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We numerically study the phase behavior of colloidal particles with two charged

patches at the poles and an oppositely charged equatorial belt. Interactions between

particles are described using the inverse patchy colloid model, where the term in-

verse emphasizes the difference with respect to conventional patchy particles: as a

consequence of the heterogeneous charge distribution, the patches on the particle

surface repel each other, whereas the patches and non-patch regions mutually at-

tract. For the model parameters considered in this work, the system exhibits an

unusual equilibrium phase diagram characterized by a broad region where a novel

structure composed of parallel colloidal monolayers is stable.
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I. INTRODUCTION

In the last few years the theoretical investigation of the phase behavior of particles with

anisotropic shapes and/or interactions has been a very active field of research [1–3]. The

study of these particles is not only interesting from a fundamental point of view but is also

motivated by the advances in colloidal science that allow the synthesis of exotic building

blocks for the self-assembly of new materials [2, 4, 5]. Anisotropically interacting particles

can exhibit an amazingly rich and unusual phase behavior [6–9] and they are thus nowadays

regarded as ideal building blocks of novel self-assembled materials with specific symmetries

and physical properties [1].

In this paper, we consider colloidal particles whose anisotropic interactions originate from

the presence of differently charged surface regions. These particles have been presented

in Ref. [10] and are referred to as inverse patchy colloids (IPC). Differently from conven-

tional patchy colloids [3], IPCs are mutually repulsive particles carrying extended patches

that repel each other and attract those parts of the colloid that are free of patches; these

systems are thus characterized by a non-trivial interplay between attractive and repulsive

directional interactions. IPCs can be considered as representatives of a wide class of inhomo-

geneously charged units, spanning from viral capsids to virus-like nanoparticles and spotted

vesicles [11–13]. Within this broad class of systems, we focus on heterogeneously charged

aggregates that feature one of the simplest possible surface patterns: we consider spherical

particles decorated by two polar patches and an oppositely charged equatorial belt.

Investigations of IPCs under planar confinement have shown a wealth of different as-

semblies with tunable spatial and orientational order [14, 15], the formation of quasi two-

dimentional aggregates being an emergent feature under these confinement conditions [14,
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15]: as soon as more than two particles are involved, IPCs bond to their neighbors with their

symmetry axes oriented in plane, thus favoring the formation of monolayers; within these

colloidal layers the bare equatorial regions of the particles are exposed, so that a growth

along the direction perpendicular to the planar assembly is disfavored.

In this contribution we select an IPC system prone to form planar aggregates in the bulk

and we study its equilibrium phase diagram. Our particular interest in the formation and

stability of two-dimensional colloidal sheets is driven by the wealth of direct applications

for optoelectronic and data storage devices; lamellar structures have indeed outstanding

mechanical and optical properties, such as an enhanced photoconductivity response or a

phenomenal external load stability [16–18]. The template-free organization of particles into

planar structures has been observed in a variety of either natural and synthesized systems,

such as S-layer proteins [19], nacre-like systems [20], or CdTe, PbS and PbSe nanoparti-

cles [16–18]. In all the aforementioned systems, the self-assembly of the lamellar phase

occurs in equilibrium and originates mainly from anisotropic interactions, e.g. dipolar in-

teractions, hydrophobic attractions, and site-specific binding. Also Janus particles as well

as particles with patches arranged in an ad hoc geometry on the particle surface have been

shown to form a variety of mono/double-layer structures and wrinkled planes [21–25], thus

opening the way to theoretical investigations on the interplay between the thermodynamics

and the directional nature of the particle-particle interactions.

Here we show how one of the simplest charge distributions on the colloidal surface allows

the formation of an equilibrium phase composed of parallel crystalline monolayers. More

specifically, we select an IPC system which shows in its zero-temperature phase diagram the

presence of an equilibrium lamellar phase and we investigate the stability of such a structure

at finite temperature. Our findings highlight the potentialities of IPC systems as it results
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from a non-trivial interplay between attractive and repulsive directional interactions: in

addition to two face-centered-cubic lattices, the phase diagram of the selected system is

characterized by a quite broad region where the lamellar phase is stable.

The paper is structured as follows: section II introduces the model, its parameters and

its zero-temperature phase diagram, section III describes the free energy calculations used

to evaluate the finite temperature phase diagram of the selected system, section IV reports

the results of our investigation, and section V summarizes our conclusive remarks.

II. MODEL

The IPC model introduced in Ref. [10] features a spherical, hard colloid of radius σ with

a surface pattern defined by two charged polar areas and one oppositely charged equatorial

region. The particle diameter of 2σ sets the length unit.

The coarse-grained potential between two IPCs is given by an isotropic, hard-core re-

pulsion, that models the steric constraint, and a direction-dependent contribution, that can

be overall attractive or repulsive depending on the relative orientation of the two particles.

