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The distribution of spherical molecules in contact with a fluctuating membrane depends only on the ratio of 
the lateral correlation length of the membrane and the molecule radius.  
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Ratio of the lateral correlation length and particle radius determines
the density profile of spherical molecules near a fluctuating membrane
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Interactions between membranes and molecules are important for many biological processes, e.g., transport of molecules across

cell membranes. However, the detailed physical description of the membrane-biomolecule system remains a challenge and

simplified schemes allow capturing its main intrinsic features. In this work, by means of Monte Carlo computer simulations,

we systematically study the distribution of uncharged spherical molecules in contact with a flexible surface. Our results show

that the distribution for finite size particles has the same simple functional form as the one obtained for point-like particles and

depends only on the ratio of the lateral correlation length of the membrane and the radius of the molecules.

1 Introduction

The diversity of life has been made possible by the invention

of the plasma membrane which separates the interior of a cell

from the environment. This outer confining envelope of cells

enables cells to build up a constant inner milieu and allows

a selective material exchange between the cell and its envi-

ronment1. A simple bacterium has only the plasma mem-

brane, but the interior of eucaryotic cells is also structured

by membranes, which enclose different intracellular compart-

ments2. The separation into inner and outer space by mem-

branes opened the possibility of energy storage in form of

electrochemical potential gradients, which is essential to many

biological processes, e.g., the active uptake of nutrients in an-

imal cells and signaling in neurons3. Membranes take part

in enzyme activity, e.g., the bio-synthesis of phospholipids or

oxidative phosphorylation and control the flow of information

between cells either by recognizing signal molecules received

from others cells, or by sending chemical or electrical signals

to other cells4. Therefore, membranes play an active part in
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the life of the cell. Biomembranes typically consist of a double

layer of lipids into which different proteins are embedded5.

These bilayers are generally just a few nanometers thick, with

a surface area that extends over several square centimeters. In

many practical situations, a sufficient description of the mem-

brane is to model it as a simple sheet characterized only by its

elastic properties, i.e., bending rigidity and surface tension6.

Many biological processes are controlled by the interactions

of molecules with cell membranes. Besides highly specific in-

teractions of steric, electrostatic and chemical nature7,8, en-

tropic force fields are omnipresent and depend only on ge-

ometrical features. These so-called depletion forces arise be-

cause both the membrane and the molecules generate excluded

volumes for the small particles forming the solvent. Although

these forces have been discussed for biological systems for

many years9, the simultaneous presence of many other forces

severely impedes the precise analysis of depletion forces in

such systems.

In recent years, there has been significant progress in un-

derstanding the depletion forces between two big spheres and

between a single big sphere and a flat wall based on experi-

ments, simulations and theoretical results10–12. In many cases,

membranes are, however, not flat, but rather are surfaces of

varying curvature. This leads to a modification of the deple-

tion forces as they are not longer directed only normal to the

surface, like at a flat wall or at a wall with constant curvature;

there exists a lateral component of the force which promotes

transport along the membrane. Recently, it has been shown

experimentally that these forces are responsible, for instance,

of adhesion of red blood cells to cells or surfaces13. How-

ever, to our best knowledge, there are not systematic theoret-
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ical and simulation studies available which accurately predict

the important curvature dependence of the membranes on both

the depletion forces and the local microstructure of molecules

in contact with the fluctuating membrane. A few theoretical

cases reported by Bickel and coworkers14 illustrate the impor-

tance of such effect. Nonetheless, a full description requires

advanced techniques which must be adapted to study deple-

tion potentials close to arbitrarily shaped substrates.

