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Many biological systems consist of self-motile and passive agents both of which contribute to overall functionality. However,

little is known about the properties of such mixtures. Here we formulate a model for mixtures of self-motile and passive agents

and show that the model gives rise to three different dynamical phases: a disordered mesoturbulent phase, a polar flocking phase,

and a vortical phase characterized by large-scale counterrotating vortices. We use numerical simulations to construct a phase

diagram and compare the statistical properties of the different phases with observed features of self-motile bacterial suspensions.

Our findings afford specific insights regarding the interaction of microorganisms and passive particles and provide novel strategic

guidance for efficient technological realizations of artificial active matter.

1 Introduction

Individual agents capable of directed movement are usually re-

ferred to as active, self-propelled, or self-motile. This capacity

leads to remarkable features of bacterial suspensions, in-vitro

networks of protein filaments, and the cytoskeletons of living

cells. Likewise, macroscopic active systems, such as animal

colonies exhibit swarming, herding, and flocking behaviors

that appear to share phenomenological similarities with their

microscopic counterparts. Such phenomena include polar or-

dering, large-scale correlated motion, and intriguing rheolog-

ical properties.1 However, biological systems often consist of

multiple species which differ in their motilities and other at-

tributes. For example, the emergence of different phenotypes

in microbial biofilms generates heterogeneous populations of

bacteria.2–6 In biological systems such as biofilms individual

organisms die, malfunction, or lose their flagella, thereby be-

coming partially or completely immotile.

To elucidate the interactions between active agents and
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passive objects and make use of interaction phenomena for

specific applications, several model systems have been stud-

ied. For example, baths of swimming bacteria,7–11 algae,12

and artificial self-propelled rods were found to promote an

overall increase in the diffusion of suspended passive tracer

particles,11 except for very low concentrations of bacteria,

where experiments and simulations suggest a decrease in dif-

fusivity.13 In addition, it was discovered that bacteria baths

can mediate effective short range depletion-like attractions

between passive suspended colloids.14 While simulations of

self-motile and passive rod-shaped agents suggest sponta-

neous segregation,15 simulations of mixtures of self-propelled

and passive hard spheres point at the possibility of promoting

the crystallization of hard-sphere glasses through activity.16

Recently, bacteria have been used to drive the accumulation

of colloids in microstructures that are patterned with asym-

metric energy barriers.17,18 Further, simulations and experi-

ments show that bacteria can be used to collectively move

larger objects such as asymmetric micro shuttles19 and mi-

croscopic gears and ratchets.20,21 Similarly, surface-attached

monolayers of bacteria swarms can drive microstructures22–24

and bacteria-attached micro-beads.25,26 Conversely, the dis-

placement and release of small cargos of the approximately

same size as the individual cargo-carrying organisms has been

realized using bacteria27 as well as algae cells.28

In view of these examples, insights regarding the salient bi-

ological and mechanical interactions are of great relevance to

understanding biological systems and might enable progress

in potential technological applications including, in particu-

lar, the design of artificial active matter systems. For ex-

ample, techniques of synthetic biology and systems biol-

ogy have made it possible to fabricate bacterial strains with
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Table 1 Summary of interaction forces between agents

Interaction type Interaction force fi j

passive ↔ passive f
i j
pp =

{

f
i j
C + f

i j
D + f

i j
R ,

0,

r < rc

otherwise

active ↔ passive

active ↔ active
f
i j
ap = f

i j
aa =

{

f
i j
C + f

i j
D,

0,

r < rc

otherwise

engineered gene-regulation circuits that produce predefined

spatial and temporal patterns.29–34 Similarly, artificial self-

motile agents can be realized through catalytically driven

Janus particles,35–39 light-activated particles,40,41 polymer-

based nanomotors,42–44 and robotic swarms.45–47 From a

technological perspective, it is of key importance to know

whether it is possible to use a small number of these poten-

tially difficult to manufacture agents to drive other passive

agents and thereby generate desirable flow patterns. Having

an understanding of how many active agents are required for

such a principle seems particularly crucial, as does knowing

how such a principle might be realized most efficiently.

