
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Linear and non-linear wall friction of wet foams
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We study the wall slip of aqueous foams with a high liquid content. We use a set-up where, driven by buoyancy, a foam creeps

along an inclined smooth solid wall which is immersed in the foaming solution. This configuration allows the force driving

the bubble motion and the bubble confinement in the vicinity of the wall to be tuned independently. First, we consider bubble

monolayers with small Bond number Bo < 1 and measure the relation between the friction force F and the bubble velocity V .

For bubbles so small that they are almost spherical, the friction law F ∝ V is Stokes-like. The analysis shows that the minimal

thickness of the lubricating contact between the bubble and the wall is governed by DLVO long-range forces. Our results are

the first evidence of this predicted linear friction regime for creeping bubbles. Due to buoyancy, large bubbles flatten against the

wall. In this case, dissipation arises because of viscous flow in the dynamic meniscus between the contact film and the spherical

part of the bubble. It leads to a non-linear Bretherton-like friction law F ∝ V 2/3, as expected for slipping bubbles with mobile

liquid-gas interfaces. The Stokes-like friction dominates for capillary numbers Ca larger than the crossover value Ca∗ ∼ Bo3/2.

The overall friction force can be expressed as the sum of these two contributions. On this basis, we then study 3D foams close

to the jamming transition with osmotic pressures Π small compared to the capillary pressure Pc. We measure the wall shear

stress τ as a function of the capillary number, and we evidence two friction regimes that are consistent with those found for the

monolayer. Similarly to this latter case, the total shear stress can be expressed as the sum of the Stokes-like friction term τ ∝ Ca

and the Bretherton-like one τ ∝ Ca2/3. However, for a 3D foam, the crossover at a capillary number Ca∗∗ between both regimes

is governed by the ratio of the osmotic pressure to the capillary pressure, such that Ca∗∗ ∼ (Π/Pc)
3/2

.

1 Introduction

Aqueous foam is a dense packing of gas bubbles in a soapy

solution. This complex fluid exhibits a rich rheological behav-

ior, depending on gas volume fraction, bubble size and surfac-

tant composition1,2. For instance, for an applied shear stress

larger than the yield stress, foam flows as a shear-thinning

fluid. The non-linear stress-strain rate relation observed in

this regime is due to internal friction upon bubble rearrange-

ments. It involves capillary interactions between neighbor-

ing bubbles, viscous friction in the liquid phase as well as

interfacial dissipation2,3. In general, the velocity of a sim-

ple liquid flowing near a solid smooth wall matches the wall

velocity at the boundary. In contrast, a velocity mismatch is

frequently observed in complex fluids such as foams, concen-

trated emulsions or soft pastes3–6. The wall slip phenomenon

in 2D and 3D foams has been studied experimentally, numer-
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ically and theoretically mainly in the dry case (high gas vol-

ume fraction)7–13. It has been shown that the friction arises

from the viscous flow in the films or in the liquid channels

they form at their junctions — the so-called Plateau borders—

in contact with the wall. Since both the size of the films

and of the Plateau borders strongly depend on the gas vol-

ume fraction, foam wall friction is expected to depend also on

this parameter, or equivalently on the foam osmotic pressure

which pushes the bubbles against each other and against the

wall14,15. With decreasing gas volume fraction, the osmotic

pressure decreases and vanishes at the jamming transition. In

this wet limit, the bubbles are quasi spherical with small con-

tact films and thick Plateau borders. This geometry is very

different from that of a dry foam where bubbles are polyhe-

dral and Plateau borders slender, for which previous foam wall

slip models have been developed. This raises the fundamen-

tal question: What are the mechanisms of friction at play in

the wall slip of foams close to the jamming transition, and

which are the laws that describe them? This issue is relevant

for milli- and microfluidic devices16,17 and for many indus-

trial applications18 where foams flow near solid boundaries,

such as enhanced oil recovery, drilling operations or nuclear

decontamination. In these applications, wall slip often needs

to be enhanced to minimize pressure drops along the flow. In

contrast, in rheological measurements, wall slip is a notorious
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artifact that needs to be minimized. Understanding its origin

helps to achieve these goals.