Such a directional contribution results from the interplay between the differently charged re-

gions on the particle surface and can be described by considering the corresponding interplay

between the interaction spheres of both the bare colloids and the patches. The directional

contribution to the pair potential can be factorized into three parts corresponding to the

EE, EP and PP interaction types, where the subscripts refer to the equatorial-equatorial,

equatorial-polar and polar-polar interactions. By postulating that the energy strength of

each interaction type is a constant, while the relevance of each interaction is imposed by

the relative geometry of the two IPCs, the directional part of the potential can be written

as [10] V = ωEEuEE + ωEPuEP + ωPPuPP, where the dependence on the distance and on the
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mutual orientation of the two particles is omitted for sake of simplicity. In the preceding

expression, uEE, uEP and uPP are the constant energy strengths of the EE, EP and PP in-

teractions, while ωEE, ωEP and ωPP are dimensionless weights that are proportional to the

overlap volumes of the corresponding interaction spheres. While the overlap volumes for a

given two particle configuration are fixed by the choice of both the interaction range and

the patch size, the energy constants are set by mapping (with the so-called “max” scheme)

the coarse-grained potential to the analytical Debye-Hückel potential [10].

The resulting pair potential is characterized by three independent parameters [10]: (i)

the interaction range δ, that depends on the salt concentration, (ii) the surface extension of

the polar caps, that is defined by the opening angle γ, and (iii) the set of contact energies for

three characteristic particle-particle configurations ǭ, that is fixed by the ratio between the

charge of the bare colloid Zc and the charge of the patches Zp. The latter set of parameters

can be written as ǭ = (ǫPP, ǫEE, ǫEP), – see panel (a) of Figure 1. The minimum of the

equatorial-polar attraction, |ǫEP|, sets the energy unit.

In the present paper we consider moderately overcharged colloids under low electrostatic

screening conditions. Specifically, we fix κσ = 2, where κ−1 = δ is the Debye screening

length; thus δ = 0.25 in units of the particle diameter. We consider IPCs that are deco-

rated with polar patches defined by γ = 38.6o and that are characterized by the set ǭ =

(1.94, 0.39,−1.00) in units of ǫEP (see panel (b) of Figure 1). The set ǭ results from consider-

ing real colloids of diameter ≈ 60nm, with a total charge Ztot = Zc+2Zp = 1/11Zc, dispersed

in water at room temperature [10]. The corresponding reference energy is ǫEP = −15.71009

in units of kBT . [26]

Throughout this article, all the magnitudes will be expressed in reduced units with respect

to the distance and energy units, i.e, the reduced temperature is T ∗ = kBT/|ǫEP | and the
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of parallel layers (see top panels of Figure 2). As also observed for a selection of IPC systems

under confinement [14, 15], particles within each layer form a grain-like bonding pattern

with a triangular spatial arrangement and with the polar regions pointing to approximately

the middle of the center-to-center vector that joins two adjacent nearest neighbors. Since

particles pertaining to the same layer are oriented with their symmetry axes in plane, they

expose their bare equatorial region to the neighboring layers, thus leading to a repulsive

inter-layer interaction that prevents the layers from collapsing on top of each other. The

distance between the layers at each pressure results from a competition between the energy

penalty and the higher packing fraction that result when the inter-layer distance is reduced.

This structure has a quite low energy (−2.29 <∼ U∗ <
∼ −2.27) due to the large number of

equatorial-polar interactions within the layers but a relatively low packing fraction (0.545 <∼

η <∼ 0.564). As the pressure increases, a higher packing fraction becomes more favorable,

so that for pressure values p∗ >∼ 1.30 a close packed solid becomes more stable than the

layered structure: in this structure particles are located at the positions of a face-centred

cubic (FCC) lattice and are oriented such that they maximize the number of equatorial-

polar interactions (see bottom panels of Figure 2). The ordered FCC structure exhibits

a quite high packing faction (η ≈ 0.741) but its lattice energy is higher than that of the

layered structure due to the presence of a larger number of repulsive equatorial-equatorial

contacts (U∗ ≈ −1.98). As observed in other patchy particles systems [28], one expects that

at sufficiently high temperatures the particles populating the FCC lattice will have enough

kinetic energy to rotate almost freely in space, thus forming a plastic crystal.

The identification of the layered structure in the zero-temperature phase diagram moti-

vated us to investigate the phase behavior of such an interesting structure at finite tem-

perature.
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simulations [30, 31], in which, not only the volume, but also the moduli and the angles of

the vectors of the simulation box are allowed to vary independently, so that the ordered

lattice can relax to its equilibrium structure, guaranteeing that the system is not under

stress [32]. Simulations of the ordered structures typically exerted over about 100,000 MC

cycles for equilibration plus about 400,000-500,000 for taking averages. We considered N =

500 particles for the FCC-like ordered structure and the FCC plastic crystal, and N = 480

particles for the layered structure. The initial configurations of the ordered structures were

generated by replicating the unit cell obtained with the optimization method mentioned

before along the three dimensions of the space.

