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Short cylinder-like DNA duplexes, comprising 6 to 20 base pairs, self-assemble into semi-flexible chains, due to coaxial stacking

interactions between their blunt ends. The mutual alignment of these chains gives rise to macroscopically orientationally ordered

liquid crystals phases. Interestingly, experiments show that the isotropic-nematic phase boundary is sequence-dependent. We

perform all atom simulation of several sequences to gain insights in the structural properties of the duplex and correlate the

resulting geometric properties with the observed location of the isotropic-nematic phase boundary. We identify in the duplex

bending the key parameter for explaining the sequence dependence, suggesting that DNA duplexes can be assimilated to bent-

core mesogens. We also develop a coarse-grained model for the different DNA duplexes to evaluate in details how bending

affect persistence length and excluded volume of the aggregates. These informations are fed into a recently developed formalism

to predict the isotropic-nematic phase boundary for bent-core mesogens. The theoretical results agree with the experimental

observation.

1 INTRODUCTION

Since the pioneering work of Nadrian Seeman1,2, which

paved the way for DNA-based nanotechnology, DNA has been

widely used in Soft Matter physics to design and build new

materials3–6,6–14. DNA-based particles can be used as ba-

sic building blocks which self-assemble into reversible aggre-

gates, giving rise to ordered15–18, partially ordered19 or dy-

namically arrested disordered20–22 phases under suitable con-

ditions of temperature and concentrations.

A particular, but very interesting, case of DNA self-

assembly emerged recently from a series of experiments23–26

which have provided evidence that a solution of short DNA

duplexes (DNAD), 6 to 20 base pairs in length, can also form

liquid crystals (LC) above a critical concentration, giving rise

to nematic and columnar LC phases23. Here, hydrophobic

stacking interactions lead to the formation of semi-flexible

chains. This behavior does not only pertain to B-form DNA

oligomers since it has also been observed in solutions of blunt-

ended A-form RNA oligomeric duplexes27.

Depending on the thermodynamic state point (temperature

T and concentration c) these chains may attain the required

anisotropy to undergo a isotropic to nematic transition (see

Fig. 1). Further experiments25 have also provided evidence

that for . 12 base pairs, the critical concentrations is se-
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quence dependent, suggesting a structural origin for this phe-

nomenon28–30. It is tempting to speculate that short DNADs

can be considered as bent-core molecules which could pro-

vide the rich and very interesting phenomenology of banana-

shaped mesogens31. Recently, bent-core mesogens have re-

ceived much attention by the liquid crystal community both

from a theoretical, numerical32–35 and experimental point of

view36–38. The relevance is rooted in the work of Niori et al.39

where achiral bent-core molecules were shown to exhibit an

unusual ferroelectric behavior. In addition, bent-core meso-

gens have been the first thermotropic liquid crystals for which

a biaxial nematic phase (Nb) has been observed40,41. This sug-

gests many possible technological applications for bent-core

mesogens as functional materials42.

To clarify the origin of the sequence dependence of the criti-

cal concentration and the sequence dependence of the DNADs

shape, we perform a numerical study of several dodecamers

to evaluate their structural differences and the effect of these

different structures on the isotropic-nematic transition. More

specifically, we perform atomistic molecular dynamics simu-

lation to evaluate the different degree of conformational bend-

ing as well as simulations of a coarse-grained bent-cylinder

model (BC) in which the conformational bending is compara-

ble with the values provided by the atomistic simulations. The

use of a coarse-grained model makes it possible to estimate

the isotropic-nematic boundaries. We complement the numer-

ical studies with a recently theoretical approach43,44, properly

accounting for the additional contribution to the flexibility of

the chains introduced by the particle shape. The numerical

and theoretical results show that the sequence dependence of

the IN boundary reported in Ref.25 arises from the different
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Fig. 5 Schematic representation of the interaction potential between

two bent-cylinders. The square-well site-site interaction potential

uSW , shown in the figure, is characterized by an attractive well δ and

an energy scale u0.

