangles coupled into rhombs 

pointing in the same direction (Fig. 3b). The pinch transformation of the square stabilizes two kite 

assemblies shown in Fig. 3c and d. A kite is a specific quadrilateral with two pairs of adjacent equal-

length sides kites are a prototile of the famous Penrose quasicrystal tiling.
46

 We find both a 

hierarchical and alternating kite crystal structure formed via self-assembly. The hierarchical kite tiling 

occurs at ξ = 0.25 and n  = 4 (Fig. 3c). The rhombus tiling is similar to the (4
4
) Archimedean tiling 

except for a shift between each row of rhombi due to the small protrusion of the pinched vertex (Fig. 

3c). Hierarchical crystals of nanoparticles have been shown to have interesting mechanical
47

 and 

electronic
48

 properties. Further outward pinching leads to the formation of alternating complex 

structures whose centers lay on an oblique lattice (Fig. 3d). 

 

The pinch transformation of the pentagon leads to two distinct crystal structures: the hierarchical 

rectangular tiling at ξ = 0.0  (Fig. 3e) and a pentagonal Cairo tiling at ξ = 0.25 (Fig. 3f). At lower ξ, a 

hierarchical rectangular crystal structure forms. Its unit cell consists of two pinched pentagons that 

collectively form a trapezoid the rectangular crystal structure is similar to the (4
4
) Archimedean tiling 

except that the tiling is stretched along the apothem of the building block. The pentagonal Cairo tiling 

is the dual of the (3
2
.4.3.4) Archimedean tiling, and is also referred to as the ((5

3
)
2
.5

4
.5

3
.5

4
) McMahon 

net.
49

. Fe atoms in Bi2Fe4O9 compounds are arranged on a pentagonal Cairo tiling.
50

 Also, three- and 

four-arm DNA junction tiles have been shown to self-assemble the pentagonal Cairo tiling.
51

  

  

  The pinch transformation applied to the hexagon results in the assembly of three new crystal 

structures: a prismatic hierarchical tiling at ξ = 0.0 (Fig. 3g), a shifted prismatic hierarchical tiling at ξ 

= 0.1 (Fig. 3h)  (closely related to the prismatic pentagonal tiling) and an alternating hexagonal tiling 

at ξ = 1.0. The prismatic pentagonal tiling is the dual of the (3
3
.4

2
) Archimedean tiling. Three- and 

four-arm DNA junction tiles self-assemble the prismatic pentagonal tiling.
51

 At high pinching (ξ  = 

1.0) (Fig. 3i), the pinched hexagon forms an alternating crystal structure similar to the (6
3
) 

Archimedean tiling. 
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The pinch transformation applied to the heptagon produces the (3
2
.4.3.4) Archimedean tiling  and 

the dodecagonal shield quasicrystal. At low ξ, the shield dodecagonal quasicrystal is stable (Fig. 3k). 

At high ξ, the (3
2
.4.3.4) Archimedean tiling is stable (Fig. 3k). A disordered region exists around the 

regular heptagon at intermediate ξ. It is interesting to note that the (3
2
.4.3.4) Archimedean tiling, also 

known as the σ-phase,
52

 is a periodic approximant of a dodecagonal quasicrystal. Simple 

modifications of crystal growth rules have been shown to control the stability region of the (3
2
.4.3.4) 

Archimedean tiling and the dodecagonal triangle square tiling.
53

 Patchy particles with seven patches 

symmetrically arranged on a disk has been shown to form a dodecagonal quasicrystal.
54

 It is notable 

that for patchy heptagons, the quasicrystal is stable for an irregular arrangement of facets on the 

polygonal nanoplates. The pinch transformation provides a means of transforming the disordered 

heptagon assembly into the (3
2
.4.3.4) Archimedean tiling and a dodecagonal quasicrystal. 

 

For large n, the pinch deformation is constrained to small changes by convexity and vertex constraints. 