B. Einstein molecule method

The free energy of the solid phases was evaluated using the Einstein molecule ap-

proach [32, 33] which is closely related to the Einstein crystal method [34, 35]. In both

approaches the free energy of a given solid is calculated by designing an integration path

from the real system to an Einstein crystal with the same structure as the real solid and

for which the free energy can be calculated analytically or numerically [32–34]. In the

Einstein crystal method the center of mass of the ensemble is kept fixed in order to avoid

a quasi-divergence in the integration from the solid to the Einstein crystal, whereas in the

Einstein molecule approach this is achieved by fixing the position of one molecule [33, 34].

In the Einstein molecule method the translational reference field is simply given by:

UEin,t =
N∑
i=2

λt(ri − r0,i)
2 (1)

where λt is the spring constant, r0,i is the lattice position of particle i and ri corresponds to

its actual position.
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As we are dealing with orientationally dependent interactions, the system is also coupled

to an orientational field that keeps the particles in their equilibrium orientation. As shown

previously [36–38], it is useful to choose an orientational field that is characterized by the

same symmetry as the particles. Since the IPCs considered in this work have axial symmetry,

we used the following orientational field:

Uorient =
N∑
i=1

λo sin
2 ψi (2)

where λo is the coupling parameter which has the dimension of an energy, and ψi is the

angle formed by the axis of symmetry of particle i in an instantaneous configuration and

the corresponding axis in the reference configuration. The free energy contribution due to

the orientational field was evaluated using MC integration.

Typically between 15-20 values of the coupling parameter λ∗ = λt/kBT/(2σ)
2 = λo/kBT

were used to perform the integration from the real system to the Einstein crystal. The value

of the integrand at each of these intermediate values of λ∗ was evaluated by means of an

NVT simulation exerted over about 50,000 cycles for equilibration plus another 200,000 MC

cycles for taking averages. For more details on free energy calculations using the Einstein

molecule method see Refs. [33, 37]. Some values of the free energy obtained using this

method are given in the Appendix.

The free energy of solids is known to exhibit a system size dependence and, therefore, a

rigorous calculation would require evaluation of the free energy at different system sizes and

an extrapolation of this quantity to infinite system size. However, previous work has shown

that for the sizes considered in this work (N >
∼ 500) finite size effects are usually small [33]

and for that reason we did not explore this issue further.
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C. Thermodynamic integration

For the fluid phase the free energy was evaluated by thermodynamic integration using

as reference system either the ideal gas (i.e., integrating from very low densities) [37] or

the hard-sphere fluid [23] (i.e., integrating from very high temperatures at which the IPCs

considered in this work behave virtually as hard spheres, for which the free energy was

obtained using the equation of state of Kolafa [39]). As we will see later, our model system

exhibits liquid-vapour separation and, therefore, integration from the low density limit must

be performed at supercritical temperatures to avoid crossing the phase separation region.

Both integration routes were used at different thermodynamic conditions obtaining a good

agreement between them (see details in the Appendix).

Once the free energy of a particular phase is known at a given thermodynamic state,

the free energy at another point can be obtained by thermodynamic integration along an

isotherm or along an isobar. The coexistence point between competing phases is then es-

timated by imposing the condition of thermodynamic equilibrium, i.e. two phases are at

equilibrium when they exhibit the same chemical potential at the same temperature and at

the same pressure [37].

Starting from one known coexistence point, the entire coexistence line can be traced

by using the Gibbs-Duhem method [40, 41], which consists in numerically integrating the

Clausius-Clapeyron equation.

Throughout this work, we have regularly performed thermodynamic consistency checks

(i.e. comparison of the free energy at a given state point obtained via different thermody-

namic routes) in an effort to avoid errors in the evaluation of the phase diagram (see the

Appendix for further details).
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D. Direct coexistence method

As mentioned before, in the layered structure particles are oriented with their symmetry

axes parallel to the planes, exposing the equatorial region between planes. As a consequence,

at moderate pressures the distance between the layers is relatively large because the system

tries to minimize the energy penalty arising from equatorial-equatorial contacts between

adjacent layers, and at finite temperatures layers are almost free to slide with respect to

each other. This complicates the evaluation of the free energy using the usual Einstein

crystal or Einstein molecule methods because it leads to a quasi-divergence in the integrand

that needs to be evaluated in going from this structure to the Einstein reference crystal.

This problem was avoided with the direct coexistence method [42, 43] which has been

successfully used in the past to calculate the melting point of many systems, including

water [44], hard-spheres, and patchy particles solids [45] or quasicrystals [46], just to mention

a few examples. This method consists on building a simulation box in which the solid is in

contact with the fluid phase. Then the coexistence point can be simply estimated by, for

example, fixing the temperature and monitoring the evolution of the fluid-layered interface at

different pressures. If the actual pressure is higher than the coexistence pressure, the layered

structure will grow at the cost of the liquid, whereas if it is lower than the coexistence

pressure the layered structure will melt. For this particular structure the kinetics of the

growth and the melting of the crystal is much faster when the fluid-layered structure interface

is perpendicular to the layers: for this orientation of the interface particles at the edges of the

layers expose the polar patches to the melt, allowing the formation of bonds with particles

from the fluid, while the growth of the layers at pressures above coexistence, or acting as

lattice defects within the close-packed layers that promote the melting at pressures below
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coexistence.