2.3.2 SUS In order to check the phase boundaries evalu-

ated by NPT simulations we performed a Successive Umbrella

Sampling MC58,59 simulation at T ∗ = 0.12 for θb = 160. In a

SUS simulation, the probability P(N) of finding N particle at

fixed volume, temperature and chemical potential (i.e. in the

grand canonical (GC) ensemble) is computed and the coexist-

ing region of different phases can be accurately estimated58,59.

The great benefit of SUS simulation is that P(N) can be ef-

ficiently calculated through independent GC-MC simulation

running in parallel by partitioning the investigated range of

particles number in several overlapping windows. The whole

P(N) can be reconstructed matching values gathered from all

the GC-MC simulations at overlapping points. P(N) at differ-

ent chemical potential values can be obtained by a standard

histogram reweigthing technique. Coexistence is defined as

the condition of equal areas below the isotropic and nematic

peaks57. The box shape in SUS simulations is not cubic, as

suggested by59. Specifically we use Lx = 25D, Ly = 10D,

Lz = 50D where x-axis is the nematic director. In the initial

configuration all particles are aligned along the x-axis. Under

these conditions, the interface builds parallel to the xy plane

(see Fig. 10b). With this choice, chains of up to roughly 13

particles in the nematic phase do not span the box, reducing

any possible finite size effect. We have checked that aggre-

gates longer than 13 monomers do not percolate, due to the

chain flexibility.

Further details about the SUS method applied to the

isotropic-nematic transition can be found in Refs.57,59,60.

2.4 Theory

To evaluate the phase diagram of bent-cylinder models we im-

plement the theoretical framework which has been developed

in Refs.43 and44 and we provide here only the details which

are relevant for the present discussion. More details can be

found in the Appendix. According to Refs.43 and44, the free

energy of a system of equilibrium polymers61 can be written

as a sum of several contributions, namely:

βF

V
= fid + fexv + fagg + forient (1)

where fid is the free energy of an ideal gas of polydisperse

polymers, fexv is the excess contribution due to excluded vol-

ume interactions, fagg models the aggregation process and

forient accounts for the entropy lost in the nematic phase due to

monomer alignment. The excluded volume contribution fexv

depends on the actual duplex conformation, i.e. on the bend-

ing angle θb; the term fagg depends on the stacking free energy

GST , the free energy gained on forming a bond calculated un-

der standard thermodynamic conditions (i.e. T = 293K and

at a standard duplex concentration 1M); forient depends on the

persistence length lp of the polymers (see Eq. (17) in the Ap-

pendix). Indeed a more flexible chain will result in a larger

entropy lost as monomers align in the nematic phase. Note

that lp is a function of θb.

In the theory, the concentration of the isotropic and nematic

phases at coexistence is controlled by the excluded volume

and/or by the persistence length. In the following we will

show that in the present case, the change of lp on decreasing

θb provides the dominant contribution.

3 RESULTS AND DISCUSSION

3.1 All-atom simulations

We exploit the information from all-atom simulations to esti-

mate the best geometry of the SYBC and ASBC models. We

do so for both TIP4/2005 and TIP3P water models and for

seven different DNAD sequences. Results are summarized in

Table 2

In the SYBC case, we fix Lc ≈ 4nm (the known contour

length of the DNAD with 12 bases) and estimate the angle θb

by evaluating the end-to-end distance dee between the center

of mass of the base pairs in the first and in the twelfth position

along the DNA sequence. By geometry we can estimate then

cos(θb) = 1−
1

2

(

2dee

Lee

)2

(2)

where Lee = (11/12)Lc. The use of Lee instead of Lc is

motivated by the following observation: the end-to-end dis-

tance dee is calculated between the two centers of mass of ter-

minal base pairs, hence the contour length Lee associated to
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these two points would be approximately a base pair length,

i.e. (1/12)Lc, shorter than Lc.