Molecular dynamics methods are powerful tools which

could be used for studying biological membranes taking into

account explicitly its molecular composition, e.g., see15 and

references therein. However, as these are computationally

very costly for systems involving different length and time

scales, i.e., a suspension made up of particles with differ-

ent sizes in contact with a fluctuating membrane, continuum

models provide the only feasible simulation schemes15. By

coarse-graining over the lipid degrees of freedom, fluid mem-

branes have been successfully described by infinitely thin,

continuous sheets with curvature elastic energy. The solvent

contribution is implicitly present in the elastic properties that

specify the model16. In particular, the Helfrich model has

been most widely applied to the study of bilayers with small

thermal height fluctuations away from a flat reference config-

uration16. Using this approach, we have developed a simple

lattice simulation model that incorporates both the elastic de-

grees of freedom of the membrane and the ones of a suspen-

sion of biomolecules interacting with a hard-sphere potential;

the explicit details of the model can be found in Ref.17 and are

briefly described below.

It is important to point out that membranes are soft ma-

terials that in contrast to traditional nanostructures exhibit

a high susceptibility to the thermal fluctuations of the en-

vironment. Hence, as we mentioned above, this property

gives rise to intriguing forces of pure entropic origin between

the membrane and nanomaterials, such as polymers and col-

loids. A recent review on the forces that rule the interactions

between membranes and molecules has been introduced by

Bickel and Marques18. Furthermore, it is known that when

some molecules are bounded to the membrane they deform its

shape leading to important membrane-mediated interactions

between molecules19–21.

Thus, the aim of this work is to understand the role of the

particle-membrane interaction on the static microstructure of

colloidal particles near a fluctuating membrane. We focus on

the simplest model system consisting of a monodisperse sus-

pension of hard spherical particles of finite size. We consider

highly dilute suspensions to avoid the inclusion of particle-

particle correlations. In particular, the particle density pro-

file perpendicular to the membrane surface is measured for

different values of the parameter space, namely, mean rough-

ness, lateral correlation length and particle size, in order to

identify the mechanisms that determine the distribution of

biomolecules in contact with the membrane; the striking find-

ing is that the ratio between the lateral correlation and the par-

ticle size is the only relevant parameter.

After the present Introduction, section 2 describes both the

Helfrich model and our lattice simulation scheme. We also

discuss the case in which the molecules behave as an ideal

gas. We refer to this case as the point-like limit. In section

3, we present and discuss our results with particles of finite

size. We mainly emphasise the entropy-driven mechanisms

that lead to the shifting and tilting of the density profile. Fi-

nally, the manuscript ends with a section of concluding re-

marks.

2 Helfrich model, lattice simulation model and
density profile in the point-like limit

Biological membranes are complex objects consisting of a

lipid bilayer with enclosed trans-membrane proteins and at-

tached extracellularly to the glygocalyx and intracellularly to

the cytoskeleton. However, in order to understand certain as-

pects of the behavior of cell membranes, it is advantageous

to study simpler objects composed solely of lipids. Two sys-

tems composed of a pure phospholipid bilayer are vesicles and

planar bilayers. Vesicles are bags up to 100 μm in diame-

ter consisting of a phospholipid bilayer that encloses a central

aqueous compartment22,23. They are formed by mechanically

dispersing phospholipids in water. Planar bilayers are formed

across a hole in a partition that separates two aqueous solu-

tions22,23. Below, we shall confine ourselves to the discussion

of the properties of membranes composed of lipids and neglect

the further complexity of cell membranes.

Lipid bilayers combine exceptional elastic properties which

would be difficult to obtain with synthetic materials. The

bending modulus is smaller than those of a 5 nm thick shell

made of polyethylene, by a factor of 1000, and the shear mod-

ulus by a factor of 10,000, but the area compression modulus

is almost as large as those of the polyethylene shell, which

makes the bilayer virtually incompressible22. The bending

rigidity of lipid bilayers is between 5 and 100 kBT , with kB
being the Boltzmann constant and T the absolute temperature.

Due to the low bending rigidity, membranes undergo thermal

shape fluctuations, which can be visualized by interference

contrast microscopy24.

Keeping in mind the properties mentioned above, Helfrich

proposed a Hamiltonian that describes a fluctuating mem-

brane16; this model is discussed below.