The prediction of foam wall slip is a delicate problem due

to the presence of surfactant molecules. As they adsorb on

the liquid gas-interface and possibly on the wall surface, they

have an impact on the van der Waals or electrostatic sur-

face interactions, which set the static equilibrium contact film

thickness. The interplay between surface forces and hydro-

dynamic forces determines the wall friction19–21. In addition,

surfactants can considerably affect the mechanical behavior of

liquid-gas interfaces. It can be either mobile and stress free as

in a pure liquid, or rigid and able to sustain a tangential shear

stress. The flow profile in the region between the bubble and

the wall strongly depends on this stress boundary condition,

and the mechanical dissipation increases with the interfacial

rigidity.

In dry foams, it has been shown that, for mobile interfaces,

the dissipation is dominated by the viscous flow in the dy-

namic meniscus between the film and the Plateau border9,11.

This mechanism is similar to the one encountered in the mo-

tion of a bubble pushed in a capillary tube, originally ad-

dressed by Bretherton22, of a single soap lamellae23, of trains

of bubbles24,25 pushed in a narrow capillary, or of a flattened

bubble creeping against a wall26,27. Due to this mechanism,

the wall shear stress scales as V 2/3 where V is the foam veloc-

ity at the wall. In contrast, for rigid interfaces10,13, dissipation

is dominated by the flow in the contact film, and this leads to

different scalings of the wall shear stress with V .

In wet foams, the bubbles are quasi spherical, the dynamic

meniscus vanishes and no longer contributes significantly to

the viscous friction. A Stokes like friction scaling linearly

with V is expected to contribute to the total drag, as observed

in an emulsion6 or with isolated bubbles creeping along a solid

wall26.

The aim of this paper is to understand how wet foams slip

along a solid smooth wall, depending on the bubble confine-

ment. To tackle this question, we investigate bubble mono-

layers and 3D foams creeping along a slightly inclined plane

immersed in a reservoir. This set-up allows the driving force

as well as the confinement of the bubbles against the wall to be

tuned independently. By studying the impact of these control

parameters on the velocity of a bubble monolayer, we identify

two friction mechanisms and the conditions under which one

or the other dominates.

2 Previous wall friction models for a bubble or

a dry foam

In this section we consider a bubble confined either in a mono-

layer or in a 3D foam that is pressed by buoyancy against a

solid wall. We describe the size and the equilibrium thickness

of the contact film. These parameters are determinant for the

wall friction for both monolayers and 3D foams since they set

the area over which viscous friction occurs and the charac-

teristic length where velocity gradients set in. We recall the

existing predictions for the viscous drag that accompanies the

motion of an isolated bubble or of a dry foam sliding along a

plane.

2.1 Sliding of an isolated bubble

We consider a gas bubble, of diameter d, which is immersed

in an aqueous surfactant solution (surface tension γ , density

ρ , viscosity η). We describe the equilibrium shape of the

bubble and recall the predictions of the drag force that it

experiences when it slowly creeps along a plane slightly

inclined with a small angle α with respect to the horizontal

(Fig. 1a). The friction laws are summarized in table 1.

Equilibrium bubble shape and film thickness. Under the

action of the buoyancy component normal to the plane, the

bubble is pressed against the wall. It is no longer spherical and

flattens over a circular contact region, of diameter ℓ (Fig. 1a).