Compressed octagons (ξ =0.0) stabilize the (3
3
.4

2
) Archimedean tiling (Fig. 3l). These uniform 

structure has been observed in systems of droplets bouncing on a vibrating liquid.
54

 Highly pinched 

octagons form only degenerate hexagonal assemblies (Fig. 3m). Nonagons and decagons at high ξ > 

0.75 form a triangular crystal (Fig. 3n). For the undecagon, dodecagon, and tridecagon, pinching has 

no effect on assembly because the applied pinch is too small given the constraints. Tilings comprised 

of nanoplates and polygonal pores (“empty tiles”) as shown in Figs 3b-n have not yet been reported in 

experiments. Structures shown in Fig 3. j, k, l and m do not correspond to the densest packings and are 

the equilibrium states because NPT simulations show that at intermediate densities these porous 

structures are also observed, and upon further compression a transition towards the densest packings 

are achieved. 
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 3.3. Elongation 

The elongation transformation alters the shape of the n-gons by lengthening two opposite edges of 

regular polygons. Note that this transformation can be applied systematically only to polygons with an 

even number of facets. The elongation transformation is equivalent to the transformation between a 

sphere and a spherocylinder. The transformation is also closely related to the elongation along an axis 

of a sphere to form an ellipsoid. Patchy and hard spherocylinders
56,57

  and ellipsoids
58,59

 are the natural 

systems against which to compare the phase behavior of elongated or compressed polygons. The 

deformation parameter � quantifies the degree of elongation as defined in Fig. S2b. Except for 

squares, at � = 0 two opposite edges of a regular n-gon are fully compressed until they vanish, 

reducing the number of edges and vertices to n – 2. As � increases, these opposite edges are elongated 

until regular polygons (� = 0.5) are recovered, and for values of � > 0.5 this shape transformation 

alters polygons into faceted rods. For � = 1.0 the larger sides of the elongated polygons are twice the 

size of the regular n-gon at � =0.5. In Fig. 4a, the effect of elongation on n-gons (n = 4, 6, 8, 10 and 

12) is displayed in a faceting vs. elongation “phase” diagram, where colored symbols showed the 

modified shape of the elongated particles (Fig. 4a).  

 

Slightly elongated squares self-assemble degenerate rectangular tilings closely related to the (4
4
) 

Archimedean tiling. For � > 0.25 self-assembly into structures lacking global order is observed. 

Elongated hexagons (n = 6) self-assemble into three distinct crystal structures: a random tiling for �~ 

0.0, a rhombic tiling, and an elongated (6
3
) Archimedean tiling (Fig. 4c). At �	= 0.0 the polygon is a 

rhombus shape (n = 4 with angular openings of 60 degrees at the tips) and forms a random tiling in 

accordance with previous theoretical and experimental studies.
60

  

 

 For the case of octagons (n = 8), low and high elongation leads to the formation of triangular and 

stretched (4.8
2
) Archimedean tilings, respectively. At zero elongation (�	= 0.0), a triangular tiling is 

formed (Fig. 4e), whereas at high elongation (�	= 1.0), the elongated octagons form a stretched (4.8
2
) 

Archimedean tiling (Fig. 4f).  

 

Page 12 of 33Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

 

 

 

 

 

  

 12

The elongated decagon (n = 10) forms an alternating and a stretched rhombic crystal structure (Fig. 

4g and h). At �	= 0, the alternating crystal consists of alternating rows of oppositely oriented building 

blocks. The unit cell of this crystal consists of two decagons with different orientation and tiles space 

in a rectangular lattice (Fig. 4g). To our knowledge, the alternating elongated decagon crystal structure 

has not yet been observed experimentally. At high elongation (�	= 0.8), irregular decagons assemble a 

stretched rhombic crystal (Fig. 4h). 

 

The elongated dodecagon (n = 12) forms a triangular tiling and a stretched Archimedean tiling (Fig. 

4i and j). At lower elongation (� = 0), the dodecagon forms a triangular lattice that is rotationally 

degenerate (Fig. 4i). At �	 = 1, the elongated dodecagon forms a stretched (3.12
2
) Archimedean tiling 

Fig. 4j). In a similar way to the elongated hexagon, octagon, and decagon, the elongated dodecagon 

effectively stretches the crystal structure formed by the regular dodecagon.  