2 Model

Since most self-motile systems of biological type involve or-

ganisms with complex molecular structures, the simulation of

such systems on a molecular level including all biophysical

and biochemical details is inhibitively expensive, even with

access to large supercomputers. In the present article we thus

focus on a minimal mesoscopic (coarse-grained) description

to study the salient features of generic mixtures of mesoscopic

active and passive agents without accounting for details on the

level of individual atoms or details of the previously discussed

specific examples. Our objective therefore lies in understand-

ing the criteria for which different dynamical phases may be

observed in dense mixtures of self-motile and passive spher-

ical soft-core agents. The motion of an agent i with constant

mass mi in a system of N agents is governed by Newton’s

equations for a mixture of active and passive agents

ẋi = vi,

miv̇i =















∑
j∈Ip

f
i j
pp + ∑

j∈Ia

f
i j
pa, for i ∈ Ip,

∑
j∈Ip

f
i j
pa + ∑

j∈Ia

f
i j
aa + fi

F, for i ∈ Ia,



























(1)

where Ia is the index set of active agents, Ip is the index set

of passive agents, f
i j
pp is the interaction force between passive

agents, f
i j
ap is the interaction force between active and passive

agents, f
i j
aa is the interaction force between active agents, and

fi
F is the external force exerted on active agent i. For f

i j
pp, f

i j
ap,

and f
i j
aa the short-range interaction forces of dissipative parti-

cle dynamics (DPD) are used, with f
i j
C the purely conservative

force, f
i j
D the purely dissipative force, and f

i j
R the purely ran-

dom force. The interaction forces corresponding to the three

different interaction types passive↔passive, passive↔active,

and active↔active are summarized in Table 1 with r = |ri−r j|
the distance between agents i and j, and with rc the cutoff ra-

dius of the interaction forces. To model the features of a binary

mixture, we apply fi
F only on the fraction φ of active agents

and the random contribution of the DPD interactions f
i j
R only

between pairs of the fraction

φp = 1−φ (2)

of passive agents, as summarized in Table 1. This choice rep-

resents a suitable model for a binary mixture where the ran-

dom interactions of the passive agents compete with the self-

propulsion force fi
F of the active agents. Actual physical sys-

tems are most likely not strictly binary, since sufficiently small

active agents might be subject to random interactions as well

or, conversely, since sufficiently large passive agents might not

be subject to random interactions. However, this depends on

many parameters, including the characteristic linear dimen-

sions, the characteristic shapes, and the characteristic masses

of active and passive agents. Here, we restrict ourselves to

a simple binary model system suitable to study the competi-

tion between the two different mechanisms — self-propulsion

and random interactions. One conceivable physical realization

of this model system corresponds to the limiting case where

the passive agents are much smaller than the active agents,

which is realized in experiments involving bacterial baths and

smaller tracer particles discussed in the introduction.

The DPD interaction forces are taken to be of the form48

f
i j
C = Aw(r)êi j,

f
i j
D =−γw2(r)[(vi −v j) · êi j]êi j,

f
i j
R =

√

2γkBT w(r)θ i j(∆t)−1/2êi j,















(3)

where w(r) = 1− r/rc is the weighting function, êi j = (ri −
r j)/r is the unit vector directed from agent i to agent j, θ i j

is a random number, A > 0 is the conservative force param-

eter, and γ > 0 is the pairwise friction parameter. In (3)3,

kBT , with kB Boltzmann’s constant and T the absolute tem-

perature, provides a reference energy scale and ∆t is the simu-

lation timestep. Together with the pairwise friction parameter

γ , kBT characterizes the magnitude of the pairwise random

forces accounting for fluctuations. Apart from standard DPD

forces, we incorporate self-propulsion through a flocking term

fi
F = (α −β |vi|2)vi, (4)

with α ≥ 0 the constant self-propulsion force parameter and

β ≥ 0 the constant Rayleigh friction parameter.49–54

2 | 1–9

Page 2 of 11Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(a) Mesoturbulent

φ = 0.1, Pe = 0.11
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(b) Polar flock

φ = 0.5, Pe = 1.11
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(c) Vortical

φ = 0.1, Pe = 1.11

Fig. 1 Coarse-grained velocity field uM for β = 2.25 and representative choices of φ and Pe. (a) arises for small φ in combination with small

Pe; (b) arises for intermediate and large φ in combination with large Pe; (c) arises for small φ and Pe > 1.