Initially the system contained 480 particles in the parallel layers phase plus another 480

particles in the fluid phase, i.e. the total number of particles was N = 960. Snapshots of the

starting and the final configurations at T ∗ = 0.159 for three different pressures are shown in

Fig. 3. The evolution of the interface at these thermodynamic conditions was investigated

by performing NpT simulations in which the three edges of the box were allowed to change

independently. As our system contains an interface, the pressure is in fact an anisotropic

tensor and, therefore, strictly speaking, only the size of the edge perperdincular to the

interface should be allowed to vary (corresponding to a NpNT ensemble[47]). However, it is

usually preferable to allow changes in the three edges, because this ensures that the solid is

relaxed to its equilibrium structure. The error introduced by the presence of the interface in

the NpT simulations is small provided that the edge of the simulation box perpendicular to

the interface is much larger than the edges parallel to it [48]. We observe complete melting

at p∗ = 1.40 and complete crystallization at p∗ = 1.79. However, at p∗ = 1.59 the interface

remains stable over long times (∼ 107 MC cycles), evidencing that this pressure is close

to the coexistence one. By performing simulations on a finer grid of pressures, we were

able to bracket the coexistence point within the interval 1.591 < p∗ < 1.600, taking as the

coexistence pressure p∗ = 1.595. Note that the kinetics of the system becomes extremely

slow as the temperature is lowered: using this method at T ∗ = 0.127 we could only bracket

the coexistence pressure within the interval 0.464 < p∗ < 0.637, the interface remaining

quite stable within this range for very long simulation times (∼ 107 MC cycles).

Once that the melting point has been obtained with the direct coexistence method,

the free energy of the layered structure can be estimated by resorting to the condition
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FIG. 3. (color online) Initial (left column) and final configurations (right column) obstained with

the direct coexistence method for the liquid-parallel layers interface at T ∗ = 0.159 and at pressures

below coexistence (p∗ = 1.40, top panel), near the coexistence point (p∗ = 1.59, middle panel) and

above the coexistence point (p∗ = 1.79, bottom panel). The particles that are initially in the fluid

state are coloured in blue whereas those initially belonging to the parallel layers are coloured in

red. In both cases the two patches at the poles of the particles are shown in yellow.

of thermodynamic equilibrium that implies that two phases are in equilibrium at a given

pressure and temperature if they have the same chemical potential. Therefore, the free

energy of the layered structure at the melting point can be estimated by evaluating the free

energy of the fluid phase at that point.

The coexistence of the FCC plastic crystal with the fluid phase was also evaluated using

this method. In this case the initial simulation box contained 500 particles in the solid phase

and another 500 particles in the fluid phase. For simplicity the interface was built so that

the FCC plastic crystal was exposing the (0, 0, 1) planes to the fluid phase. In this case

the kinetics of the the growth or melting of the crystal was quite fast (usually the interface

clearly evolves to the crystal or the melt within 105−106 MC cycles) allowing us to estimate

the melting point using relatively short simulations and thus we did not deem necessary to
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explore other orientations of the FCC plastic crystal to the interface.

E. Liquid-vapour separation

The liquid-vapour coexistence line was evaluated using a combination of grand-canonical

Monte Carlo (GCMC) and Gibbs ensemble simulations. A first rough estimation of the

critical point was obtained by finding a subcritical thermodynamic state (specified by the

chemical potential µ and T ) for which the system exhibits large fluctuations in density and

energy, transitioning between the liquid and vapour phases with relatively high frequency. At

this thermodynamic state, we evaluated the probability distribution of the order parameter

M ∼ ρ+ su [49], s being the mixing parameter, ρ the number density and u the energy per

particle, that showed a doubled peaked shape close to the critical point. The precise location

of the critical point was then obtained by using histogram reweighting [49] and searching for

the thermodynamic conditions and the value of the s parameter for which the probability

distribution of the order parameter M matches that of the 3D Ising model.

IV. RESULTS

The calculated phase diagram in the p − T representation is shown in the top panel of

Fig. 4. The two ordered structures predicted as the most stable phases at zero temperature,

namely, the parallel layers and the FCC solid, are able to survive over a quite broad range

of temperatures. Note that the extrapolation of the coexistence line between these two

phases to zero temperature matches the coexistence pressure (p∗ ≈ 1.30) obtained with

the evolutionary algorithm (shown in the plot by a red circle), giving us confidence on the

reliability of these calculations. Upon increasing the temperature the range of stability of
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the layered structure increases at the expense of the FCC solid. The layered structure has

a higher entropy than the FCC solid which is probably due to a higher vibrational entropy

associated with the pronounced vibrations of the particles tilting out of the planes, favouring

its stabilization at high temperatures.