 

The elongation transformation is not symmetric low and high elongation n-gons do not self-

assemble the same crystal structure. In contrast, it is interesting to note that the phase diagram of hard 

ellipsoids is symmetric,
55

 which implies that faceting can have an important effect on the assembly of 

nanorods at low aspect ratio. For nanoplates, the elongation transformation has been previously 

studied for lanthanide fluoride (LaF3) nanoplates both experimentally and with simulations.
25

 The 

experimental results in that work are similar to the tilings shown in Figs 4c-e. Simulation results 

revealed that for systems with symmetric interactions, parallel arrangements were stable regardless of 

the degree of elongation entropic interactions favored such arrangements, and the introduction of 

symmetric forces (comparable to thermal energies) were not expected to disrupt this trend.
25

 Also, 

simulations revealed that high elongation leads to the formation of tetragonal lattices because these 

arrangements maximize the amount of contact between neighboring particles, thereby minimizing the 

total free energy.
25

 The porous tilings shown in Figs 4e-i have not yet been reported in experiments. 

 

  3.4. Truncation 
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The truncation transformation of faceted nanoplates alters the geometry of the n-gons by truncating 

each vertex symmetrically into an edge. The symmetric truncation transformation has no analogue in 

continuous geometries (disks and ellipses), and is characteristic of faceted nanoparticles. Symmetric 

truncation transforms a regular polygon with n vertices into another polygon with twice (2n) the 

number of vertices (see symbols in Fig. 5a). We connect these two limiting cases by representing the 

n-sided regular polygons with �	= 0.0 and the 2n-sided polygons with �	= 1.0 as defined in Fig. S2c. 

We introduce a deformation parameter � to quantify this transformation. We show the phase behavior 

of each nanoplate in a geometric phase diagram plotting faceting vs. truncation (Fig. 5a).  Regular n-

gons are obtained at �	= 0.0 and �	= 1.0 and symbols colored according to their corresponding crystal 

structures are shown as in Fig 2. The truncated n-gons used to obtain the assemblies are shown in the 

phase diagram panel (Fig. 5a). Truncation has an effect on self-assembly for small n, but at larger n 

the particles exhibit phase behavior similar to that of a disk at high density.  

 

  Truncation continuously transforms the triangle (n = 3) into a hexagon (n = 6). Triangles and 

hexagons form (3
6
) and (6

3
) and Archimedean tilings, respectively. In 3D, truncation of tetrahedra 

leads to multiple transitions among quasicrystal, diamond, beta-tin, high pressure lithium and bcc 

crystal structures.
61

 However, in 2D, we find that the effect of truncation is less profound. The 

truncated triangle modifies the (3
6
) Archimedean tiling by adding hexagonal pores with areas 

proportional to the degree of truncation while still preserving a nearest-neighbor shell of three 

particles per polygon (Fig. 5b). These porous tilings have not yet been reported in experiments. 

Halfway between triangles and hexagons (� ~ 0.65), the irregular polygon, now with six edges, 

changes coordination number from three to six and can point randomly in six different directions, 

forming a rotationally degenerate hexagonal lattice. The change in coordination number indicates the 

onset of a transition towards the (6
3
) Archimedian tiling from a honeycomb structure. Indeed, at � = 

1.0 the polygon becomes a regular hexagon and the (6
3
) Archimedian tiling is formed. The 

transformation between the (3
6
) Archimedean tiling to the (6

3
) Archimedean tiling shows that shape 

transformation can have subtle, gradual effects on the assembled structures. 
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The truncated square (n = 4) and octagon (n = 8) form crystals that are closely related. The truncated 

square at intermediate truncation � = 0.25 forms a Mediterranean tiling (Fig. 5c). The Mediterranean 

tiling is similar to the (4.8
2
) Archimedean tiling but the square tile is either smaller or truncated. These 

porous structures have been realized in osmotically concentrated monolayers of microplatelets.
 62

 a 

slightly truncated heptagon forms dodecagonal quasicrystals.  