2.1 Helfrich model

The Helfrich model contains only two parameters that can ex-

perimentally be measured, i.e., the bending rigidity and sur-

face tension16. This simple model considers the membrane,
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basically, as an elastic sheet and has been used and verified

in numerous studies. For example, in experiments analyzing

the fluctuation spectrum of red blood cells25, in the theoreti-

cal investigations of the steric repulsive interactions between

proximal membranes26, and in studies on stacks of lipid bilay-

ers27. Helfrich-like models with additional harmonic interac-

tions can also be handled analytically. Equilibrium properties

can be calculated for various forms of harmonic potentials, in-

cluding localized pinning and uniform confinement28–30.

Within the Helfrich approximation, effects due to finite

thickness are completely neglected. Mathematically, such

model can be described (in the limit of small fluctuations) as

follows. By using the position vector S = S(�ρ,h(�ρ)), where
�ρ ∈ A is the vector on the xy-plane and h is the field in the z-

direction representing the membrane thermal fluctuations, the

elastic membrane energy reads as6

Hm[h] =
1

2

∫ [
κ
(
∇2h

)2
+ γ (∇h)2 +μh2

]
dxdy, (1)

where κ , γ and μ are the mean bending rigidity, the surface

tension and the strength of a harmonic potential, respectively.

The height-height correlation function G(�ρ − �ρ ′) =
〈h(�ρ)h(�ρ ′)〉0 − 〈h(�ρ)〉0〈h(�ρ ′)〉0 permits us to evaluate the

main length scales of the membrane associated with its inher-

ent elastic properties, where the ensemble averages are cal-

culated according to 〈· · · 〉0 =
∫

Dh · · ·e−βHm[h]/
∫

Dhe−βHm[h].

For a membrane with vanishing surface tension, i.e., γ = 0, the

correlation function takes the following simple analytic form

G(�ρ) =− 4
π (ξ

0
⊥)

2kei
(√

2
ρ
ξ 0
‖

)
, where kei(x) = Im[K0(xeiπ/4)]

is a Kelvin function, ξ 0
⊥ ≡ G(0)1/2 = 2−3/2(κμ)−1/4 is the

mean roughness of the membrane and ξ 0
‖ = 21/2(κ/μ)1/4 is

the in-plane correlation length, which is associated with the

exponential decay of G(r) at long distances31. To understand

both length scales of the membrane, we can study their lim-

iting cases: when κ → 0 (where thermal fluctuations easily

modify the shape of the membrane) at fixed μ also ξ 0
‖ → 0, but

if κ → ∞ (flat wall) then ξ 0
‖ → ∞, and ξ 0

⊥ behaves inversely

at both limits. In contrast, at fixed κ the behavior is very sim-

ilar in both correlation lengths, i.e., they decay ∼ μ−1/4 for

μ → ∞.

Additionally, eqn (1) allows us to compute the height dis-

tribution of the membrane. It takes the following analytical

form:

f (z) = 〈δ (z−h(�ρ))〉0 =
1√

2πξ 0
⊥

exp

(
− z2

2ξ 0
⊥

2

)
, (2)

which means that the height distribution of the membrane is

Gaussian, as a consequence of the fact that eqn (1) is an ap-

proximation up to second order on the h-field.

2.2 Lattice simulation model

The membrane is represented as a two-dimensional NL ×NL
square lattice with lattice constant a. The projected area of

the membrane is A = a2N2
L . In order to calculate the internal

energy of the membrane, we use the discrete version of eqn

(1). Monte Carlo simulations have been implemented accord-

ing to the algorithm described in reference17. This algorithm

has also been applied to study the aggregation behavior of two

separate confined polymer chains induced by membranes32.

We have tested our simulations by calculating, for different

elastic parameters, the distribution of the membrane and com-

pared with eqn (2). Definition of ξ 0
⊥ and ξ 0

‖ are assumed to be

true in the continuum limit (a → 0 and NL → ∞) of an infinite

membrane. In our simulations, however, we use a discrete

representation. Therefore, we recall the discrete membrane

roughness33.