If all agents are passive, the motion is governed entirely

by random interactions due to the equilibrium energy of the

standard DPD thermostat and the energy per unit mass of the

system is

ER = kBT. (5)

Conversely, in the limit of vanishing random interactions,

the flocking term (4) yields an unidirectional perfect flock in

which all agents move in the same direction with the flocking

velocity magnitude vF =
√

α/β and the associated energy per

unit mass of the unidirectional flocking motion is given by

EF =
α

2β
. (6)

The limiting behavior (6) can be obtained from a modified

coarse-grained Langevin equation for active agents in an ef-

fective “thermal bath” of passive agents considering the dilute

limit.

Hereafter, most quantities are dimensionless and we note

when a quantity carries dimensions. Working with reduced

units and using the standard parameter values for a passive

DPD fluid,48 we set mi = 1.0, kBT = 1.0, rc = 1.0, A = 25.0,

γ = 4.5, and ρ2D = N
L2 = 2.5 (two-dimensional (2D) analog

of ρ3D = 4.0), where L is the dimensionless edge length of

the square computational domain. We perform simulations

with LAMMPS55,56 using periodic boundary conditions and

the standard velocity-Verlet57 time integration scheme with a

dimenesionless integration timestep of ∆t = 3.0× 10−3. We

run all simulations for 2.0× 106 timesteps to ensure that the

total kinetic energy of the system has stabilized near a constant

value, as verified by monitoring the total energy of the system.

Initially, we take all agents to be randomly distributed with

zero initial velocities. Having chosen values for all previously

discussed parameters, the remaining free parameters are φ , α ,

and β .

3 Phase diagram

A Péclet number that characterizes the ratio of the self-

propulsion energy to the energy of random fluctuations can

be defined by

Pe =
α

2βkBT
. (7)

Depending on the values of Pe and φ , the system develops

three different dynamical phases: a disordered mesoturbulent

phase, a polar flocking phase, and a vortical phase character-

ized by large-scale counterrotating vortices (Fig. 1). Impor-

tantly, no segregation is observed (Fig. 2 (c)–(f)). We use or-

der parameters based on the agent velocities vi and the coarse-

grained vorticity ω = curluM to quantify the influence of φ
and Pe on phase emergence. Given a sufficiently rapidly de-

caying filtering kernel, we compute the coarse-grained veloc-

ity

uM(xM) =
1

n

N

∑
i=1

viψ(xM −xi) (8)

on a uniform grid with equidistant spacing in both coordinate

directions, where n is the number of agents for which ψ 6= 0.

Table 2 Summary of criteria used to identify different phases

Phase Pv Pω snapshot

Mesoturbulent (T) Pv → 1 Pω → 0 Figure 1 (a)

Polar flock (F) Pv → 0 Pω → 0 Figure 1 (b)

Vortical (V) Pv → 1 Pω > 0 Figure 1 (c)
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Fig. 2 Influence of the domain size, phase diagrams, and agent distribution fields. (a) Total kinetic energy 〈|vi|2〉i for different values of the

linear domain size L. (b) Pv from simulations (L = 25.0). (c)–(f) Agent distribution fields. (g) Pv from theoretical estimates (14), (19),

and (20). (h) Pv from simulations (L = 100.0). (i) Pω from simulations (L = 100.0). The symbols �, H, and • distinguish, respectively, the

mesoturbulent (T), the vortical (V), and the polar flocking (F) phases, as identified by the criteria appearing in Table 2.

For simplicity, we use a Gaussian filter with nondimensional

filter width ε = 15.0. The order parameters Pv and Pω are

defined as

Pv =
〈|vi|2〉i −〈vi〉2

i

〈|vi|2〉i

and Pω = 〈|ω|2〉−〈ω〉2, (9)