 

 

The truncated heptagon stabilizes a dodecagonal quasicrystal similar to the one observed for this 

polygon under the pinch transformation (Fig. 5d). This complex aperiodic structure forms for low and 

intermediate truncation values (0.25 ≤ �	< 0.75). Such tilings have not yet been reported in 

experimental self-assembly of nanoplates. At higher truncation �	= 0.75, the truncated heptagon acts 

like a tetradecagon and forms porous center lattices (Fig. 2m). The proximity in shape space of these 

two structures motivates the possibility of a switchable structure. 

The truncated octagon forms an irregular star polygon tiling. This irregular star polygon tiling is 

closely related to the (8. 4�/�
∗ .	8. 4�/�

∗ ) regular star polygon tiling formed by symmetric truncation.
63

 

Oblique closed packed assemblies of PbS nanostars have been achieved by vertical deposition.
64

 

However, the porous tilings illustrated in Figs 5c and e have not yet been reported in experimental 

(2D) self-assembly of nanoplates. The truncated octagon provides a simple means of obtaining a 

patterned array of star-shaped pores (Fig. 5e). Slight truncation of regular n-gons with a large number 

of vertices alters the pore structure, but not the coordination of the crystal structure. Highly truncated 

octagons are similar to hexadecagons in shape and thus form sheared (3
2
.4.3.4) Archimedean tilings 

(Fig.S8). 

 

 

3.5.  Discussion 

The shape optimization of faceted nanoplates for assembly begins with understanding the effect of 

different shape transformations on the assembly of polygons representing nanoplates. Specific shape 
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transformations provide the material designer with new design axes to synthesize new functional 

materials (See Fig.7 and Fig. S3-S12). For example, we showed that truncation and elongation allow 

the synthesis of porous tilings such as porous alternating tilings and porous mediterrenean tilings (Fig. 

4g, 5e and 7a,c), pinching allows for the stabilization of the pentagonal Cairo tiling (Fig. 7b) or the 

prismatic pentagonal tiling (Fig. 3e, f), and poor assemblers in the regular n-gon family, such as the 

nonagon, heptagon, and pentagon, can be self-assembled into crystals by judicious use of one of the 

shape transformations discussed (Figs. 6 and 7b,d ). 

 

Our results can be summarized into three classes of tilings: space-filling, porous, and “complex” (Fig. 

6a,b and c). Colored arrows indicate which of the four transformations, when applied on a given 

shape, results in one of the three classes mentioned above. Some structures can be simultaneously in 

two of these categories. Also, degenerate crystal structures appear after applying small 

transformations. Space-filling tilings form from regular triangles, squares and hexagons (Fig. 6a). This 

is expected since these polygons constitute the tiles that form regular Archimedean tilings. Also, 

moderate pinching of these regular polygons and elongation exclusively applied to hexagons leads to 

space-filling assemblies. Porous tilings (Fig. 6b) are formed by regular octagons, decagons, 

undecagons, dodecagons and tridecagons. Truncated triangles, squares, hexagons, heptagons, octagons 

and undecagons also form porous tilings. The benefit of using irregular faceted polygonal nanoplates 

is that the pore size can be dynamically tuned in experiments via truncation using 

photodecomposition.
65

 Complex tilings with multiple nanoplates in a unit cell (Fig. 6c) is observed for 

irregular triangles, square pentagons, hexagons, heptagons and decagons. The majority of the complex 

tilings occur due to the pinch transformation and at low n (Fig. 6c). Other interesting complex tilings 

we observe include the pentagonal Cairo tiling (Fig. 3e). The location of these interesting structures in 

the geometric phase diagram (pinched, small n polygonal nanoplates) should motivate experimental 

studies on monodisperse irregular nanoplates. The rotationally degenerate complex tilings are found in 

pinched nonagons, decagons and elongated dodecagons. A degenerate structure from irregular 

dodecagons is expected because elongated “pear-like” colloidal dimers also form disordered rotator 
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crystals.
65