This model exhibits a stable vapour-liquid separation that starts at a triple point in

which the vapour, the liquid and the layered solid coexist, and ends at a critical point

shown as a black dot in Fig. 4. An initial guess of the location of the critical point was

obtained by performing GCMC simulations in a cubic box of edge L = 11Å. By reweighting

the probability distribution of the order parameter M ∼ ρ + su for this initial point, we

searched for the parameters that better fitted the distribution of M to that of the 3D Ising

model. The distribution was symmetric and the better match was achieved for a nearly zero

mixing parameter, s = 0, and for T ∗

c = 0.122 and ρ∗c = 0.235. As we are more interested

in the ordered phases, we have not accurately evaluated the pressure at the critical point.

However, a rough estimation can be obtained from the equation of state along the critical

temperature that suggest that the critical pressure is below p∗ <∼ 0.2. The precise location of

the triple point could not be estimated because it occurs at very low temperatures (T ∗ ∼ 0.1)

where the equilibration of the liquid is prohitively slow. Below the triple point the layered

structure coexists with a gas of particles whereas above this temperature it coexists with

the liquid.

The FCC solid above a given temperature transforms via a first order phase transition

into a plastic crystal in which the particles occupy the sites of an FCC lattice but have

enough kinetic energy to rotate almost freely. This transition occurs at temperatures at

which the layered structure is still thermodynamically stable, thus resulting in a triple point

at which the layered structure, the FCC solid and the FCC plastic crystal coexist (located
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at T ∗ = 0.148 and p∗ = 2.683 and labeled as A in Fig. 4). By increasing the temperature

even further the FCC plastic crystal melts, giving rise to another triple point at which the

liquid, the layered structure and the FCC plastic crystal coexist (located at T ∗ = 0.178 and

p∗ = 2.51 and labeled as B in Fig. 4).

The T − ρ phase diagram is shown in the bottom panel of Fig. 4. Starting the discussion

with the parallel layers, it can be seen that the range of densities at which this phase is

thermodynamically stable increases as the temperature is lowered: this is related to the fact

that the corresponding coexistence pressure with the liquid decreases as the temperature goes

down, thus allowing the layered structure, which exhibits only weak interactions between

the neighbour parallel layers, to expand to lower densities by increasing the inter-layer

distance. Due to the difficulty of equilibrating the system at low temperatures, we could

not evaluate accurately neither the liquid-vapour nor the liquid-parallel layers coexistence

lines down to the triple point; thus we cannot provide reliable estimates of the densities

of those three phases at the triple point. The dotted red line (at T ∗ ≈ 0.1) in the lower

panel of Fig. 4 marks the lower limit for which reliable data of the coexistence lines can

be provided. Below the triple point, a gas of particles is in coexistence with the layered

structure. We attempted to estimate the coexistence between those phases at T ∗=0.095

(i.e., a temperature most likely below the triple point). However, at such low temperatures,

it is extremely expensive to obtain well converged averages for both the fluid and the layered

structure. For example, for the layered structure, an inspection of the configurations reveals

that at these low pressure values there is quite a high probability that the system evolves

to vanishing densities by increasing the inter-layer distance (thus leading to an increase in

entropy) while preserving a close-packed configuration within each layer (thus preserving a

quite low energy). Nonetheless, we also observed that in some of the analysed configurations
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FIG. 4. (color online) Phase diagram in the P − T (top) and the T − ρ (bottom) representations.

The coexistence point between the parallel layers and the FCC solid obtained at zero temperature

is shown as a red circle in the P − T diagram. In the T − ρ diagram, the blue horizontal line

labelled as A signals the triple point in which the layered structure, the FCC plastic crystal and

the FCC coexist, whereas the one labelled as B signals the triple point between the fluid, the

layered structure and the FCC plastic crystal. Each of this lines corresponds to the point labelled

with the same letter in the P − T diagram. The black dot shows the location of the critical point

and the black dashed line is a guide to the eye that connects the higher temperature for which

the liquid-vapour coexistence was evaluated using Gibbs ensemble simulations and the critical

point. The red dashed line represents the lower limit for which we were able to evaluate either the

vapor-liquid or the liquid-layered structure coexistence lines.
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the inter-layer distance does not extend beyond the interaction range, due to the formation

of temporary inter-layer bonds. These bonds between the layers can only form when the

bonds within the layers are slightly distorted (i.e. when the particles tilt out of their plane)

as a result of the thermal vibrations of the particles in the system. The formation of such

attractive bonds does not invariably lead to a lower total energy: our simulations provide

very similar average energies both in the presence and in the absence of inter-layer bonds

(the first case being lower with respect to the second by about 0.1%, within the statistical

uncertainty). It might be that in the thermodynamic limit the many weak inter-layers

bonds due to kinetic vibrations are sufficient to stabilise the inter-layer distance within the

particle interaction range, the lowering of the energy would compensate the entropy loss,

thus favouring more packed layered structures. On the other hand, at zero temperature

the layered structure is the most stable phase down to p*=0 and at zero temperature and

pressure there is a degeneracy between all parallel layer structures with any distance between

the layers larger than the interaction range of the IPCs. Thus it also seems plausible that

at very low temperature and pressure values, less packed layered configurations could be

favoured, since distortions of intra-layer bonds due to thermal fluctuations become less and

less favourable as soon as the temperature approaches to zero. Further and more extensive

(and thus more expensive) studies would be needed to clarify the behaviour of the system in

such a region of the phase diagram. Since thermodynamic integration becomes prohibitively

difficult in this regime, we assume that the coexistence pressure will shift to lower values as

the temperature is decreased, since the entropic contribution to the free energy (that favours

the gas of particles) becomes less relevant as we approach to zero temperature.