ξ d
⊥ =

√√√√(
1

NLa

)2

∑
n,m

Knm, (3)

where Knm is the discrete propagator of the form

Knm =
1

κ f 2
nm + γ fnm +μ

. (4)

We have defined the matrix fnm as

fnm =
2

a2

[
cos

(
2π

n
NL

)
+ cos

(
2π

m
NL

)
−2

]
. (5)

Results obtained from simulations have to be compared with

these discrete quantities in order to estimate the statistical un-

certainties. As long as the number of Monte Carlo steps in-

creases, the simulated roughness, ξ s
⊥, has to converge to ξ d

⊥
instead of ξ 0

⊥. In the limit NL → ∞ and a → 0, ξ d
⊥ converges

exactly to ξ 0
⊥. In Fig. 1, the membrane height distribution is

shown and compared with the continuums limit (2). By fitting

function (2), the simulated roughness ξ s
⊥ can be estimated.

The relative difference respect to ξ 0
⊥ is around 2%, which is

the same difference as between ξ 0
⊥ and ξ d

⊥. By increasing

the number of lattices and making a smaller this difference

decreases below the 2%, as expected. In order to produce re-

sults in a reasonable time, we have performed simulations with

number of lattices ranging from 80× 80 to 200× 200. In all

simulations, the length of the membrane, L = aNL, was fixed

at 40.

2.3 Point-like limit

We consider N colloidal spherical particles of radius ac in con-

tact with the membrane. Their positions are characterized by

the vectors�ri, i = 1, . . . ,N. Particles interact with each other

1–8 | 3
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Fig. 1 Membrane height distribution. Solid line denotes the
continuum limit with ξ 0

⊥ = 12.80. Dashed line denotes the
distribution obtained by simulating a 80×80 lattice with lattice
constant a = 0.5. Then, ξ s

⊥ = 13.083 was obtained by using eqn (2).

through the hard-core potential mathematically described by

the relation,

βucc(ri j) =

{
∞ ri j < 2ac
0 ri j ≥ 2ac,

(6)

where ri j denotes the distance between colloids. A particle

located at�ri = (�ρi,zi) interacts with a membrane site located

at �R = (�ρ,h(�ρ)), i.e.,

βumc(Ri) =

{
∞ Ri < 0

0 Ri ≥ 0,
(7)

where Ri =
√

(�ρ −�ρi)2 +(h(�ρ)− zi)2 −ac is the shortest dis-

tance from the surface of the particle i to the membrane site.

The partition function of the full membrane-colloid system

can be written as

Z =
1

N!

∫
ΠN

i
d�ri

λ 3

∫
Dhe−βHm(h)−β ∑N

i=1 umc(Ri(h))−β ∑N
j>i ucc(ri j),

(8)

λ is the thermal wavelength, which results from the integra-

tion over the particle momenta.

In general, the analytical integration of the partition func-

tion is a hard task which has been simplified in a few cases. In

particular, in the case of point-like particles (ac = 0), the parti-

tion function (8) has been calculated analytically by Bickel34.

The density profile of the particles can be straightforward eval-

uated,

ρ(z) =
1

2
ρ∞

[
1+ erf

(
z+ z0√

2ξ 0
⊥

)]
, (9)

where ρ∞ is the density at the bulk and z0 = ρ∞μ−1 is a

characteristic shift. The physical meaning of this shift can

be explained as follows. When in contact with the colloidal

solution, the membrane experiences the osmotic pressure of

the particles and the membrane moves to a new equilibrium

position given by z0. Therefore, eqn (9) provides an excel-

lent benchmark to test more elaborated theoretical frameworks

and, of course, simulation models.