We consider the case of total wetting of the surface by the so-

lution so that a thin film remains between the flattened region

and the wall. In addition, we consider bubbles that are small

compared to the capillary length a =
√

γ/ρg, i.e. small Bond

numbers Bo = (d/2a)2 < 1. g denotes the magnitude of the

gravity acceleration g. In this regime, neglecting the small

distortion of the spherical cap that is the outer shape of the

bubble, the balance between the capillary force:

Fcap = πγ
ℓ2

d
(1)

and the normal component of the buoyancy force exerted on a

bubble:

Fb = (π/6)ρgcosα d3 (2)

yields the diameter of the contact20,26,28:

ℓ=

√

cosα

6

d2

a
(3)

When the bubble is at rest (α = 0), the thickness of the contact

film is set by the balance between the capillary force and long

range forces that tend to push the bubble away from the plane,

due to both van der Waals and electrostatic repulsions (DLVO

interactions). Since for Bo ≪ 1, the bubble is only slightly

deformed, we therefore consider the interaction between a gas

sphere and a solid plane separated by a distance h, with liquid

between them. The van der Waals force acting on the bubble

is then given by29:

Fvw(h) =−Aeff d

12h2
(4)
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where the effective Hamaker constant Aeff depends on the

Hamaker constants of the liquid and the solid phases, denoted

AL and AS respectively: Aeff
∼= −

√
AL (

√
AS −

√
AL). Since

AS > AL, we have Aeff < 0, and the effective van der Waals in-

teraction is repulsive. Since the charged surfactant molecules

adsorb either on the solid surface or on the liquid-gas interface,

there is an additional electrostatic repulsion between the plane

and the sphere. Its range is set by the Debye screening length

κ−1
D which depends on the electrolyte concentration c. The in-

teraction potential energy, per unit surface area, between two

planes separated by a distance h is, for a 1:1 electrolyte solu-

tion29:

w(h)≈ 0.0482
√

c tanh2

[

Ψo(mV)

103

]

e−κD h (5)

Ψo is the surface potential expressed in mV and w(h) is ex-

pressed in the unit J/m2. Using the Derjaguin approximation,

the repulsive force between a sphere of diameter d and a plane,

separated by h, is deduced from w(h) as29:

Fel(h) = π d w(h) (6)

The force balance then writes:

Fvw(h)+Fel(h) = Fcap (7)

The solution of Eq. (7) using Eq. (1), (3-7) gives the equilib-

rium separation distance ho, expected to be in the range 5-50

nm.

Friction force exerted on an isolated bubble. When the

plane is tilted by an angle α , the bubble moves with a velocity

V in the reference frame of the plane. In steady motion, the

viscous drag force exerted on the bubble, denoted F , is bal-

anced by the tangential component of the driving buoyancy

force:

F = (π/6)ρgsinα d3 (8)

Dissipation of mechanical energy may arise from flow in the

contact film (that we call region I, cf. Fig1a), in a dynamic rim

(region II) that extends between the film and the part of the

bubble which retains its static shape, or around the bubble fur-

ther away from the wall (region III). In the absence of any sur-

factant, the liquid-gas interface is shear stress free. However,

the presence of surfactants has a strong impact on the stress

boundary condition, which in turn affects the flow profiles in

the three regions. Indeed, surfactant covered interfaces can

offer resistance to shear or compression-dilation as described

by surface stress constitutive laws31. Two limiting cases can

be distinguished: i) In the mobile case, the interface is shear

stress free as it would be for a pure (clean) liquid. Then the

bubble undergoes what is called a slipping motion along the

plane. In practice this can also be achieved with high surfac-

tant concentrations, well above the critical micellar concen-

tration (cmc), that allow complete surface remobilization32,33.

ii) In the rigid case, the interface can sustain a tangential shear

stress and behaves as if it were incompressible and rigid, yet

deformable (like a sheet of paper). When the liquid velocity

at the interface is equal to the bubble velocity V , the bubble

slides with a no-slip boundary condition. If the interfacial ve-

locity is equal to that of the wall, then the bubble experiences

a rolling motion.

Due to the liquid confinement near the wall, liquid veloc-

ity gradients set in, which induce viscous friction in region I.

