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We compare the capillary levelling of a random surface perturbation on a thin polystyrene film with a theoretical study on the

two-dimensional capillary-driven thin film equation. Using atomic force microscopy, we follow the time evolution of samples

prepared with different initial perturbations of the free surface. In particular, we show that the surface profiles present long term

self-similarity, and furthermore, that they converge to a universal self-similar attractor that only depends on the volume of the

perturbation, consistent with the theory. Finally, we look at the convergence time for the different samples and find very good

agreement with the analytical predictions.

Introduction

In the past decades, thin films have been of undeniable inter-

est to scientific and industrial communities1–3. Indeed, under-

standing the dynamics and stability of thin films is essential to

technological applications such as nanolithography4,5 and the

development of non-volatile memory storage devices6. More-

over, thin films have enabled the study of the effect of confine-

ment on polymers7–16. Several experiments have been per-

formed in order to gain insights into the dynamics of these

films. Examples are provided by the broad class of dewet-

ting experiments17–29, as well as studies on capillary level-

ling30–40. Levelling experiments on thin polymer films in the

vicinity of the glass transition temperature have recently given

insights into the surface flow in glassy polymers41. The effect

of viscoelasticity related to the polymeric nature of these films

has been addressed as well42–44.

Thin liquid films are also of great interest to the hydrody-

namics and applied mathematics community, as the viscous

relaxation of a perturbed free surface is described by a non-

linear partial differential equation that, to date, remains only

partially solved. This equation is called the capillary-driven

thin film equation1–3. Several analytical45–47 and numerical48

studies have allowed for a deeper understanding of its math-

ematical features. Recently, it was shown that the solution of

the thin film equation for any sufficiently regular initial surface
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profile uniformly converges in time towards a universal self-

similar attractor that is given by the Green’s function of the lin-

ear capillary-driven thin film equation47. In the terminology

of Barenblatt49, this attractor corresponds to the intermediate

asymptotic regime. “Intermediate” refers to time scales that

are large enough for the system to have forgotten the initial

condition, but also far enough from the generally predictable

final equilibrium steady state; which, for capillary-driven thin

films is a perfectly flat surface. For thin films, the question of

the convergence time to this universal attractor has not been

addressed so far and is the focus of this paper.

Here, we report on levelling experiments on thin

polystyrene films that corroborate the theoretical predictions

on the convergence of the surface profiles to a universal self-

similar attractor. In the first part, we recall the main results

of the theoretical derivation of the intermediate asymptotic

regime, and address the question of the convergence time. In

the second part, we present the experiments where we follow

the time evolution of samples prepared with different random

initial perturbations of the free surface. Consistent with the

theory, we show that the surface profiles present long term

self-similarity, and converge to a universal self-similar attrac-

tor that only depends on the volume of the perturbation. In

particular, the convergence times measured in the different

samples show very good agreement with the theory.

1 Theory

Here we recall the main theoretical results from our previous

work47, and derive an expression for the convergence time as

a function of the volume of the perturbation.
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1.1 Levelling of a thin liquid film

The levelling of a supported thin liquid film can be described

within the lubrication approximation. Assuming incompress-

ible viscous flow, together with a no-slip boundary condition

at the substrate and a no-stress boundary condition at the free

surface, yields the so-called capillary-driven thin film equa-

tion1–3:

∂th+
γ

3η
∂x

(

h3∂ 3
x h

)

= 0 , (1)

where h(x, t) is the thickness of the film at position x and time

t, γ is the surface tension, and η is the viscosity. Equation

(1) can be nondimensionalised through h = h0H, x = h0X and

t = (3ηh0/γ)T , where h0 is the equilibrium thickness of the

film infinitely far from the perturbation. This leads to:

∂T H +∂X

(

H3∂ 3
X H

)

= 0 . (2)

The height of the film can be written as h(x, t) = h0 + δ (x, t),
where δ (x, t) is the perturbation that levels with the passing

of time. For the case of small perturbations compared to the

overall thickness of the film, Eq. (2) can be linearised by let-

ting H(X ,T ) = 1+∆(X ,T ) where ∆(X ,T ) ≪ 1. This yields

the linear thin film equation:

∂T ∆+∂ 4
X ∆ = 0 . (3)

For a given sufficiently regular initial condition ∆(X ,0) =
∆0(X), the solution of Eq. (3) is given by:

∆(X ,T ) =
∫

dX ′
G (X −X ′,T )∆0(X

′) , (4)

where G is the Green’s function of Eq. (3), and reads47:

G (X ,T ) =
1

2π

∫

dK e−K4T eiKX . (5)

By ’sufficiently regular’, we mean in particular that the ini-

tial perturbation of the profile is summable, with a non-zero

algebraic volume, and that this perturbation vanishes when

X →±∞. The Green’s function is obtained by taking the spa-

cial Fourier transform of Eq. (3). Equations (4) and (5) are

central to the problem as, for a given initial condition, they

give the profile at any time.