where 〈·〉i denotes the spatial average over all agents in the

computational domain and 〈·〉 denotes the spatial average over

all points xM . Whereas Pv distinguishes between polar and

non-polar states, Pω distinguishes between non-polar phases

exhibiting large-scale vortical motion and non-polar mesotur-

bulent phases. The associated limiting cases are summarized

in Table 2. We determine the order parameters numerically

and exhibit them as 2D contour plots in the (φ ,Pe)–plane

(Fig. 2). The phases in the (φ ,Pe)–plane are marked using the

identification criteria summarized in Table 2. To test for finite-

size effects, we conducted all sets of simulations with differ-

ent domain sizes ranging from L = 25.0rc to L = 400.0rc. The

vortical phase arises for small φ and Pe > 1 in combination

with large enough domain sizes (Fig. 2 (h) and (i)), whereas

for the smallest domain size r = 25.0rc the vortical phase is

absent (Fig. 2 (b)). The mesoturbulent phase appears to de-

velop independently of the domain size in a triangular region

enclosed by the origin, a point near φ → 0 and Pe ≈ 1, and a

point near φ → 1 and Pe → 0. The total mean kinetic energy is

found to coincide for all parameter combinations except those

corresponding to the vortical phase (Fig. 2 (a)), which leads

to the conclusion that the mesoturbulent and flocking phases

are independent of the domain size. These results indicate

that the vortical phase emerges only when the domain size is

large enough to accommodate counterrotating vortices. Pre-

vious studies showed that an active suspension can be stabi-

lized into a large-scale circulating state through appropriate

confinement.58,59 Further, the vortical phase in our simula-

tions appears to resemble “milling” patterns observed in in-
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vestigations of “pure” systems of self-motile agents with the

flocking term (4).49–54 Most remarkably, in our simulations

the large-scale vortical patterns are found without the inclu-

sion of stabilizing attractive forces or confining boundaries.

Since the vortical phase occurs for small φ , the passive agents

appear to play an important role in stabilizing vortical mo-

tion and point to the presence of effective hydrodynamic-like

properties mediated through the presence of passive agents.

This effect might be of key importance and deserves future

investigation. However, in this article we focus on the transi-

tion criteria between the mesoturbulent phase and the flocking

phase. Unless otherwise noted, the following discussion refers

to simulations performed with L = 100.0rc.

Heuristically, the mesoturbulent phase is observed for pa-

rameter values of φ and Pe satisfying

Pe . 1−ηφ , (10)

where η is an empirical parameter describing the slope of the

line in the (φ ,Pe)–plane below which the mesoturbulent phase

prevails. To understand (10), consider the average kinetic en-

ergies, per agent, Ea and Ep corresponding to, respectively, ac-

tive and passive agents. Heuristically, the mesoturbulent state

emerges when the thermal kinetic energy of the passive agents

exceeds the total energy (6) of the flocking state, namely when

Ep &
α

2β
. (11)

In view of (2) and (5), the thermal equilibrium energy of the

passive agents of the system is approximately

Ep ≈ (1−φ)kBT. (12)

As a consequence of (11) and (12), the mesoturbulent state

emerges for

(1−φ)kBT & α/2β (13)

or, equivalently, on invoking the definition (7) of Pe,

Pe . 1−φ . (14)

Comparison of (10) and (14) shows that the results from the

numerical simulations agree qualitatively with the theoretical

predictions and suggests that η = 1. However, the numerical

results (Fig. 2 (b) and (h)) indicate that η < 1, resulting in

transitions to the flocking phase for values of φ smaller than

theoretically predicted. This effect can be explained by noting

that the pairwise dissipative interactions between all agents re-

sult in an overall damping of the random fluctuations induced

by the passive agents.

Next, we focus on the values of Pv around the transition

between the mesoturbulent and the flocking phases. The con-

tour lines in Fig. 2 (b) and (h) indicate a discontinuous transi-

tion between these phases, resulting in abrupt changes near a

threshold value of Pv ≈ 0.5. To determine the values of Pv for

which transitions between the polar and non-polar states may

be expected, consider the estimate of the energy in the polar

state in terms of the mean velocity 〈vi〉i and the fluctuating

velocity vi′ = vi −〈vi〉i, such that, without loss of generality,

1
2
〈|vi|2〉i =

1
2
〈vi〉2

i +
1
2
〈|vi′|2〉i. (15)

Whereas the flocking term drives polar order with a certain

mean velocity, the passive agents are subject to random fluc-

tuations. Hence, transitions between the mesoturbulent phase

and the flocking phase may be expected when the fluctuations

are large enough to break up the polar order with the mean

velocity—i.e., when the energies associated with the mean ve-

locity and fluctuations are equal:

〈vi〉2
i = 〈|vi′|2〉i. (16)