In the ASBC case, the three parameters requested (θb, L1

and L2) are obtained by evaluating the sum of all distances be-

tween each phosphate group in the DNA backbone with the

BC surface and minimizing the resulting quantity. We con-

strain L1 + L2 to be within ≈ 4.0 ± 0.02nm and we set the

diameter of the BC to 1.86 nm. The value of L1/L2 for ASBC

model (last column) suggests clearly that the two unaligned

cylinders can be considered of equal length, i.e. the DNA

duplexes can be modeled as symmetric bent cylinder (SYBC

model). This result is independent from the force field used to

model water, i.e. TIP3P or TIP4/2005.

TIP4P/2005 SYBC ASBC

Sequence θb θb L1 (nm) L2 (nm) L1/L2

AT 159.8 149.0 1.88 2.13 0.88

allCG2 144.3 143.3 1.89 2.12 0.89

allAT 151.0 146.7 1.89 2.12 0.89

AAC 157.3 148.7 1.88 2.13 0.88

allCG1 138.6 138.2 1.89 2.13 0.89

DD 145.3 144.3 1.88 2.12 0.89

ACC 130.9 132.4 1.90 2.10 0.90

TIP3P SYBC ASBC

Sequence θb θb L1 (nm) L2 (nm) L1/L2

AAT 152.8 146.3 1.89 2.12 0.89

allCG2 141.3 140.4 1.89 2.12 0.89

allAT 147.5 144.1 1.88 2.12 0.89

AAC 147.0 143.7 1.88 2.12 0.89

allCG1 146.0 142.6 1.89 2.13 0.89

DD 143.3 143.4 1.88 2.12 0.89

ACC 134.4 135.7 1.89 2.11 0.90

Table 2 Parameters of the SYBC and ASBC models evaluated from

the all-atom simulations for two different water-models

(TIP4P/2005 and TIP3P) for the studied DNA sequences.

In Fig. 6 we plot the bending angle calculated for the dode-

camers which we investigated against the IN critical concen-

tration obtained experimentally. A clear correlation emerges

between bending and critical concentration, i.e. the higher the

bending and the lower will be the tendency of the system to

nematize. The degree of bending in typical conformations for

three sequences (AAT , AAC and ACC) can be seen in Fig. 3.

As reported in Table 1 concentration of nematic phase at coex-

istence cN for AAT , AAC and ACC sequences are 500mg/ml,

620mg/ml and 850mg/ml and this concentrations again cor-

relates well with the increasing bending shown in Fig. 3 for

these sequences.

Fig. 6 Correlation between the bending angle θb and the coexisting

concentration cN of nematic phase (from Ref.25) for ASBC (a) and

SYBC (b) models. Dashed lines are guides to the eye.

3.2 Comparison between theoretical and numerical re-

sults

We performed NPT-MC simulations for the SYBC model for

several bending angles at T ∗ = 0.12 and different P. The re-

sulting equation of state (EOS) is shown in Fig. 7-(a). All

EOS show a discontinuity signaling the phase transition be-

tween the isotropic and the nematic phase. Indeed, the nematic

order parameter S (i.e. the largest eigenvalue of the average

order tensor62) jump from small (S ≈ 0.2) to large (S ≈ 0.7)
values at the transition. The coexisting pressure, as well as the

density of the two coexisting phases φI and φN increases on in-

creasing the particle bending, a consequence of the increased

flexibility of the aggregates. Snapshots of two configurations

from MC-NPT with different bending angle (shown in Fig.

8) provide a clear evidence that the persistence length of the

1–11 | 5
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Fig. 7 (a) Equation of state of the SYBC model for θb = 160, 165

and 175 at T ∗ = 0.12 from NPT-MC simulations. The horizontal

green lines indicate the approximate location of the IN transition.