1.2 Universal self-similar attractor

Guided by the mathematical structure of Eq. (3), we intro-

duce the self-similar change of variables: U = XT−1/4, and

Q = KT 1/4, together with ∆̆(U,T ) = ∆(X ,T ). These vari-

ables, together with Eqs. (4) and (5), yield:

∆̆(U,T ) =
∫

dX ′
Ğ (U −X ′T−1/4,T )∆0(X

′) , (6)
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Figure 1 Schematic illustrating the convergence of any given initial

profile to the universal intermediate asymptotic solution.

where Ğ (U,T ) = T−1/4φ(U), and:

φ(U) =
1

2π

∫

dQe−Q4

eiQU . (7)

Note that the integral in Eq. (7) can be expressed in terms

of hypergeometric functions (see appendix). The main result

from our previous work47 was that, for any given initial con-

dition ∆0(X) the rescaled solution T 1/4∆̆(U,T )/M0, where

M0 =
∫

dX ∆0(X) 6= 0 is the the algebraic volume of the per-

turbation, uniformly converges in time to φ(U) (see Fig. 1):

lim
T→∞

T 1/4∆̆(U,T )

M0
= φ(U) . (8)

According to Barenblatt’s theory49, this is the intermediate

asymptotic solution. The solution is universal in the sense that

it does not depend on the shape of the initial condition. Note

that in the particular case of a zero volume perturbation, the

attractor is given by the derivatives of the function φ(U). The

question of the time needed to reach this fundamental solution

is important as it quantifies how long one has to wait to forget

the initial condition.

1.3 Convergence time

In order to study the approach to the self similar attractor, we

look at the surface displacement at x = 0 as a function of time.

Letting ∆∞(X ,T ) be the perturbation profile in the intermedi-

ate asymptotic regime, then according to Eq. (8) at U = 0 one

has:

∆∞(0,T ) = M0 φ(0)/T 1/4 . (9)

We then define the convergence time Tc as being the intersec-

tion of the initial central height and the central height in the

intermediate asymptotic regime:

∆0(0) = ∆∞(0,Tc) , (10)
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which leads to:

Tc =

(

Γ(5/4)

π

M0

∆0(0)

)4

. (11)

Note that the choice of origin, x = 0, is arbitrary and will be

discussed in the experimental section.

2 Experiments

Samples were prepared using polystyrene (PS) with weight

averaged molecular weight Mw = 31.8 kg/mol and polydisper-

sity index PI = 1.06 (Polymer Source Inc.). Solutions of PS in

toluene (Fisher Scientific, Optima grade) were prepared with

various weight fractions, 1 < φ < 10 wt%. Films with thick-

ness hSi were spincast onto clean 10 mm × 10 mm Si wafers

(University Wafer) and films with thickness hMi were spincast

onto freshly cleaved 25 mm × 25 mm mica substrates (Ted

Pella Inc.).

To prepare samples with various surface geometries the fol-

lowing procedure was used. First, ∼ 10 mm × 10 mm sec-

tions of the films prepared on mica were floated onto the

surface of an ultrapure water bath (18.2 MΩcm, Pall, Cas-

cada, LS). These pieces of film were then picked up using the

previously prepared films with thickness hSi on the Si sub-

strate. During this transfer, the floating films were intention-

ally folded back on themselves to create random non-uniform

surface geometries. We emphasize that samples were prepared

at room temperature, well below the glass transition tempera-

ture Tg ≈ 100 ◦C. Two types of samples were prepared:

• small perturbations: Films with a relatively small thick-

ness perturbation, where the linear thin film equation

is expected to be valid. Such films were prepared

with thicknesses hMi ≪ hSi to create surface perturba-

tions with max[δ (x,0)]/h0 ≪ 1. We used film thick-

ness combinations {hSi,hMi} ≈ {600 nm, 80 nm} and

{200 nm, 25 nm}.

• large perturbations: Films with large thickness per-

turbations relative to h0. Varying geometries were

prepared with thicknesses hMi ≈ hSi to create sur-

face perturbations with max[δ (x,0)]/h0 ∼ 1. Sam-

ples were prepared using film thickness combinations

{hSi,hMi} ≈ {100 nm, 100 nm}, {150 nm, 150 nm}, and

{200 nm, 200 nm}.