 On the other hand, the degenerate crystal structure of asymmetric pinched nonagons and 

decagons is analogous to the assembly of hard asymmetric dimers.
66

  

 

Looking beyond the present study, highly symmetric faceted nanoparticles such as the Johnson and 

Archimedean polyhedra have been predicted to form crystals ranging from quasicrystals to diamond to 

Frank-Kasper crystals with large unit cells.
7
 The shape transformations studied here can increase or 

decrease the symmetry of effectively two-dimensional versions of faceted nanoparticles such as those. 

The elongation and pinch transformations decrease the symmetry of the building block but these 

building blocks stabilize complex and porous tilings (Figs. 3, 4 and 6). In contrast, the truncation 

transformation increases the symmetry of the building block and stabilizes porous and lattice tilings 

(Figs. 5 and 6). These two results highlight, again, that the symmetry of the building block may not be 

a sufficient indicator to predict the self-assembly prospects of a material.
7
 Experimental work to 

synthesize irregular nanoplates could lead to significant progress in understanding the effect of 

symmetry and shape on self-assembly.  

 

From the perspective of material optimization, the improved assembly properties of the regular 

heptagon highlight the power of shape transformations. The frustrated (non)-assembly of the regular 

heptagon has two local motifs at low densities: the (3
2
.4.3.4) Archimedean tiling and the shield-

triangle tiling. Both motifs are observed in the shield dodecagonal quasicrystal. The pinch 

transformation allows for the self-assembly of the (3
2
.4.3.4) Archimedean tiling  and the dodecagonal 

quasicrystal structures by relaxing geometric constraints (overlapping) between heptagons when 

attempting to locally form triangular arrangements. Similarly, truncation applied to heptagons relaxes 

local geometric constraints, allowing for the formation of dodecagonal quasicrystals. These shape 

transformations provide a means of toggling among different structures in the case of active (in-situ) 

shape change.
67-72

 The judicious use of geometric transformations could lead to the self-assembly of 

new exotic structures. 
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4. Conclusions 

Building an experimental toolbox for self-assembly as a systematic design framework could transform 

the field of self-assembly from a basic scientific discipline to an engineering discipline. We showed 

that continuous shape transformation in the presence of short-ranged attractive forces stabilizes space-

filling, porous and complex tilings at intermediate densities. The proposed design rules constitute a 

first step towards the understanding of shape optimization and highlight a deeper study of its effect on 

self-assembly. The development of heuristic rules for shape optimization would allow 

experimentalists to tune the shapes of anisotropic building blocks to select and improve the crystal 

properties of target assemblies. Furthermore, an understanding of the mechanisms to improve the 

assembly propensity of certain structures could allow for a priori screening of materials. Previous 

work shows that the fabrication of high performance nanocrystal-based devices
73-77

 with tunable 

interparticle spacing and electronic coupling,
73

 which can lead to enhance thermopower.
76

 Porous ZnO 

nanoplate structures are strong candidates for low-cost dye-sensitived solar cells.
78

 These novel 

properties have applications to such diverse as solar energy, military and cosmetics, among others. We 

look forward for further experimental developments to validate the material design principles provided 

in this contribution.  
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Fig.1 Shape transformations for nanoplates. The first column corresponds to the 

classification of experimentally observed shape transformations corresponding to 

faceting, pinching, elongation, and truncation. The second column depicts the effect 

of each transformation on particle shape. Experimental examples of each 

transformation are shown in the third column. The faceting shape transformation is 

shown for silver nanoplates.72 The pinch transformation is shown for the growth of a 

silver triangular nanoplate on a nanorod.28 The elongation transformation is shown for 

uranimum oxide hydroxide hexagonal nanoplates.29 The truncation transformation is 

shown for hexagonal and triangular nanoplates.30 
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Fig. 2. Self-assembly of n-gons. (a) The faceting transformation is summarized 

by a geometric axis showing the regular polygons. Grey n-gons imply a frustrated 

assembly, while a colored regular n-gon indicates that shape assembles into a 

crystal. (b-l) Each snapshot shows a portion, cut from a larger sample containing 

as many as 1000 nanoplates, of a representative assembly of the nanoplates. 