By (9)1, (15), and (16), we thus expect a transition between

polar and non-polar phases near Pv = 0.5, which is consistent

with the numerical results. In the flocking regime, Pv exhibits

a nonlinear but continuous dependency on φ and Pe (Fig. 2

(b) and (h)). To understand how Pv depends on φ and Pe, we

estimate values of Pv based on the relevant input parameters

and compare them to numerical predictions. In the flocking

regime, we estimate the terms entering the definition of the

order parameter (9)1 assuming that the contribution of energy

due to the flocking forces of the active agents increases lin-

early with increasing φ and that the contribution of energy

due to random fluctuations of the passive agents decreases lin-

early with increasing φ . Consequently, the total energy can be

estimated as

1
2
〈|vi|2〉i ≈ φ

α

2β
+(1−φ)kBT, (17)

while the energy associated with mean velocity can be esti-

mated by
1
2
〈vi〉2

i ≈ φ
α

2β
. (18)

Notice that the estimate (17) is formally similar to a modified

rule of mixtures between the characteristic flocking energy (6)

and the characteristic energy (5) of random fluctuations. Con-

sequently, bearing in mind the definition (7) of Pe, we find

that

Pv ≈
1−φ

φPe+1−φ
. (19)

Importantly, (19) provides an estimate for the order parameter

Pv in the flocking regime of the (Pe,φ)–plane. In view of the

previous discussion, the transition between the polar flocking

phase and the disordered phase occurs at Pv ≈ 0.5, yielding a

criterion similar to (14):

Pe ≈
1−φ

φ
. (20)
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The good qualitative agreement between the theoretically esti-

mated phase diagram and the numerical predictions (Fig. 2 (g)

and (h)) confirms the validity of the criteria (14), (19), and (20)

derived from the energy estimates.

4 Mean-square displacement (MSD) and diffu-

sion coefficients

The MSD 〈(∆xi)
2〉i = 〈(xi(τ)−xi0)

2 can be related to the dif-

fusion through the Langevin equations. For a 2D system (cf.,

e.g., Metzler and Klafter60)

〈(∆xi)
2〉i = 4Dξ τξ , (21)

where Dξ is the coefficient associated with the power-law ex-

ponent ξ . For classical diffusive Brownian motion ξ = 1 and

D1 is the diffusion coefficient,61 whereas for ballistic motion

ξ = 2 and D2 is proportional to a characteristic energy per

unit mass. In the mesoturbulent phase, the present system ex-

hibits ballistic motion at short times and diffusive motion at

long times (Fig. 3 (a)). In experiments with 2D bacterial baths

with tracer particles, Wu and Libchaber7–9 observed a similar

crossover from superdiffusive motion with ξ > 1 to diffusive

motion with ξ ≈ 1. They found good fits of their experimental

data with

〈(∆xi)
2〉i = 4Dτ(1− exp(−τ/τc)), (22)

where D is the diffusion coefficient and τc is the crossover time

between two different asymtotic regimes; for τ ≪ τc the mo-

tion is ballistic and for τ ≫ τc the motion is diffusive. Least-

squares fits of our simulation results (Fig. 3 (a)) show good

agreement with (22), suggesting that the mesoturbulent phase

exhibits statistical properties similar to those of 2D bacterial

suspensions. Further, the diffusivity as well as the crossover

time decrease with increasing φ , indicating that the random

fluctuations of the passive agents are mainly responsible for

the diffusivity of the mixtures and thus act as an effective sol-

vent. At low φ , the diffusivity associated with the passive

agents is significantly higher than the diffusivity associated

with the active agents (Fig. 3 (a.I)). This difference in diffu-

sivities decreases for increasing φ , signifying that the consid-

ered flocking mechanism effectively removes diffusivity, ulti-

mately resulting in transitions to the polar flocking phase. Wu

and Libchaber7–9 determine effective long-time diffusion co-

efficients of

De2.25 µm
≈ 1.0 ·10−6 cm2/s (23)

and

De5.0 µm
≈ 4.3 ·10−7 cm2/s (24)

for bacteria baths with polystyrene (PS) tracer beads of radii

2.25 µm and 5.0 µm, respectively. To enable a direct com-

parison between the diffusion coefficients of the mesoturbu-

lent phase (Fig. 3 (a.I)) and the experimental results of Wu

and Libchaber,7–9 we obtain the dimensionless counterparts

of (23) and (24). Given a diffusion coefficient De carrying di-

mensions of length2/time, we define a dimensionless diffusion

coefficient D by

D = De

1

rc

(

m

kBT

)
1
2

. (25)

Now, for PS with density of ρPS ≈ 103 kg/m3 and assuming

that T ≈ 300K, we determine the dimensionless counterparts

of (23) and (24) as

D2.25 µm ≈ 0.151 and D5.0 µm ≈ 0.097. (26)

The dimensionless diffusion coefficients (26) are both within

the range of diffusion coefficients of the mesuturbulent phase

(Fig. 3 (a.I)) and correspond to the values occurring for low

to intermediate values of φ in the mesoturbulent phase. This

indicates that the diffusion properties of the mesoturbulent

phase are not only qualitatively but also quantitatively simi-

lar to those of 2D bacterial suspensions.