The shapes of the non-uniform perturbations were not pre-

pared by design, rather, during the preparation process many

profiles are found on a single sample. Regions of interest were

then located and chosen such that, while the height is varying

in one direction, it is sufficiently invariant in the orthogonal

horizontal direction, i.e. h can be taken to be a function of x

and t alone. Ensuring that the profiles were invariant in one di-

rection was crucial for the comparison to the two-dimensional

theory discussed above. Having prepared non-uniform surface

perturbations, a second piece of film with thickness hMi was

floated onto a portion of the sample with thickness hSi to create

a stepped bilayer geometry, the details of which are fully ex-

plained elsewhere36. Briefly, the initial height profile of such

a step is well described by a Heaviside step function. When

a stepped film profile is annealed above Tg the step levels due

to capillary forces. For this well defined and well studied ge-

ometry, measuring the evolution of the film height profile over

time gives an in situ measurement of the capillary velocity,

γ/η . We emphasize that each sample has both the perturba-

tion of interest as well as a region where there is a stepped bi-

layer. By obtaining the capillary velocity γ/η from the bilayer

portion of the sample while also probing the perturbation on

the same sample, we reduce measurement error (for example

due to small sample-to-sample variations in annealing temper-

ature). The final stage in the preparation of the samples is a

1 min anneal at 130 ◦C on a hot stage (Linkam Scientific In-

struments Inc.) to ensure that the floated films were in good

contact with the substrate film and to remove any water from

the system. Note that although there is some evolution of the

geometry during this short initial annealing stage, as will be-

come clear below, t = 0 is defined after this annealing step.

The initial film height profiles of both the surface perturba-

tion and stepped bilayer were measured with AFM (Veeco,

Caliber). In order to measure the evolution of the surface

profiles, samples were annealed under ambient conditions on

the hot stage at 140 ◦C using a heating rate of 90 ◦C/min.

Above Tg, capillary forces drive the non-uniform surface ge-

ometries to level. After some time the samples were rapidly

quenched to room temperature and both the perturbation and

bilayer film profiles were measured using AFM. From the

AFM scans of the stepped bilayer (not shown), we use the

technique described previously36 to extract the capillary ve-

locity. For all samples we measure the capillary velocity

γ/η ≈ 50 µm/min, which is in excellent agreement with pre-

vious measurements36,39.

3 Results and Discussions

3.1 Small perturbations

In Fig. 2(a), (b) and (c) are shown the evolution of three ex-

amples of small perturbations, with the highest profiles corre-

sponding to the initial t = 0 profiles. Here, we have chosen the

coordinate x = 0 such that the volume of the perturbation for

x< 0 is equal to that of x> 0. In the initial stages of annealing,

the perturbations quickly lose any asymmetry in their shape.

With additional annealing, the symmetric profiles broaden and
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Figure 2 The results of three experiments on small perturbations. The top panel shows the height of the perturbation, δ (x, t) = h(x, t)−h0, as

a function of position for annealing times 0 ≤ t ≤ 60 min for samples with (a) h0 = 221 nm, (b) h0 = 681 nm, and (c) h0 = 681 nm. The

bottom row shows the height of the perturbation scaled by the height at x = 0 as a function of U = XT−1/4 = x(3η/h3
0γ t)1/4. For comparison,

we also plot the rescaled self-similar attractor (see Eq. (7)) which is shown as a black dashed line in the bottom row.

their maximal heights decrease. Since the heights of the lin-

ear profiles are small compared to the equilibrium film thick-

nesses h0, we expect their evolution to be governed by Eq. (3)

(the linearized thin film equation). In particular, at long times

we expect the profiles to converge to the universal self-similar

attractor described in Section 1.2.

To test this prediction we plot the normalized height of

the perturbation as a function of the variable U = XT−1/4 =
x(3η/h3

0γ t)1/4, as shown in Fig. 2 (d), (e) and (f). We observe

that at late times the profiles converge to the rescaled self-

similar attractor φ(U)/φ(0) regardless of the initial condition,

as predicted in Section 1.2. Here, we emphasize that since we

have determined the capillary velocity in situ by measuring

the evolution of a stepped bilayer geometry near the perturba-

tion on each sample, there is no free parameter in the above

rescaling and comparison to the theoretical prediction (shown

as a dashed black line in Fig. 2 (d), (e) and (f)). Furthermore,

at late times, the error between the experimentally measured

profiles and the attractor is less than 1%.

3.2 Large perturbations

Measurement of the samples with large perturbations (see ex-

ample in Fig. 3) were more challenging because at long an-

nealing times (t > 100 min) the lateral extent of the height

profiles exceeds the accessible range of the AFM (∼ 100 µm).