The assemblies for the regular n-gon family are (b) the (36) Archimedean tiling 

for the regular triangle (n = 3), (c) the (44) Archimedean tiling for the regular 

square (n = 4), (d) a frustrated assembly for the regular pentagon (n = 5), (e) the 

(63) Archimedean tiling for the regular hexagon (n = 6), (f) a frustrated assembly 

for the regular heptagon (n = 7), (g) the (4.82) Archimedean tiling for the regular 

octagon (n = 8), (h) a frustrated assembly for the regular nonagon (n = 9), (i) a 

sheared rhombic tiling for the regular decagon (n = 10), (j) a sheared  (32.3.4.3) 

Archimedean tiling for the regular undecagon (n = 11), (k) the (3.123) 

Archimedean tiling for the regular dodecagon (n = 12), (l) a sheared (32.3.4.3) 

Archimedean tiling for the regular tridecagon (n = 13), (m) a center rectangular 

tiling formed for the regular tetradecagon (n = 14), (n) a disordered tiling for the 

regular pendecagon (n = 15) and (o) shear 32.3.4.3) Archimedean tiling for the 

regular hexadecagon (n=16). 
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Figure 3. Effect of pinch transformation on the self-assembly of polygons. (a) 

Faceting vs. pinching phase diagram. Grey n-gons imply a frustrated assembly and 

heavy bars represent phase boundaries. The regular n-gons at ξ = 0.5 are shown with 

the symbols and crystal structures observed in Fig 2. The building blocks for each 

geometric phase point are shown in the geometric phase diagram. Representative 

snapshots of crystal structures (b-n) were self-assembled from pinched polygons that 

deviate from those formed from regular n-gons (ξ = 0.5). The assemblies for the 

pinched n-gon family are: (b) rhombic tiling assembly for compressed triangles ξ = 

0.25 and n = 3, (c) a shortened kite assembly for ξ = 0.25 and n = 4, (d) a lengthened 

kite assembly for ξ = 0.75 and n = 4, (e) a trapezoidal assembly for ξ = 0.0 and n = 5, 

(f) a pentagonal Cairo tiling for ξ = 0.25 and n = 5, (g) prismatic tiling form 

compressed hexagons ξ = 0.00 and n = 6, (h) a shifted prismatic tiling for ξ = 0.25 and 

n = 6, (i) an alternating triangular tiling for ξ = 1.0 and n = 6, (j) a dodecagonal 

quasicrystal for ξ = 0.25 and n = 7, (k) a (32.4.3.4) Archimedean tiling for ξ = 0.75 and 

n = 7, (l) a (33.42) Archimedean tiling for ξ = 0.0 and n = 8, (m) a triangular tiling for ξ = 

0.75 and n = 8, (n) a triangular tiling for ξ = 0.75 and n = 9. 
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Figure 4. Effect of elongation on the self-assembly of polygons. (a) Faceting vs 

elongation phase diagram. The building blocks for each geometric state point are 

shown in the geometric phase diagram and heavy bars represent phase 

boundaries. Representative snapshots (b-j) of crystal structures were self-

assembled from elongated polygons that deviate from those formed from regular n-

gons (� = 0.5) are: (b) degenerate rectangular tiling for slightly elongated square (� 

= 0.1), (c) a space-filling structure for compressed hexagons (� = 0.25) hexagons 

(n = 6), (d) a space-filling structure for elongated (� = 0.8) hexagons (n = 6), (e) a 

space-filling tiling formed from fully compressed (�  = 0.0) octagons (n = 8), (f) a 

stretched (4.82) Archimedean tiling for elongated (� = 0.8) octagons (n = 8), (g) a 

complex porous structure for fully compressed (� = 0.75) decagons (n = 10), (h) an 

oblique porous tiling for elongated (� = 0.8) decagons ( n = 10), (i) a degenerate  

triangle lattice for compressed (� = 0.0, (j) an elongated (3.122) Archimedian tiling 

for elongated (� = 1.0) dodecagons (n = 12). 
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Figure 5. Effect of truncation on the assembly of polygons. (a) A geometric diagram for the 

faceting and truncation anisotropy dimensions shows the crystal phases observed. Dark 

Grey n-gons imply a frustrated assembly and heavy bars represent phase boundaries. The 

building blocks for each geometric state point are shown on the phase diagram. 