(b) Phase diagram of the same model as predicted by the theoretical

approach (lines, see Appendix), by the NPT-MC simulations

(triangles) and by the SUS calculations (circle).

chains is highly sensitive to bending.

Fig. 7-(b) shows the θb dependence of φI and φN resulting

from the theoretical approach and from the NPT-MC equa-

tion of state estimates. The theory properly represents the nu-

merical data (with a slight overestimate of φI), suggesting the

possibility to extend the prediction beyond the region where

numerical data are available. Indeed, the increase of φN on

decreasing θb makes MC simulations more and more compu-

tationally demanding. The theory confirms the steep rise of

the coexisting volume fractions on increasing the bending. To

shed light on the physical origin of such steep rise we show

in Fig. 9 the θb dependence of the inverse of the persistence

length l−1
p and compare this dependence with the θb depen-

dence of the phase boundaries. Both curves show a steep rise

on decreasing θb. To provide further evidence that indeed l−1
p

is the key factor in controlling this behavior we show also

Fig. 8 Snapshots at same volume fraction φ = 0.22 and temperature

T ∗ = 0.12 of the isotropic phase for the SYBC model for two

different values of the bending angle (θb = 140 and θb = 160), to

highlight the different persistence length of selected chains (colored

in cyan) in the two cases.

the theoretical phase diagram where we retain the same in-

put parameters but fix the persistence length lp to the value for

θb = 180. If the θb dependence of lp is suppressed, the rise

steep of the coexisting volume fractions disappears. This find-

ing confirms that the significant increase in the volume frac-

tion of the coexisting region is mostly caused by the decrease

of persistence length at small bending angles.

Since NPT simulations provide an approximate coexistence

boundary, being affected by thermodynamic metastability, we

perform an exact evaluation of the coexisting density evaluat-

ing the density of states P(N) in a grand canonical simulation.

Specifically, we calculate P(N) for the SYBC model by SUS

method58. A snapshot of a configuration in the coexisting re-

gion, displaying a clear isotropic-nematic stable interface, is

shown in Fig. 10(b)59. In the presence of a stable interface,

the probability P(N) of observing N particles in the simula-

tion box at fixed T and chemical potential exhibits two peaks,

shown in Fig. 10(a). The logarithm of the ratio of P(N) eval-

uated at the peak and in the flat region between the peaks pro-

vides a measure of the surface tension57,60. The average over

each peak of N provides an estimate of the number density

(or volume fractions) of the isotropic and nematic phases at

coexistence. The resulting values are also reported in Fig. 7-

(b). φN coincides with, while φI is slightly larger than the NPT

estimates.

3.3 Comparison between theoretical and experimental

results

To provide a theoretical prediction to be compared with ex-

perimental data we evaluate the nematic concentration at co-
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Fig. 9 Dependence of the persistence length lp on the bending angle

θb (green line, right y-axis). The curve is superimposed to the

theoretical phase diagram (full lines, same as Fig. 7) to highlight the

correlation between the volume fraction of the coexisting phases and

l−1
p . As a further support for the role of the persistence length in

controlling the volume fraction of the coexisting phases, the figure

also show (dashed lines) the phase boundaries calculated for the

same parameters as in Fig. 7 except for lp whose value has been

fixed for all bending angles to the value at θb = 180. In this case, the

volume fraction of the coexisting phases only weakly dependes on

θb.

existence cN for different bending angles. As discussed in the

previous section, the theory requires information on the ex-

cluded volume of the particle, the persistence length and the

bonding (stacking) GST free energy driving the polymeriza-

tion process. Assuming bent cylinders with diameter 1.8 nm

and contour length 3.6 nm (values which are compatible with

the geometry of the DNA dodecamers), we can calculate ex-

cluded volume and persistence length for several bending an-

gles. Since there is no experimental consensus on the value of

GST , we have solved the theory for two GST values, respec-

tively GST = −0.9 and GST = −2.5 kcal/mol. The selected

range of stacking energies GST is compatible with estimate

provided in Ref.44. The resulting theoretical prediction for

these two values are shown in Fig. 11.