Here, we resort to imaging ellipsometry (Accurion, EP3) to

record height profiles. Imaging ellipsometry (IE) has ∼ nm

height resolution with lateral resolution comparable to an op-

tical microscope: ∼ µm. Thus, IE and AFM are complimen-

tary techniques. For the example in Fig. 3, data was acquired

with AFM for t ≤ 63 min, while IE was used for the three

longest annealing times. With IE there is one caveat: in certain

ranges of thickness there is a loss of sensitivity depending on

the wavelength of laser light and the angle of incidence used

(658 nm, 42-50 deg).† For the IE data the regions where the

IE was insensitive were interpolated with a quadratic spline as

indicated by dashed lines to guide the eye.

The evolution of a large perturbation is shown in Fig. 3.

†This issue can be circumvented by varying the angle of incidence. How-

ever this was not possible for the experiments presented here because chang-

ing angle of incidence also shifts the region of interest slightly.
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Figure 3 An example data set with large perturbation. (a) Height of

the perturbation as a function of position and annealing time with

h0 = 216 nm; (b) the normalized profiles. For times t ≥ 303 min,

profiles were measured using imaging ellipsometry (IE). Regions

where IE is insensitive have been interpolated with quadratic splines

as indicated by the dashed lines. The black dashed line corresponds

to the rescaled self-similar attractor (see Eq. (7)).

In this case, the perturbation does not obey the condition

δ (0,0)/h0 ≪ 1. As can be seen in Fig. 3(a), with sufficient

annealing, the large perturbations become symmetric. Similar

to the evolution observed for the small perturbations, once the

profiles are symmetric, the maximal height δ (0, t) decreases

with further annealing and the profiles broaden.

The normalized profiles are shown in Fig. 3(b). Although

the perturbations are initially large, upon long enough anneal-

ing the condition δ (0, t) ≪ h0 can be reached. In particular,

the final state of a large perturbation is still expected to be the

self-similar attractor. For the data shown in Fig. 3, even after

11022 min of annealing, the profile has not reached the con-

dition that δ (0, t)≪ h0. While the height profiles are clearly

symmetric at long times, and they are converging towards self-

similarity, the final profile is not yet equivalent to the final at-

tractor of Fig. 2. The fact that the sample has not yet fully

reached the self-similar attractor is simply because the start-

10
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10
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Figure 4 Central height of the small perturbation shown in Fig. 2(a)

and (d) normalized by its initial value as a function of time. The

horizontal dashed line represents the initial value. A power law of

t1/4 is fit to the late time data. In accordance with Eq. (10), the

convergence time is defined as the intersection of these two regimes,

as indicated by the vertical dashed line.

ing profile was so tall, that the long annealing times required

and the width of the profile (while still requiring good height

resolution) place this outside our experimental window.

3.3 Convergence Time

One of the main predictions of the theory outlined in Sec-

tion 1.3 is that the time taken to converge to the attractor de-

pends on the algebraic volume of the perturbation according

to Eq. (11). The convergence time is determined in accor-

dance with Eq. (10) as the crossover from an initial regime,

which is highly dependent on δ (x,0), to a universal interme-

diate asymptotic regime. In Fig. 4, we plot the normalized

central height of the perturbation, δ (0, t)/δ (0,0), for the small

perturbation shown in Fig. 2(a) and (d). The initial state can

be characterized by the central height of the perturbation at

t = 0 and is given by the horizontal line. At late times, the

maximal height of the normalized perturbation δ (0, t)/δ (0,0)
decreases in time following the t−1/4 power law. Note that the

t−1/4 line is fit to the last three data points which correspond to

the latest profiles shown in Fig. 2(d). These three profiles are

in excellent agreement with the calculated asymptotic profile

(see black dashed line in Fig. 2(d)). The crossover from the

initial regime to the intermediate asymptotic regime shown in

Fig. 4 gives the experimentally determined convergence time,

tc. From tc, the non-dimensionalized convergence time, Tc,

can be obtained.

The theory predicts a very clear dependence of the dimen-

sionless convergence time, Tc, on M0/∆0(0), a measure of the

dimensionless width of the initial profile (see Eq. (11)). In
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Figure 5 Non-dimensionalized convergence time as a function of

non-dimensionalized width. Here the square data points represent

data from small perturbation samples which are in excellent

agreement with the dashed black line. The dashed black line is the

theoretical prediction of Eq. 11. In the inset both the small

perturbation results, which have reached the self-similar regime, and

the large perturbation data (circles and arrows) which are not yet self

similar are shown. The large perturbation data provides only a

lower-bound for Tc, which is why that data falls below the predicted

line.