To test our lattice simulation model described above, we

have carried out simulations with a 80× 80 membrane with

a lattice constant a = 0.5 and 400 point-like particles. For

each Monte Carlo (MC) step, a trial move for all membrane

patches, i.e., lattice sites, and particles is accomplished. 106

Monte Carlo steps were performed to equilibrate the system,

afterwards 107 MC steps were considered to calculate aver-

ages; this simulation protocol allowed us to reduce the asso-

ciated uncertainties in such a way that they are smaller than

the symbol size used in the plots. We compare the simulated

density profile with eqn (9). In Fig. 2, density profiles for

different reduced bulk densities (ρ∗
∞ ≡ ρ∞(ξ 0

⊥)
3) are shown.

A good agreement between simulation and theory is clearly

observed. Inset shows profiles shifted by z0; all lying on a

master curve. Shifted profiles are symmetric around the mean

location of the membrane, meaning that particles are homoge-

neously distributed, on average, in the holes and valleys of the

membrane.
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Fig. 2 Density profile of point-like particles for different reduced
bulk densities, ρ∗

∞ ≡ ρ∞(ξ 0
⊥)

3. Solid lines show eqn (9) and symbols
denote the simulation data. Inset shows same density profiles shifted
by z0 = ρ∞/μ .

3 Spherical finite size particles

We have seen that in the limit of vanishing particle size (ac →
0), the particle profile becomes symmetric and can analytically

be represented by eqn (9). Nonetheless, this limit does not take

fully into account the contribution of the particle-membrane

interaction, βumc(R), i.e., particle finite size effects. How-
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ever, when βucm(R) is taken into account explicitly one ex-

pects a completely different structural scenario that, to our best

knowledge, has not been explored previously. For example,

one immediately can think that the particle distribution near to

the membrane should change dramatically due to the interplay

between different length scales, leading to new features in the

particle ordering. Also, in a naive picture, one may expect

morphology changes in the membrane. Then, to character-

ize the ordering of molecules close to fluctuating membranes,

we here extend the previous results for particles with finite

size. We have focused in two main contributions, namely,

the membrane contribution and the particle-membrane contri-

bution, neglecting completely correlations between particles,

i.e., βucc(r)≈ 0. This limit is reached by considering systems

with very low densities (ρ∗
∞ ∼ 10−5 or, equivalently, with a

volume fraction ϕ ∼ 10−4).

The system is now determined by three parameters that

define a parameters space given by a point of the form:

(ξ 0
⊥,ξ

0
‖ ,ac). In order to explore the parameters space, we have

redefined a reduced space characterised by only two dimen-

sionless variables:

α ≡ 2ac/ξ 0
⊥, (10)

β ≡ 2ac/ξ 0
‖ . (11)

Additionally, to avoid discretisation effects in all simulations,

the condition ξ‖ � a is required (ξ‖/a ≥ 4 holds for all our

simulations).

Fig. 3 shows a schematic representation of the parameters

space and gives some insight into different typical configura-

tions. In the limiting cases: β → ∞, an infinity number of

patches of the membrane touch the particle surface and when

β → 0, the contact area between the surface and the particle

is reduced to one single point. A noteworthy feature of this

space is that β is the only important parameter, since α can

be removed by rescaling all lengths with the roughness of the

membrane as it will be shown further below.

We have simulated different systems in the α −β space, ei-

ther by varying the membrane properties or the particle size.

Fig. 4 shows four density profiles by fixing α and varying β .

We immediately observe that the profiles are still symmetric

and are also shifted in a similar manner as in the point-like

case. However, as it can be seen in eqn (9), the mean surface

location is shifted by z0, which is a monotonic function of the

bulk density. Unfortunately, from the simulation point of view,

it is difficult to have a fixed density when one deals with par-

ticles of finite size because the mean surface location is not a

monotonic function of the density anymore. Nonetheless, in

our simulations we have calculated the new z0 by measuring

the average location of all membrane patches. In order to sort

out the difficulties of changes in the particle density, we have

translated all profiles to the right, by subtracting the particle

Fig. 3 Schematic representation of different configurations on the
α −β space. By fixing β and moving on α , the number of points of
the membrane touching the particle remains constant. On the other
hand, by increasing β , the number of points in contact with the
particle becomes larger. In this cartoon, the properties of the
membrane are varied, but it is also possible to achieve similar
configurations by changing the molecule size.