By increasing the density, the layered structure transforms into a close-packed FCC struc-

ture. As mentioned before, when the temperature is increased, this FCC solid becomes a
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plastic crystal. The orientational first order transition of the FCC lattice is accompained

by small discontinuities either in the density or in the energy and the transition occurs with

very little hysteresis of these two quantities (see more details in the Appendix). Therefore

the coexistence line between the FCC crystal and plastic crystal phases can be obtained by

simply heating and cooling the system at different pressures. By reducing the density, the

FCC plastic crystal can coexist with the parallel layers below the triple point B and with

the fluid above this point. Curiously, at coexistence, the density of the fluid and of the FCC

plastic crystal decreases slightly as temperature increases. This is probably due to the fact

that the energy of the fluid is lower than that of the FCC plastic at coexistence, because

particles in the fluid locally arrange to avoid repulsive equatorial-equatorial contacts.

V. OUTLOOK AND CONCLUSIONS

In summary, in this work we have evaluated the equilibrium phase diagram of moderately

charged IPCs at low screening. At these conditions the IPC model forms a laminar structure

in which the particles within each layer are arranged in a close-packed triangular lattice,

while the inter-layer interaction is rather weak.

The relatively low energy in combination with a high entropy stabilizes this structure

over a wide range of thermodynamic conditions. At high pressures the layered structure

transforms into a close packed FCC lattice, which, in turn, becomes a plastic FCC crystal at

high temperatures. In addition, this model exhibits a stable liquid-vapour phase separation.

As mentioned in the Introduction, previous simulation studies of simple models had al-

ready reported the formation of layered structures. For example it has been found that

one-patch particles with a 40% surface coverage can assemble in double layers [25]. Inter-

estingly, spherical particles with a number of sticky patches distributed all over the particle
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surface are also able to form single layers, mimicking the behaviour of some proteins and in-

organic compounds [21]. Probably due to the high computational cost, none of these studies

addressed the thermodynamic stability of these layered structures. Romano et al. [23] tried

to study the stability of a layered structure formed by three-patch colloids with the patches

distributed along the equator and forming an angle of 120o between each other. However,

in this case, the layered structure was mechanically stable only at very low temperatures,

at which obtaining well converged results for the fluid was very computationally expensive;

thus, it was not possible to determine whether the layered structure was thermodynamically

stable or not [23]. The stabilization of a stacking of layers has also been observed for a

system of charged colloids with a dielectric mismatch with the solvent in an external biaxial

field [22]. These particles assembled into a stack of layers very similar to the IPC particles

studied in the present work, the particles arranged in a fairly compact triangular lattice

within each plane with the inter-layer distance being relatively large due to the repulsion

between planes.

For future work, it will be interesting to study how the different model parameters (inter-

action range, patch opening angle, and energy strength constants) affect the stability of the

lamellar structure. Intuitively one would think that this phase is stabilized by moderately

increasing the size of the patches (thus lowering the energy within the parallel layers). We

can also extrapolate from zero-temperature investigations [27] that a large change imbal-

ance between the core of the particles and the patches favours the formation of the layered

structure. The reason is that a large charge imbalance leads to stronger patch-patch or

equatorial-equatorial repulsions that cannot be avoided in the FCC structure, whereas in

the parallel layers there are almost no patch-patch interactions and the equatorial-equatorial

repulsion can be minimized by increasing the lateral distance between the planes. Thus, a
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large charge imbalance increases considerably the energy of the FCC crystal, but probably

not so much that of the layered structure, thus stabilizing this structure with respect to the

FCC solid. Finally the layered structure might also be stabilized with respect to the FCC

crystal for larger interaction ranges; this could possibly lead to a higher energy for the FCC

lattice but again most likely not for the layered structure, because, as mentioned before,

repulsive equatorial-equatorial interactions in this latter structure can be relaxed by simply

increasing the inter-plane distance. If this guess of the effect of the range turns out to be

valid, this is at odds with the behaviour of conventional patchy colloids (that have mutually

attractive patches on otherwise repulsive cores) for which low density crystals, such as the

diamond cubic lattice, are usually stabilized as the range of the interaction decreases due to

an increase of the angular vibrational entropy [45, 50]. In any case, further calculations are

needed to clarify what is the effect of each of the model parameters on the stability of the

laminar structure. This issue is particularly interesting as it can help to identify appropriate

decoration of the IPC as well as the screening conditions of the solution that favour or hinder

the formation of such layered structures. Besides the equilibrium phase diagram, it would

be also interesting to explore the kinetics of crystallization of the laminar structure. Also in

this case, the study of the effect of each model parameter on the kinetics of crystallization

would be specially relevant.
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Page 22 of 34Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



23

Jonathan Doye.