In contrast to the mesoturbulent phase, the flocking phase

exhibits ballistic behavior on all timescales (Fig. 3 (b)). Con-

sistent with this, the MSD scales with τ2. In the flocking

phase, D2 exhibits an increase with increasing φ , approach-

ing what appears to be an asymptotic value for large φ (Fig. 3

(b.I)). To understand this limiting behavior, consider the MSD

over time, which may be estimated to be proportional to the

characteristic flocking energy per unit mass 〈(∆xi)
2〉i/τ2 ≈

α/β . In view of (21), D2 ≈ α/4β for ballistic motion in the

flocking phase as shown by the dashed line in Fig. 3 (b.I). Fur-

ther, the ballistic coefficients associated with the active and

passive agents are almost identical. This confirms that, in the

flocking regime, the flocking term dominates and drives the

passive agents.

In the vortical phase, the system exhibits ballistic motion

at short and intermediate times and diffusive motion at long

times (Fig. 3 (c)). Notice that, in contrast to the data appearing

in Fig. 3 (a)–(b), the results in Fig. 3 (c) appear for different

representative Péclet numbers and φ = 0.1, since the vortical

phase emerges only for low φ . Similarly as in the mesotur-

bulent phase, the fit to (22) provides good agreement with the

data (Fig. 3 (c)). The crossover times to diffusive motion are

an order of magnitude higher than those of the mesoturbulent

phase (Fig. 3 (c.I)). This is consistent with the presence of a

pair of counterrotating vortices and suggests that this structure

is coherent for much longer times than the small-scale swirls

that distinguish the mesoturbulent phase. The short-time bal-

listic coefficient exhibits a linear increase with increasing Pe

(Fig. 3 (c.II)). Since the ballistic coefficient measures the char-

acteristic energy per unit mass of the system, this demonstrates

that the energy in the vortical phase depends linearly on Pe,

even for small φ .

6 | 1–9

Page 6 of 11Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



10
−2

10
0

10
2

10
4

10
0

10
5

τ

〈(
∆
x
i
)2
〉 i

 

 

φ = 0.1
φ = 0.3
φ = 0.5

(a) Mesoturbulent phase (Pe = 0.11).

∼ τ1

∼ τ2

0 0.2 0.4 0.6 0.8
0

0.1

0.2

φ

D

 

 

D
Da
Dp

0 0.5 1

0.2

0.3

0.4

φ

τ
c

 

 

τc
τcaτcp

(a.I)

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

10
6

τ
〈(
∆
x
i
)2
〉 i

 

 

φ = 0.5
φ = 0.7
φ = 0.9

(b) Flocking phase (Pe = 0.78).

∼ τ2

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

φ

 

 

D2

D2a

D2p

α
4βD

2

(b.I)

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

10
6

τ

〈(
∆
x
i
)2
〉 i

 

 

Pe = 1.11
Pe = 1.33
Pe = 1.78

(c) Vortical phase (φ = 0.1).

∼ τ1

∼ τ2

1 1.5 2 2.5
5

10

15

20

25

30

Pe

D

 

 

D
Da
Dp

1 1.5 2 2.5
0

10

20

Pe

τ
c

 

 

τc
τca
τcp

1 1.2 1.4 1.6 1.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe

 

 

D2

D2a

D2p

D
2

(c.I)

(c.II)

Fig. 3 MSD for the three different phases. Da and tca
(Dp and tcp

) denote the parameters associated with the active (passive) fraction of the

mixture. (a) MSD for three different fractions of active agents (markers) along with least-squares fit to (22) indicated through solid lines. (a.I)

Diffusion coefficients and crossover time obtained from a fit of the data to (22). (b) MSD for three different fractions of active agents. (b.I)

Ballistic coefficients obtained from the relation (21) with ξ = 2. (c) MSD along with least-squares fit to (22) indicated through solid lines.

(c.I) Short-time ballistic coefficients obtained from the relation (21) with ξ = 2 and (c.II) long-time diffusion coefficients as well as crossover

time obtained from a fit of the data to (22).