radius, ac, and z0. Unlike to the point-like case, particle pro-

files are shifted to the right of z = 0, and tilted as long as β
increases. If the size of the particles becomes larger it is more

unlikely that particles can access, on average, into the valleys

of the membrane. This excluded volume is reflected as a shift

on the distribution of particles close to the fluctuating surface.
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Fig. 4 Density profiles for different values of β . By increasing β ,
profiles show the same trend: shifting respect to z = 0 and tilting.
z-axis is rescaled according to z∗ = (z−ac − z0)/ac and density
profiles are rescaled by ρ∗ = ρ(z)/ρ∞. On the top left, a schematic
representation of the parameters space is drawn.

An interesting question is whether the elastic properties

of a fluctuating membrane change when it interacts with the

molecules. This topic has been addressed by several authors.
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For example, one of us estimated a variation of the mean

roughness when electrostatic interactions between point-like

particles and a fluctuating membrane are explicitly consid-

ered33. Additionally, in14,35 changes of the membrane proper-

ties are calculated when it interacts with particles of finite size.

In our case, to estimate (possible) changes on the membrane

elastic properties, we have extracted the simulated roughness

ξ s
⊥ by fitting the membrane height distribution obtained by

means of computer simulations to the analytical height distri-

bution function (2). Afterwards, simulations without particles

and same initial conditions for the membrane have been car-

ried out. By comparing both roughness, relative differences

less than 3.2% in all our simulations were found. This means

that for low particle concentrations changes of the membrane

properties are absent. However, one can expect appreciable

changes in systems with either higher densities or intrinsic

polydispersity.

3.1 Shifting and tilting

In order to estimate the shifting and tilting already discussed in

Fig. 4, we have fitted the density profiles using the functional

form of eqn (9),

ρ(z) =
1

2
ρ∞

[
1+ erf

(
z− p1√

2p2

)]
, (12)

where we have introduced two fitting parameters p1 and p2.

The meaning of these parameters is similar to the point-like

case: p1 is the membrane shift due to the balance between

the harmonic potential and the suspension pressure and p2 is

an effective roughness, which can be understood as follows.

For β > 1 the particles cannot penetrate the small cavities

of the membrane. Only the fluctuation modes with a wave-

length larger than the particle diameter are relevant for the

effective roughness of the membrane, while the small wave-

length modes lead to an additional shift of the particle profile.

In Fig. 5, the same curves as in Fig. 4 are shown; every

profile is now shifted by p1. One can observe the changes of

the tilting when β is increased. Clearly, this effect is a conse-

quence of the effective roughness. Insets shows the effective

membrane-particle potential. From this, is clear that as long

as β becomes larger the effective interaction tends to be more

repulsive due to the particles cannot access to the smaller cav-

ities of the rough surface.

In Fig. 6 we show profiles for β = 1.0 and different values

of α . With increasing α the profiles become steeper. One can

gain a better understanding on the role of α by rescaling the

z-axis with ξ d
⊥. Interestingly, the inset shows that the profiles

collapses onto a master curve. This means that the distribu-

tion of the molecules is governed by only one dimensionless

parameter, β , by which the parameter space is reduced to one-

dimension.
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Fig. 5 Density profile from Fig. 4. A translational transformation is
being applied by z∗∗ = (z− z0 −ac − p1)/ac and same rescaling for
the density profiles as Fig. 4 is assumed. As long as β increases a
tilt on the profiles becomes more noticeable because particles
cannot penetrate those areas where the fast modes of the membrane
take place.
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Fig. 6 Density profiles for different values of α with β constant.
Same rescaling as Fig. 4 is assumed. Inset shows that by rescaling
the z-axis defined as z∗ = (z− z0 −ac)/ac by z∗/(ξ d

⊥/ac) all profiles
lie onto the same curve. On the top left, a schematic representation
of the parameters space is drawn.