[1] S. C. Glotzer and M. J. Solomon. Anisotropy of building blocks and their assembly into

complex structures. Nature Mat., 6:557–562, 2007.

[2] A. B. Pawar and I. Kretzschmar. Fabrication, assembly, and application of patchy particles.

Macromol. Rapid. Commun., 31:150–168, 2010.

[3] E. Bianchi, R. Blaak, and C. N. Likos. Patchy colloids: state of the art and perspectives.

Phys. Chem. Chem. Phys., 13:6397–6410, 2011.

[4] S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni, and L. Manna. Octapod-shaped

colloidal nanocrystals of Cadmium chalcogenides via ”one-pot” cation exchange and seeded

growth. Nano Lett., 10:3770–3776, 2010.

[5] S. Sacanna, W. T. M. Irvine, L. Rossi, and D. J. Pine. Lock and key colloids through

polymerization-induced buckling of monodisperse silicon oil droplets. Soft Matter, 7:1631–

1634, 2011.

[6] L. Rossi, S. Sacanna, W. T. M. Irvine, P. M. Chaikin, D. J. Pineb, and A. P. Philipse. Cubic

crystals from cubic colloids. Soft Matter, 7:4139–4142, 2011.

[7] Q. Chen, S. C. Bae, and S. Granick. Directed self-assembly of a colloidal Kagome lattice.

Nature, 469:381–384, 2011.

[8] S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S.-H. Kim, D. J. Pine, and G.-R.

Yi. Shaping colloids for self-assembly. Nature Comm., 4:1688, 2013.

[9] M. P. Arciniegas, M. R. Kim, J. De Graaf, R. Brescia, S. Marras, K. Miszta, M. Dijkstra,

R. van Roij, and L. Manna. Self-assembly of octapod-shaped colloidal nanocrystals into a

hexagonal ballerina network embedded in a thin polymer film. Nano Lett., 14:1056–1063,

Page 23 of 34 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



24

2014.

[10] E. Bianchi, G. Kahl, and C. N. Likos. Inverse patchy colloids: from microscopic description

to mesoscopic coarse-graining. Soft Matter, 7:8313–8323, 2011.

[11] D. A. Christian, A. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J.

Liu, T. Baumgart, and D. E. Discher. Spotted vesicles, striped micelles and Janus assemblies

induced by ligand binding. Nature Mat., 8:843–849, 2009.

[12] M.-C. Daniel, I. B. Tsvetkova, Z. T. Quinkert, A. Murali, M. De, V. M. Rotello, C. Cheng

Kao, and B. Dragnea. Role of surface charge density in nanoparticle-templated assembly of

Bromvirus protein cages. ACS Nano, 4:3853–3860, 2010.
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A. Free energy calculations

The free energy of the fluid phase was evaluated using different thermodynamic paths. At

supercritical temperatures, the free energy of the fluid can be obtained by thermodynamic

integration from the very low density limit, in which the fluid behaves virtually as an ideal

gas:

A(ρ)

NkBT
=
Aid(ρ)

NkBT
+

∫ ρ

0

z(ρ′)− 1

ρ′
dρ′ (3)

where Aid(ρ)/NkBT = ln(ρΛ3) − 1. We took Λ equal to the distance unit (i.e., 2σ) as its

value does not affect the coexistence properties. If the free energy is required at temperatures

lower than the critical point, this route is still valid, but then care must be taken to avoid

crossing the vapour-liquid phase transition. This can be done by first integrating along an

isotherm above the critical point from the very low density limit using Eq. 3, and then

integrating along an isochore up to the desired temperature:

A(V, T2)

kBT2
=
A(V, T1)

kBT1
−

∫ T2

T1

U(T )

kBT 2
dT . (4)

However, this integration path is quite long and accumulation of statitiscal uncertainties

can lead to relatively high errors in the final free energies. Therefore, it would be useful to

compare the free energies with other method. An alternative route is to integrate from the

high temperature limit, in which the fluid behaves as the hard-sphere fluid. In this case,

one can go from the temperature at which we need to evaluate the free energy to infinite

temperature (i.e., β → 0) by integrating along a βp = const line [23]:

β2µ(β2, βp) = β1(µHS(βp) + 〈u〉β1,βp) +
∫ β2

β1

〈u(β′, β′p′)〉β′,β′p′dβ
′, (5)

The value of βµHS(βp) was taken from the equation of state of Kolafa [39].

The two integration paths used for subcritical temperatures are shown in Fig. 5. The
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FIG. 5. (color online) Two alternative integration paths in the T ∗ − ρ∗ phase diagram leading to

the free energy along the isotherm T ∗ = 0.115. It is possible to avoid crossing the vapour-liquid

transition either by first integrating from the very low density limit (ideal gas) at a supercritical

temperature and then performing an integration along an isochore to go to the desired temperature

(path I) or by integrating from the high temperature limit (at which the system behaves as the

hard-sphere system) along a line in which βp = const (path II).

free energies obtained using the two integration paths at both superctitical and subcritical

temperatures give results that are consistent within the statistical uncertainty (see Table I).