Fig. 5 is plotted the dimensionless convergence time obtained

as in Fig. 4 as a function of M0/∆0(0), for seven small per-

turbations, as well as four large perturbations. For small per-

turbations, we observe excellent agreement between experi-

ments and the theoretical prediction of Eq. (11) with no fitting

parameters. We also show the convergence time for the large

perturbation data (see inset of Fig. 5). However, since the large

perturbations have not fully reached the intermediate asymp-

totic regime, the Tc one obtains by forcing a t−1/4 power law

through the latest data point corresponds to a lower bound. For

this reason, the data points provided are shown with vertical

arrows.

Conclusions

We have studied, both with theory and experiment, the

capillary-driven levelling of an arbitrary surface perturbation

on a thin liquid film. Using atomic force microscopy and

imaging ellipsometry we follow the evolution of the perturba-

tions and compare the results to the theoretical predictions of

the two-dimensional capillary-driven thin film equation. We

have shown that regardless of the initial condition, the per-

turbations converge to a universal self-similar attractor that is

given by the Green’s function of the linear thin film equation.

Furthermore, we have shown that the time taken to converge

to the attractor depends on the volume of the perturbation. We

measured the convergence time for both small and large per-

turbations and found good agreement between theory and ex-

periment. Specifically, the experimental results are consistent

with the theory over two orders of magnitude in the dimen-

sionless typical width of the initial profile and six orders of

magnitude in dimensionless convergence time, with no free

parameter.
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Appendix

We here wish to calculate the integral in Eq. (7) in terms of

Hypergeometric functions. Performing a Taylor expansion of

the integrand yields:

φ(U) =
1

2π

∞

∑
k=0

(iU)k

k!

(

∫

dQQk e−Q4

)

. (12)

At this stage one can see that all terms corresponding to an

odd k = 2p+ 1 are null and thus that the function f is real.

Furthermore, changing the variables through S = Q4 leads to:

φ(U) =
1

4π

∞

∑
p=0

(iU)2p

(2p)!

∫ ∞

0
dSS(1+2p)/4−1 e−S , (13)

where we recognise a Γ function:

φ(U) =
1

4π

∞

∑
p=0

(iU)2p

(2p)!
Γ

(

1+2p

4

)

. (14)

Then, separating the sum over p in even p = 2m and odd p =
2m+1 terms yields:

φ(U) =
1

4π

∞

∑
m=0

U4m

(4m)!
Γ

(

m+
1

4

)

−
U2

4π

∞

∑
m=0

U4m

(4m+2)!
Γ

(

m+
3

4

)

. (15)

Developing the Γ functions in terms of Pochhammer rising

factorials Γ(m+α) = Γ(α)(α)m where (α)m =α×(α+1)×
...× (α +m− 1), and using the relation Γ(α + 1) = αΓ(α)

6
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yields:

φ(U) =
1

π
Γ

(

5

4

)

∞

∑
m=0

U4m

(4m)!

(

1

4

)

m

−
U2

4π
Γ

(

3

4

)

∞

∑
m=0

U4m

(4m+2)!

(

3

4

)

m

. (16)

Developing the factorials and rising factorials and proving by

mathematical induction that:

43m 1×5× ...× (1+4(m−1))

4m× (4m−1)× ...×1
=

1

m!

1
(

1
2

)

m

(

3
4

)

m

, (17)

and that:

43m 3×7× ...× (3+4(m−1))

(4m+2)(4m+1)× ...×1
=

1

2

1

m!

1
(

3
2

)

m

(

5
4

)

m

, (18)

finally leads to:

φ(U) =
1

π
Γ

(

5

4

)

0H2

[

{

1

2
,

3

4

}

,

(

U

4

)4
]

−
U2

8π
Γ

(

3

4

)

0H2

[

{

5

4
,

3

2

}

,

(

U

4

)4
]

. (19)

where the (0,2)-hypergeometric function is defined as50,51:

0H2 ({a,b} ,w) =
∞

∑
m=0

1

(a)m(b)m

wm

m!
. (20)
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[27] O. Bäumchen, R. Fetzer and K. Jacobs, Phys. Rev. Lett., 2009, 103,

247801.

[28] J. H. Snoeijer and J. Eggers, Phys. Rev. E, 2010, 82, 056314.
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Veress, Phys. Rev. Lett., 2012, 109, 128303.

[37] T. Salez, J. D. McGraw, O. Bäumchen, K. Dalnoki-Veress and
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Nanofilm experiments combined with lubrication theory 
demonstrate how surface perturbations forget their 
shape in finite time and reach a universal attractor. 
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