We performed further simulations for different values of β
in order to explore the functional dependence of the shifting,

p1 and tilting, p2, as function of β . In Fig. 7, p1 as function

of β is shown for two different values of α = 0.2 and 0.4.

The inset makes evident that the shift depends only on the

lateral correlation length of the membrane; the shifting is a

monotonically increasing function of β . From the simulation

point of view, it becomes more difficult to increase the value

of β due to the required conditions for the simulation of the

system, i.e., d � ξ d
⊥, with d being the separation between the

membrane and a rigid wall, and ξ d
‖ /a � 1. Thus, simulations
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up to β = 4 were performed in order to obtain results in a

reasonable computing time. We should point out that larger

values of β implies higher number of particles in order to keep

the same value of the bulk density.
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Fig. 7 Parameter p1, as described in eqn (12), as a function of β for
α = 0.2 and α = 0.4. Inset shows that by rescaling with ξ d

⊥ the shift
depends only on the lateral correlation of the membrane.

In Fig. 8, the effective roughness, p2, is shown for two

different values of α = 0.2 and 0.4 as a function of β . Inset

shows that when p2 is rescaled with ξ d
⊥, it only depends on

β . As long as β increases, the effective roughness becomes

smaller compared with ξ d
⊥. For β = 4.0 this relative difference

is about 40%, which is much larger than the change of the

membrane roughness due to the presence of the particle that is

roughly 3.2%, see Fig. 1.
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Fig. 8 Parameter p2, as described in eqn (12), as a function of β for
α = 0.2 and α = 0.4. Inset shows the rescaled effective roughness.

Why does for low bulk densities the particle distribution at

a fluctuating membrane only depend on one relevant param-

eter? The physical implications of our findings can be best

explained by using a schematic representation. In Fig. 9, a

particular configuration of the system is shown (on the left).

The membrane is represented by the solid line; particles can-

not penetrate those regions below the dashed line, which can

be thought as an effective membrane. Therefore, the origi-

nal system can be replaced by a less rough surface in front

of point-like particles (on the right). This effective membrane

has a roughness given by the parameter p2 which only depends

on β as it is explicitly shown in Fig. 8.

Fig. 9 Schematic representation of the membrane-biomolecule
system. On the left, solid line represents a particular configuration
of the membrane. Particles with finite size cannot be located into the
regions below the dashed line because there is not enough space.
This dashed line represents an effective membrane which is less
rough than the original one. On the right, the original system can be
replaced by a less rough membrane in front of point-like particles.

4 Conclusions

In this work we have studied a fluctuating membrane in con-

tact with spherical molecules. Particularly, we have focused

our attention on the effect of the characteristic length scales

of the system on the distribution of particles near to the mem-

brane. We implemented Monte Carlo simulations to numeri-

cally evaluate the density profile in the vicinity of the mem-

brane. We found that our simulation data agreed very well

with analytical results in the limiting case of point-like parti-

cles in front of a fluctuating membrane.

To avoid particle-particle effects and to focus on the ef-

fects caused by the particle-membrane interaction, we con-

sidered the case of low densities. The parameter space was

reduced to two dimensionless parameters: the ratio of the par-

ticle size with the two characteristic lengths scales of the mem-

brane, namely, the lateral correlation length and the membrane

roughness. After rescaling the length scales with the mem-

brane roughness ξ d
⊥, the particle density profiles depend only

on β . If the lateral correlation of the membrane is smaller

than the particle diameter (β is large), particles cannot pene-

trate into the resulting small cavities of the membrane, which

increases the excluded volume of the particles. It follows that

the membrane-particle systems can be replaced by a mem-

brane with reduced roughness in front of point-like particles
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together with an additional shift of the profile due to the en-

hanced excluded volume. Hence, the density profile can be de-

scribed by the same function as in the point-like case. Clearly,

this behavior will not be valid anymore when particle-particle

interaction (high densities) has to be taken into account explic-

itly. Work along this line is under current investigation.
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