Representative snapshots of crystal structures (b-e) observed for truncated polygons that 

deviate from those structures observed for regular n-gons (�	= 0). (b) A porous (36) 

Archimedean tiling for slightly truncated (�	= 0.25) triangles (n = 3), (c) Mediterranean tiling 

for truncated (� = 0.5) squares (n = 4), (d) dodecagonal quasicrystal at � = 0.38 and n = 7, 

and (e) a regular star polygon tiling for truncated (� = 0.5) octagons (n = 8). 
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Figure 6. A classification of the different tilings observed as a function of shape transformation. (a) A 

summary of all the transformed polygons (nanoplates) that formed space-filling tilings. Judiciously 

pinched and non-pinched triangles, squares and hexagons assemble into space-filling tilings. 

Elongated hexagons formed structures that completely tile the two-dimensional plane. (b) Degenerate 

and regular porous structures form from truncated triangles, squares, hexagons, heptagons, octagons, 

nonagons, decagons, undecagons, dodecagons and tridecagons. Regular octagons, decagons, 

undecagons, dodecagons and tridecagons also form long-range ordered porous structures. (c) Complex 

structures can be assembled from pinched squares, pentagons, hexagons, heptagons, regular decagons, 

(elongated) undecagons and tridecagons. Colored-coded arrow indicate which of the four 

trnasfomrations , when applied on a given shape, results in one of three classes of tilings discussed. 
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Figure 7.  Phase behavior of triangles, squares, pentagons and heptagons along the pinching (ξ), 

elongation (�) and truncation (�) deformations. (a) Pinching of triangles leads to the formation (3
3
) 

Archimedean tiling (ξ = 0.25) and a rhombic tiling (ξ = 0.25 and ξ = 0.75 and 1.0). Truncation of 

triangles leads to the stabilization of a porous triangular tiling (�= 0.25), degenerate (�	 ≥ 0.25) and 

non-degenerate (� = 0.75 and 1.00) hexagonal (6
6
) Archimedean tilings. (b) Pinched pentagons form a 

trapezoidal tiling (ξ = 0.00), a Cairo tiling (ξ = 0.25), frustrated (ξ = 0.50) and disorder assemblies (ξ 

=	0.75 and 1.0). Slight truncation of pentagons leads to disorder phases. For higher truncation values 

(� ≥ 0.75) oblique structures reminiscent of those formed from regular decagons (See Fig. 2i). (c) 
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Pinched hexagons form a prismatic structure (ξ = 0.00 and ξ = 0.25), a non-degenerate (ξ = 0.50) and a 

degenerate (ξ = 0.75) hexagonal (6
6
) Archimedean tiling, and an alternating triangular tiling (ξ = 1.0). 

Truncation of hexagons introduces pores or “empty tilings” to the hexagonal structure. Elongation of 

hexagons leads to a random tiling (� = 0.0), compressed (� = 0.25) and elongated (� = 0.75 and 1.0) 

hexagonal (6
6
) Archimedean tilings. (d) Pinched heptagons self-assemble into a disorder structure (ξ = 

0.0), a dodecagonal quasicrystal (ξ = 0.25), a frustrated structure (ξ = 0.5), an (3
2
.4.3.4) Archimedean 

tiling (ξ = 0.75) and a frustrated structure (ξ = 1.0). Truncated heptagons stabilize dodecagonal 

quasicrystals (�	= 0.25 and 0.5) and center rectangular tilings  (�	 ≥ 0.75). 
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