To compare the theoretical predictions with the experimen-

tal results we associate to each experimentally studied dode-

camer its measured cN and a θb value evaluated by all atom

simulations (see Sec. 3.1). We report the θb values evaluated

for both water models employed in the simulation. The result-

ing points fall within error inside the grey band delimitating

the uncertainty in the GST values. As discussed previously, cN

increases with bending, i.e. with decreasing persistence length

lp of aggregates. Interestingly, this inverse scaling between cN

and lp has been recently evidenced by experimental works on

semi-flexible amyloid fibers, which are formed by aggregation

Fig. 10 (a) Probability distribution P(N), where N is the number of

BCs in the simulation box, calculated from SUS simulations at

T ∗ = 0.12 for θb = 160. Here box sizes are Lx = 25D, Ly = 10D,

Lz = 50D. (b) Snapshot of the system for N = 2539. Particles in the

nematic phase are colored orange, while in the isotropic phase are

colored cyan.

of β -lactoglobulin protein in water63,64.

The theoretical predictions reported in Fig. 11 show that

for low bending angles (i.e. θb ≈ 120) the coexisting re-

gion boundaries are rather insensitive on GST . Since GST de-

pends on T (see Eq. (5) ), this prediction suggests that cN

for very bent sequences (e.g. ACC and allCG1) will display

a very weak T dependence. The experimental observation of

cN(T ) could thus provide an experimental test of the theoreti-

cal framework.

4 CONCLUSIONS

In this article we have studied the phase behavior of double-

stranded DNA dodecamers. These DNA constructs are experi-

mentally known to undergo an isotropic-nematic transition on

increasing concentration, due to the progressive polymeriza-
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Fig. 11 Concentration of nematic phase at coexistence cN for all

sequences studied as a function of the bending angles θb. The

bending angle of each sequence has been estimated by all-atom

simulations while the concentration cN is the value obtained from

experiments25. The grey band reflects the theoretical predictions for

the SYBC model for −2.5 < GST <−0.9 kcal mol−1.

tion induced by hydrophobic stacking forces acting between

the exposed terminal bases.

By a combined numerical and theoretical approach we have

been able to show that the experimentally observed differences

between the concentrations at which the nematic transition oc-

curs arise from the different conformational bending of the

dodecamers. To do so, we have estimated the bending angle

for the different sequences via all-atom simulations, confirm-

ing that the bending angle can differ by 20-30 degrees. The

bending difference is amplified by the polymerization process,

producing chains of bonded dodecamers with rather distinct

persistence length. To estimate how the dodecamer bending

affect the persistence length we explicitly evaluate the persis-

tence length approximating the dodecamer with a symmetric

bent cylinder model. Finally, we implement a recently pro-

posed theoretical approach for the isotropic-nematic transition

in the presence of equilibrium polymerization to evaluate the

isotropic-nematic phase boundaries for the different bending

angles.

We have thus been able to demonstrate that the bending

of the different sequences correlates with the concentration

cN of nematic phase at coexistence, explaining the cN depen-

dence experimentally observed in DNA duplexes with similar

length. In addition, we show that a model in which the DNA

dodecamers are represented as polymerizing symmetric bent

cylinders describes the experimental results using a reason-

able estimate for the base-base stacking free energy. Finally,

we also show that the theoretical predictions agree rather well

Fig. 12 Theoretical predictions for the SYBC model of the

concentration of the nematic phase at coexistence cN as a function

of the stacking free-energy GST for bending angles ranging from

θb = 125 up to θb = 180.

with “exact” calculation of the coarse-grained bent cylinder

model and hence short DNA duplexes can be viewed as bent-

core mesogens. In this respect, the theoretical modeling con-

stitutes a first attempt in the direction of developing a semi-

quantitative theory for IN transition of bent-core mesogens.