Therefore, the viscous drag is not given by a simple Stokes

friction law (F = 2πηV d and F = 3πηV d for the mobile

and rigid cases respectively34) expected if the bubble were far

away from the wall. Using a lubrication argument, the pres-

sure drop between the front and the rear of a hard sphere can

be calculated20,27. The resulting tangential force is found to be

linear in V to first order with a prefactor that depends logarith-

mically on the separation distance h between the bubble and

the plane. Assuming that h is fixed by its static equilibrium

value ho ≪ d imposed by long range forces, the viscous drag

(due to viscous friction in regions I and III — region II does

not exist for hard spheres) has been predicted, to first order in

ho/d, in the mobile case20:

F = πηV d

(

−3

5
ln[2ho/d]+1.71

)

(9)

and in the rigid case, as the bubble slides30:

F = πηV d

(

−8

5
ln[2ho/d]+2.86

)

(10)

For very small bubbles, distortion from the spherical shape

is negligible and Eq. (9) and (10) are expected to predict their

drag force. For bubbles that are slightly larger, so that the dis-

tortion of the bubble due to the action of the disjoining pres-

sure over the contact region is more pronounced, there is a re-

gion that logarithmically matches the flat film to the spherical

cap. The contribution of the viscous friction in this match-

ing region to the total drag has also been predicted for bub-

bles with mobile interfaces20. We do not discuss further this

prediction because it is not relevant for our experiments. It

holds for bubble sizes such that h
1/3
o a2/3 ≪ d ≪ a and for

slow flow with a capillary number Ca = ηV/γ much smaller

than Camax
∼= 3.4(ho/d)3/2. However, in this case as well as

in the cases of undeformed bubbles (Eq. 9 and 10), for a given

ho or d, the drag force F is always Stokes-like in the sense that

it increases linearly with the sliding velocity V .

At larger velocity, but still small capillary number Ca ≪ 1,

the thickness of the lubricating film is not equal to its static

equilibrium value, but it is rather set by the flow in regions I or
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with liquid, first studied by Bretherton for a bubble with mo-

bile interfaces22. Assuming a 2D geometry, he predicted that

the drag force, per unit length of the dynamic meniscus, is

4.9γ Ca2/3. A recent computational analysis35 has predicted

a slightly smaller prefactor equal to 3.6. For a 3D bubble,

since the length of region II scales as ℓ (Eq. 3), we expect

the net drag force resulting from pressure drop difference be-

tween the front and the rear of the bubble to scale as γ ℓ Ca2/3

as previously derived using scaling arguments26. Hodges et

al have calculated the prefactor for a 3D bubble with mobile

interfaces, and found27:

F = 4.2γ ℓ Ca2/3 (14)

Combined with Eq. 3, this gives:

F = 1.72γ
√

cosα
d2

a
Ca2/3 (15)

In the case of rigid interfaces with a rolling bubble motion,

the same expression13 is predicted with a prefactor multiplied

by 21/3. For a sliding motion, the contact film (region I) is

sheared and the dissipation is dominated by the viscous fric-

tion due to this Couette flow. The drag force is predicted to be

a non linear function of Ca, but with a smaller exponent than

in the mobile case27:

F = 0.29γ cosα
d3

a2
Ca1/3 (16)

Finally, we note that as soon as the film thickness deviates

from its static equilibrium value and is rather set by the hydro-

dynamic flow, the friction force becomes a non linear function

of the sliding velocity. In section 4.2 we will compare the pre-

dictions given by Eq. 9, 10, 15 and 16 to our measurements of

the force exerted on an isolated bubble, depending on its size

and velocity, and we will discuss how the predictions com-

pare to the drag force exerted on compact monolayers where

bubbles get close to each other (Fig. 1d).

2.2 Sliding of a foam

We consider a slab of foam of thickness H containing several

layers of bubbles of diameter d ≪ a, immersed in a reservoir

of surfactant solution, and which slowly creeps along an

inclined plane (cf. Fig. 1c). We describe the equilibrium

shape of a bubble in contact with the wall and we recall the

existing predictions of shear stress exerted on the solid by a

sliding dry foam.