The thermodynamic consistency of the free energy of the FCC crystal was also checked by

evaluating the free energy at two different thermodynamic states. As shown in Table II there

is very good agreement between the free energy calculated at T ∗ = 1.272 and p∗ = 5.092

using the Einstein Molecule method and the value obtained by thermodynamic integration

from the T ∗ = 0.127 and p∗ = 3.183 state point.
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TABLE I. Free energy of the fluid as obtained integrating from the ideal gas (path I) or from the

hard-sphere (path II) limits. It can be seen that the relative difference between the free energies

obtained with the two methods (∆A/A) is below 1% either at superctitical (T ∗ = 0.1.273) and

subcritical temperatures (T ∗ = 0.115).

Path T ∗ p∗ ρ∗ A/NkT ∆A/A

I 0.318 1.273 0.743 0.931

II 0.318 1.273 0.743 0.929 0.002

I 0.115 0.509 0.839 -4.176

II 0.115 0.509 0.839 -4.175 0.0002

TABLE II. Free energy of the FCC solid obtained using the Einstein molecule (EM) approach.

The free energy at the last row was obtained by thermodynamic integration (TI) from the state

T ∗=0.127 and p∗ =3.183.

Method T ∗ p∗ ρ∗ A/NkT ∆A/A

EM 0.127 3.183 1.361 2.511

EM 0.127 5.092 1.368 2.625

TI 0.127 5.092 1.368 2.637 0.005

B. Coexistence points

Some coexistence points for the IPC model are given in Table III. Again it was checked

that the coexistence point evaluated directly at a given temperature was consistent with

that obtained using Gibbs-Duhem integration starting from another previously calculated

point along the coexistence line (see Table III).

As mentioned before, the transition between the FCC crystal and plastic crystal phases
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TABLE III. Coexistence points for the IPC model. For the layered structure and the FCC plastic

crystal, the location of the phase transition to the fluid phase was estimated by direct coexistence

(DC) simulations. As it can be seen, there is a good agreement between the coexistence points

obtained using DC and those obtained by Gibbs-Duhem (GC) integration starting from a previous

coexistence point. The coexistence between the FCC crystal and the parallel layers was obtained

by thermodynamic integration, where the free energy of the FCC crystal was calculated with the

Einstein Molecule method and that of the parallel layers was inferred from the DC simulations

(EM+DC).

Coexisting phases Method T ∗ p∗

Fluid-layers DC 0.159 1.60

Fluid-layers DC 0.127 0.464-0.637

Fluid-layers GD 0.127 0.51

FCC -layers EM+DC 0.127 1.57

Fluid-(FCC-PC) DC 0.318 3.94

Fluid-(FCC-PC) DC 0.191 2.64

Fluid-(FCC-PC) GD 0.191 2.60

occurs with very little hysteresis and, therefore, it can be easily located by simply heating

or cooling the system and monitoring the evolution of the density and the energy. As shown

in Fig. 6 the change in both the density and the energy becomes lower as pressure increases.

We checked that this jump in the energy and density corresponds to an orientational order-

disorder transition by monitoring the evolution of the angular distribution probability:

P (θ) =
N(θ)

N∆θ
(6)
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FIG. 6. (color online) Evolution of the density and internal energy when heating the FCC crystal

or cooling the FCC plastic crystal along the isobars p∗ = 5.092 and p∗ = 6.366.

where N(θ) is the number of molecules for which the instantaneous orientation of the axis of

the molecule and its orientation in the reference solid configuration form an angle between θ

and θ+∆θ, and N is the total number of molecules. As shown in Fig. 7, at low temperatures

this distribution exhibits a single peak centred at zero degrees (e.g. for T ∗ = 0.096). As

temperature increases, but still below the transition temperature (e.g., T ∗ = 0.127 and

T ∗ = 0.159), the distribution becomes double-peaked, with one peak centred at zero degrees

and the other at 180 degrees. At these temperatures, the molecules are still oriented but they

have enough kinetic energy to flip between the two energetically equivalent orientations of

the molecules. This behaviour is radically different from that observed above the transition

(T ∗ = 0.223), for which the angular distribution probability is considerably more uniform.
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FIG. 7. (color online) Orientational distribution probability at different temperatures along the

p∗ = 5.092 isobar. At this pressure, the discontinuity in energy and density occurs at about

T ∗ = 0.165. Below this temperature, the distribution shows one or two pronounced peaks at 0 and

180 degrees, respectively, evidencing the orientational order of the molecules, whereas above this

temperature a more uniform distribution is observed with only a slight preference for these angles

over a random orientation.

As can be seen in Fig. 7, there are still preferred orientations but the probability that

molecules adopt these orientations is only slightly higher that a random orientation. This

behaviour of the orientational angle is typical of plastic crystals.
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