This opens up new perspectives in terms of possible techno-

logical applications of DNA-based liquid crystals.

A Theory of self-assembly-driven nematization

of bent-core nematogens

We build on the theoretical framework which has been devel-

oped in Refs.43 and44 and we provide here only the details

which are relevant for the present discussion. According to

Refs.43 and44, the free energy of a system of equilibrium poly-

mers, whose various contributions have been provided in Eq.

(1), can be written more explicitly as follows

βF

V
=

∞

∑
l=1

ν(l){ln [vdν(l)]−1}+

+
η(φ)

2

∞

∑
l=1
l′=1

ν(l)ν(l′)vexcl(l, l
′)

− β∆Fb

∞

∑
l=1

(l −1)ν(l)+
∞

∑
l=1

ν(l)σo(l) (3)

where V is the volume of the system, vd is the volume

of a monomer, φ ≡ vdρ (ρ = N/V is the number density

of monomers) is the packing fraction, ν(l) is the discrete

number density of chains of length l, normalized such that

8 | 1–11
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∑
∞
l=1 l ν(l) = ρ , ∆Fb is a parameter which depends on the free

energy associated to a single bond and vexcl(l, l
′) is the ex-

cluded volume of two chains of length l and l′. η(φ) is the

Parsons-Lee factor65

η(φ) =
1

4

4−3φ

(1−φ)2
(4)

and σo(l)
66 accounts is the orientational entropy lost by a

chain of length l loses in the nematic phase (including possi-

ble contribution due to its flexibility43,67). The parameter ∆Fb

can be related to the coaxial stacking free energy GST , which

can be measured experimentally, as follows:

GST =−∆Fb − kBT ln(ρvd). (5)

GST will be calculated under standard conditions, i.e. T =
293K and at a standard concentration 1M of DNADs.

A.1 Isotropic phase

In the isotropic phase, as in Ref.43, we assume the following

form for the excluded volume vexcl(l, l
′,X0)

vexcl(l, l
′,X0) = 2BIX

2
0 l l′+2vdkI

l + l′

2
(6)

where the parameters BI and kI can be estimated via MC in-

tegrals of a system composed by only two monomers (see43)

and X0 is the aspect ratio of the monomers defined as follows:

X0 ≡
Le f f

De f f

(7)

where Le f f and De f f are the length and diameter of an equiv-

alent straight cylinder having the same volume vBC(θb) of

the BC. Specifically the length Le f f is chosen to be the dis-

tance between the centers of the two attractive sites dss, i.e.

Le f f = dss and De f f is such that the volume of the cylinder

equals that of the BC, i.e.

π

4
D2

e f f dss = vBC(θb) (8)

We estimated the volume vBC via a Monte Carlo integration

and the results for BC model are shown in Fig. 13. It can

be seen that vBC is substantially equal to the volume vHC =
vBC(180) of a straight HC for all bending angles.

The chain length distribution ν(l) is assumed to be expo-

nential43:

ν(l) = ρM−(l+1)(M−1)l−1 (9)

where the average chain length M is:

M =
∑

∞
l=1 l ν(l)

∑
∞
l=1 ν(l)

. (10)

Fig. 13 BC volume as a function of bending angle θb.

With this choice for ν(l) the free energy in Eq. (3) becomes:

βFI

V
= −ρβ∆Fb(1−M−1)+

+ η(φ)

[

BIX
2
0 +

vdkI

M

]

ρ2 +

+
ρ

M

[

ln
(vdρ

M

)

−1
]

+

+ ρ
M−1

M
ln(M−1)−ρ lnM. (11)