Equilibrium shape of the bubble layer in contact with

the wall. This layer exerts on the wall an upward force, re-

sulting from the sum of the buoyant forces of all the bubbles

below in the slab. Assuming an average gas volume frac-

tion 〈Φ〉 throughout the layer, of area Ao, the force writes :

ρg 〈Φ〉AoH. Its component, per unit area, normal to the wall

is, by definition, equal to the foam osmotic pressure Π at the

wall14,15,36. In consequence, bubbles flatten over an area of

diameter ℓ, and similarly to the case of a single bubble, they

remain separated from the wall by a thin film whose static

equilibrium thickness is set by the balance between the long

range forces (Eq. 4-6) and the capillary force Fcap given by :

Fcap =
π

4
ℓ2 Pc (17)

where the capillary pressure Pc is the pressure difference be-

tween the gas and the liquid phases. Thus, the normal force,

per unit area, exerted by the bubble layer in contact with the

wall is related to the osmotic pressure by:

Π =
4Φs

π d2
Fcap (18)

Φs is a dimensionless measure of the number of bubbles in

contact with the wall, per unit surface: ΦS = Nπd2/(4Ao)
where N is the number of bubbles over a wall surface area

Ao. Eq. 17 and 18 show how the size of the contact film is set

by the ratio of osmotic pressure to capillary pressure:

ℓ= d

√

Π

ΦsPc

(19)

The ratio Π/Pc represents the fraction of the wall area occu-

pied by the contact films14,37. Eq. 19 is the analog for 3D

foams of Eq. 3 that governs the film size in the individual bub-

ble or monolayer cases. The variations of the osmotic pressure

with the gas volume fraction Φ have been studied over a range

that extends from the dry limit (Φ → 1) to packing fractions

a few percent above Φc, the packing fraction at the jamming

transition15,36:

Π = k
γ (Φ−Φc)

2

d
√

1−Φ
(20)

Φc = 0.64, k = 6.4 for disordered foams, and Φc = 0.74,

k = 14.6 for ordered ones. This is consistent with the

empirical expression previously proposed by Princen14 valid

for disordered foams with Φ > 0.75. Simulations show that

at packing fractions no more than a few percent above Φc, Π

scales as (Φ−Φc)
1.5 in the case of ordered foams15,38 and

(Φ−Φc) in the case of disordered foams38,39. The vertical

gas volume fraction profile in a foam layer, of thickness H,

at static equilibrium in the gravity field can be deduced36

from Eq. 20. For instance, in a monodisperse ordered foam

in contact with a liquid reservoir at the bottom, with a ratio

H/d = 15, d = 82 µm and the capillary length a ≈ 2 mm as

in our experiments, Φ increases from 0.74 at the bottom to

0.76 at the top.
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Wall shear stress for a dry foam. The viscous friction be-

tween a dry 3D foam and a smooth wall has been predicted for

both rigid or mobile liquid-gas interfaces et al9,10,13. These

models rely on the calculation of the friction F exerted on

an isolated bubble creeping along the wall with a velocity V .

Then, knowing the size of the contact film ℓ, this force is re-

lated to the macroscopic tangential stress exerted on the wall,

that we denote τ . This stress is a quantity that can be de-

termined experimentally using rheological measurements. To

relate F to τ , one needs to take into account the number of

bubbles per unit wall area 4ΦS/(πd2):

τ =
4ΦsF

πd2
(21)

For the mobile case (stress free interface), Denkov et al as-

sume that the dissipation arises from the flow in the dynamic

meniscus connecting the contact film to the Plateau border

perpendicular to the wall. Thus, the force F scales with the

capillary number according to the Bretherton-Hodges predic-

tion Eq. 15. The shear stress is further calculated assuming

that the number of bubbles per unit area is 4/(πd2). This ap-

proximation corresponds to ΦS = 1 and is thus only valid in

the limit of a very dry foam. Again neglecting the liquid con-

tent between the bubbles, Denkov et al relate the diameter of

the film ℓ to the bubble size and to the gas volume fraction

using Eq. 19 with ΦS = 1 and the empirical relation formerly

proposed by Princen14 in the range 0.75 < Φ < 0.97. They

predict the wall shear stress in the limit of dry foams9:

τ =C1
γ

d

√

Π

Pc

Ca2/3 (22)

where C1 is a constant prefactor. The wall shear stress exerted

on a dry foam (Φ = 90%) has been measured for foams with

different mean bubble sizes (d in the range 70 to 250 µm), liq-

uid viscosities, and surface tensions9. The variations of τd/γ
with Ca are found to be consistent with the prediction Eq. 22.

Further experiments11 have also confirmed the scaling with

Ca and a first attempt to test the predicted dependency with the

gas volume fraction in the range 0.75 < Φ < 0.95 was made.

However since Eq. 22 is only valid for dry foams, the compar-

ison between the data and this prediction is not pertinent for

wet foams with Φ . 0.9.

Note that, in the case of rigid interfaces, for sliding bub-

bles with a no-slip condition at the liquid-gas interfaces, the

contact film is sheared which leads to additional dissipation of

mechanical energy. Denkov et al describe the flow of liquid

in the film in analogy with the aquaplaning problem where a

liquid film is entrained by the relative motion of a solid sur-

face with respect to a fixed wall9,10. According to this model,

which holds in the dry limit, the shear stress can be decom-

posed as the sum of two contributions, one in Ca1/2 due to the

film, and a second one in Caδ (δ ≈ 0.7) due to the Plateau

border. Recently, it has been pointed out that dissipation in

the contact film can be taken into account in the framework of

the Bretherton model13. In the limit of dry foams, the shear

stress is then predicted to be the sum of a Ca1/3 term due to

the film and to a Ca2/3 due to the flow in the dynamics menis-

cus. The experiments9,11 show that both models can be fitted

to the shear stress data. For a rolling bubble motion (cf. sec-

tion 2.1), the wall shear stress is given by Eq. 22 muliplied by

a prefactor 21/3 as previously shown13.

3 Experimental setup

The foaming solution is an aqueous solution, constituted of

the surfactant tetradecyl trimethyl ammonium bromide (TTAB

from Sigma, 99%, No. T4762) dissolved in pure water (Milli-

pore milli-Q) at concentration c = 9 mM (0.3 %g/g). This con-

centration is equal to twice the critical micelle concentration.

The solution has viscosity η = 0.94 mPa.s, surface tension

γ = 37.5 mN.m−1 and density ρ = 1.0 g.cm3 (i.e. capillary

length a = 1.95 mm) at a temperature of 22.5◦C at which the

wall slip experiments are performed. The liquid-gas interfaces

have low interfacial rigidity with a dilational surface modulus

of the order of a few mN.m−1 at low frequency40. Nitrogen

bubbles are generated either using a flow focusing microflu-

idic device41 or by gas bubbling through a capillary tube (for

the larger bubbles). Monodisperse monolayers are produced

with a bubble diameter d chosen in the range 120 µm-2.7 mm,

with a polydispersity of about 5 %. Polydispersity is defined

as the normalized standard deviation of the bubble diameters.

Monodisperse 3D foams are produced with d = 82 µm (poly-

dispersity < 3 %). These foams are either used right after their

production or let to age for a few minutes. In the former case,

a polycrystalline foam structure is obtained. In the latter case,

due to diffusive gas transfer between neighbours, the bubbles

coarsen and the foam becomes polydisperse and disordered.

After 10 min the average bubble size is d = 115 µm with 10%

polydispersity. We use such foams as polydisperse samples.