5 Hydrodynamic effects?

In the continuum limit, the DPD method approximates

Navier–Stokes-type hydrodynamics within certain limita-

tions,62 in particular on the Schmidt number Sc = µ/(ρD),
with µ the fluid viscosity and ρ the mass density.48,63,64 Sc

is a dimensionless measure of the competition between mo-

mentum diffusivity and mass diffusivity and is of order O(1)
for gases and of order O(103) for liquids. Despite the Schmidt

number of a DPD fluid being or order O(1) rather than O(103),
DPD is expected to produce reasonable hydrodynamics in

many applications,65 granted suitable choices for the DPD pa-

rameters.

In the current study, we therefore use conventional DPD pa-

rameters. In the mesoturbulent phase, these parameter choices

yield realistic diffusion properties, as discussed in Section 4.

Yet, strategies to circumvent the Schmidt number limitations

of DPD66–68 might well result in improved results, in partic-

ular when the objective is to model a more detailed specific

problem rather than a generic mixture as pursued in the current

study. However, before tuning the Schmidt number limitations

of DPD, more research needs to be done to determine whether

“effective” Schmidt numbers can be defined for active mat-

ter and, secondarily, what impact modeling assumptions on

the Schmidt number would have with regards to capturing the

salient features of active matter.

Moreover, the impact of hydrodynamic effects in active

matter is an ongoing research topic, as evidenced by recent

publications69,70 and reviews.1 In particular, simulations sug-

gest that purely steric interactions1 can lead to large-scale

correlated motion, whereas the effect of long-range hydrody-

namic interactions remains controversial.70 Importantly, in the

current model, we do not prescribe any long-range interactions

and we do not make any a priori assumptions on hydrody-

namic interactions. Yet, our results suggest that in the meso-

turbulent and the vortical phase, the passive agents act as an

effective solvent mediating hydrodynamic like interactions, as

discussed in Sections 3 and 4. In particular, the vortical phase

appears to emerge due to effective hydrodynamic-like interac-

tions between the active agents mediated by the presence of

the passive agents, as discussed in Section 3. However, more

detailed investigations of the hydrodynamic-like interactions

in mixtures of active and passive agents would seem to be well

worth the effort.

6 Discussion

The results of our model system have several implications that

have potential to be further investigated within the context

of both heterogeneous biological systems and heterogeneous

artificial active matter systems. Artificial realizations of ac-

tive matter systems include, for example, catalytically driven

Janus particles,35–39 light-activated particles,40,41 polymer-

based nanomotors,42–44 and robotic swarms.45–47 First, the re-

sults of our model system suggest that all dynamical phases

and the associated motion patterns may be achieved using

a relatively low fraction of self-motile agents. In scenar-

ios where active matter is realized with artificial self-motile
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agents, this implies that a small number of potentially diffi-

cult to manufacture and costly agents should suffice to drive

passive agents and generate large-scale flow patterns. Further,

it is conceivable that mixtures of active and passive particles

have prospective value for microfluidic tasks such as pumping

used in combination with confining geometries including, for

example, ratchets.71

In a different scenario, the transition between mesoturbulent

and the polar flocking phases might be controlled by adjust-

ing the fraction of active agents, while fixing parameters asso-

ciated with self-propulsion. Technologically, this means that

the emergence of either phase could be controlled by switch-

ing identical agents on and off to adjust the fraction of active

agents. Such a strategy would make it unnecessary to adjust

the parameters related to the magnitude of the self-propulsion.

The principle of controlling patterns of motion through us-

ing different species of active and passive particles might be

used to increase efficiency in self-powered drug delivery sys-

tems,72 water purification,73 and a multitude of microfluidic

processes. For example, the results of model system suggest

that the concentration of (artificial) active agents could be used

as a simple switch to control the onset of directed transport or

pumping through a dynamical phase transition from the meso-

turbulent phase to the flocking phase. This potentially promis-

ing avenue remains to be investigated experimentally. More-

over, the extent to which findings derived from our model sys-

tem can be transferred to real systems of biological or artificial

active matter remains to be decided.
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Fig. 1 Table of content entry: We model mixtures of self-motile and passive agents and study dynamical phases and diffusion properties.
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We model mixtures of self-motile and passive agents and study dynamical phases

and diffusion properties.
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