A.2 Nematic phase

In the nematic phase the monomer orientational distribution

function f (θ) for the present BC model is assumed to depend

only on the angle θ between the particle and the nematic axis

while all orientations around such axis are taken as equally

likely. For f (θ) we use the form proposed by Onsager68, i.e.:

fα(θ) =
α

4π sinhα
cosh(α cosθ) (12)

where α controls the width of the angular distribution. The

equilibrium value of α can be obtained by minimizing the free

energy with respect to α . The excluded volume in the nematic

phase takes the following form:

vexcl(l, l
′,X0,θb,α) = 2BNX2

0 l l′+2vBCkN

l + l′

2
(13)

where the first term and second term on right hand side are

midsection-midsection and end-midsection contributions to

the excluded volume of two BCs (see Ref.44) with

BN(θb,α) =
π

4
D3

e f f

(

η1 +
η2

α1/2

)

(14)

kN(θb,α) = kHC
N (α)+4(ξ1 −1)−4

ξ2 −1

α
(15)
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where kHC
N (α) is such that 2vdkHC

N (α) is the end-midsection

contribution to the excluded volume of two hard cylinders

(HCs) and ηk(θb), ξk(θb) with k = 1,2 are four parameters

that we chose in order to reproduce the excluded volume cal-

culated from MC calculations for all θb considered as done

and discussed in Refs.43,44. Plugging Eqs. (13) and (9) into

Eq. (3), one obtains:

βFN

V
= σ̂o(lp)−ρβ∆Fb(1−M−1)+

+ η(φ)

[

BN(α)X2
0 +

vdkHC
N (α)

M

]

ρ2 +

+
ρ

M

(

ln
[vdρ

M

]

−1
)

−ρ lnM+

+ ρ ln(M−1)
M−1

M
(16)

where σ̂o(lp) ≡ ∑l σo(l)ν(l). The orientational entropic con-

tribution σ̂o(lp) depends on the persistence length lp of the

chains (see Refs.43 for more details). Thus lp has to be calcu-

lated for the present model for all bending angles θb. As done

in Ref.43 we estimate the persistence length lp by evaluating

the following spatial correlation function:

CO(|i− j|)≡ ∑
i, j

〈x̂(i) · x̂( j)〉 (17)

where 〈. . .〉 denotes an average over a set of independent ran-

dom chains and i, j label two BCs along the chain (i = 0 is the

first BC at chain end) and x̂(i) is a unit versor parallel to direc-

tion along which the two attractive sites lie (see Fig. 4). 〈. . .〉
denotes an average over the whole set of independent chains

which has been generated. In Fig. 14 we show lp as a func-

Fig. 14 Persistence length lp (in unit of monomer) as a function of

bending angle θb

tion of θb. It can be seen that persistence length does depend

significantly on θb so that one can expect that on reducing θb

the IN phase boundary should shift to higher φ values. This

decrease can be understood if one consider the following ar-

gument: consider a random chain of BCs where the bases of

two successive BCs are in contact, due to BCs bending the

correlation function CO(|i− j|) goes to 0 for |i− j| → ∞ but

if θb = 180 (i.e. BC are straight cylinders) CO(|i− j|) would

remain equal to 1.

Finally we define the usual nematic order parameter S

which is related to α as follows:

S(α) =
∫

(3 cos2 θ −1) fα(θ)π sinθ dθ ≈ 1−3/α. (18)

A.3 Phase Coexistence

Phase boundaries of IN transition are characterized by coexist-

ing isotropic and nematic phases in which the volume fraction

of BCs are, respectively, φN = vBCρN and φI = vBCρI . ρI and

ρN can be calculated by the following set of equations:

∂

∂MI

FI(ρI ,MI) = 0

∂

∂MN

FN(ρN ,MN ,α) = 0

∂

∂α
FN(ρN ,MN ,α) = 0

PI(ρI ,MI) = PN(ρN ,MN ,α)

µI(ρI ,MI) = µN(ρN ,MN ,α) (19)

The first three equations express the fact that Eq. (11) has to

be minimized with respect to MI and Eq. (16) with respect

to MN and α . The remaining two equations impose the equal

pressure and chemical potential conditions for the two phases

at equilibrium, i.e. PI = PN and µI = µN .
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