We use an immersed inclined plane set-up similar to that

previously used to probe the rheology of wet foams close to

the jamming transition42. The plane is constituted by the sur-

face of a smooth plexiglas plate (15 mm x 100 mm) that is

maintained at an angle α with respect to the horizontal. α can

be adjusted between 0.18◦ and 24◦ with a precision of 0.06◦.

The reservoir in which the inclined plane is immersed is filled

with the foaming solution. We collect bubbles in the reservoir

at the bottom of the plane, and store them with a gate. Then

the gate is opened and the bubbles are released. By control-

ling the gate opening we form either isolated bubbles, a bubble

monolayer or a 3D foam that creep upward along the plane

under the action of buoyancy. For the monolayer, the bub-

ble motion is observed using a camera placed above the plane

(Fig. 1b) while for the 3D foam we use two cameras (Fig. 1c),
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6 Summary and concluding remarks

We have studied the friction of a bubble monolayer and a 3D

foam close to the jamming transition as they creep along a

smooth solid wall. To investigate the behavior close to this

wet limit, the monolayer or the 3D foam are made to move

along an inclined plane immersed in the foaming solution.

The bubble velocity is measured by direct visualization. We

consider small bubbles with Bond numbers Bo in the range

0.0009− 0.5 in the case of monolayers, and low reduced os-

motic pressure Πd/γ in the range 0.006− 0.06 for foams. In

both cases, we have small bubble velocities V i.e. capillary

numbers Ca in the range 10−6 −10−3. We determine the rela-

tion between the force F exerted on a bubble in a monolayer

and the capillary number, as well as the relation between the

wall shear stress τ and Ca for the 3D foam. We show that,

when the bubbles are almost spherical (i.e small Bond number

for the monolayer or small reduced osmotic pressure for the

foam) the friction force is Stokes-like with F ∝ Ca whereas it

increases as V 2/3 in the opposite case. The crossover between

the two regimes is set by the characteristic capillary number

Ca∗ ∼ Bo3/2 for the monolayer or Ca∗∗ ∼ (Πd/γ)3/2 for the

foam.

Our observations where F ∝ Ca are the first evidence for the

Stokes-like friction regime that accompanies the creep of bub-

bles along a wall. The drag force is well described by a lubri-

cation model where the separation distance between the bub-

ble and the wall is set by repulsive long range forces (van der

Waals and electrostatic repulsion in our case) counterbalanced

by buoyancy. The friction coefficient ζm = F/V of a bubble

in a dense monolayer is shown to be smaller than that of an

isolated bubble which is intermediate between those expected

either for mobile interfaces20 (stress free boundary condition)

or rigid interfaces30 (no-slip boundary condition). For the 3D

foam, we evidence the linear relationship τ ∝ Ca which is sim-

ilarly described by a Stokes-like friction at the bubble scale.

The contact film thickness is fixed by the balance between the

long range forces and the osmotic pressure that presses the

bubbles against the wall. Consistently, the prefactor of this re-

lation is equal within 10% to the prefactor deduced from the

monolayer friction coefficient ζm. A linear friction relation

F ∝ Ca has been introduced as a simplified assumption in nu-

merical simulations of 2D foams flowing in Hele-Shaw cells

using the viscous froth model8. Our findings show to what

extent this assumption is justified in the regime of wet foams.

At small Ca < Ca∗, we demonstrate that the friction is dom-

inated by viscous flow in the dynamic meniscus at the transi-

tion region between the contact film and the spherical part of

the bubble. For the monolayer we show that F ∝ V 2/3 with a

prefactor that is about 2.5 times larger than that expected in the

case of mobile interfaces27. This enhanced drag is consistent

with the fact that our surfactant concentration, although supe-

rior to the critical micellar concentration, is not large enough

to completely remobilize the interfaces32,33. In this situation,

surface stress gradients are expected to increase velocity gra-

dients in the dynamic meniscus, which increases the drag. For

3D foams near the jamming transition with Ca < Ca∗, the

shear wall stress variations with Ca and the reduced osmotic

pressure are well described by the relation τ ∝
√

Πd/γ Ca2/3.

This dependency with Ca is in full agreement with that ob-

served for the monolayers. It is also consistent with that pre-

viously found for dry foams9,11.

Furthermore we show that the total drag force exerted on

a bubble in a monolayer as well as the total wall shear stress

exerted on a 3D foam can be expressed as the sum of a Stokes-

like and a Bretherton-like friction term. Remarkably, the pref-

actors of each term (A and B in Eq. 28) are the same as those

of the monolayer drag force (Eq. 23) provided that the impact

of the osmotic pressure on the size of the contact film is cor-

rectly taken into account. Therefore, Eq. 28 predicts the wall

shear stress in the whole range of osmotic pressure Π. Using

the relationship between Π and the gas volume fraction Φ, es-

tablished for the full range of Φ (Eq. 20), the wall shear stress

can thus equivalently be expressed as a function of Φ.

Our model will be useful to predict the wall boundary con-

dition of the velocity profile of foams flowing in any given

geometry. By comparing the shear wall stress (Eq. 28) to the

bulk foam stress-strain rate constitutive relation2,42, one can

predict the flow profile in the full range of gas volume frac-

tion. This will be particularly useful in applications where

foams flow through pipes or channels18 as well as for rheo-

logical measurements where wall slip cannot be avoided.

In further work, it will be interesting to study how the pref-

actors A and B are tuned by the interfacial rigidity, which de-

pends on the chemical properties and the concentration of the

surfactants. In the mobile case, one expects both A and B to

be affected depending on whether partial or complete surfac-

tant remobilization is achieved. The rigid case can be reached

upon addition of a poorly soluble co-surfactant to the foam-

ing solution. It has been shown that in this case wall slip of

dry foams is drastically modified compared to the mobile case

since the contact film then plays a dominant role in the dis-

sipation3. Two dissipation mechanisms in the film have been

proposed9,13, which lead to different scalings of the wall shear

stress with Ca. An investigation of the wall stress as a function

of osmotic pressure (or equivalently the gas volume fraction)

down to the jamming transition should reveal which mecha-

nism is at play. Further work related to applications could clar-

ify how the pressure drop of wet foams in pipe flows can be

minimized. Previous experiments in this configuration47 have

evidenced a linear relation between the pressure drop and the

flow velocity which is reminiscent of the linear friction that

we observe at Ca ≫ Ca∗∗.

Finally, we point out two open questions. The first one con-
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cerns the slippage against a sticky surface obtained when the

foaming solution only partially wets the surface with a non-

zero contact angle. The second one concerns the slippage on

a rough surface. Empirically, it is known that a surface rough-

ness comparable to the bubble size can prevent wall slip1.

However the hydrodynamic mechanisms at play have not been

investigated. Ultimately, if gas is trapped in the microstruc-

tures of the surface forming a bubble mattress, the situation

could switch between a slippery one and a sticky one48. This

would be of great interest for the flow of foams in confined

geometries.
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We thank D. Quéré for stimulating discussions. We grate-

fully acknowledge financial support from the European Space

Agency (Contract MAP AO 99-108) and the Centre National

d’Etudes Spatiales (agreement CNES/CNRS No. 127233).

M. L.M. was supported by a postdoctoral fellowship from the

Centre National d’Etudes Spatiales.

References

1 I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois,
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2531–2540.

37 The ratio Π/Pc is equal to the function f (Φ) defined by Eq. 12 in 14. Thus,

we have f (Φ) = ΦSℓ
2/d2.

38 T. G. Mason, M.-D. Lacasse, G. S. Grest, D. Levine, J. Bibette and D. A.

Weitz, Physical Review E, 1997, 56, 3150.

39 M. van Hecke, J. Phys.: Condens. Matter, 2010, 22, 033101.

40 A.-L. Biance, S. Cohen-Addad and R. Höhler, Soft Matter, 2009, 5, 4672–
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