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We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that

affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence

(i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects

that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella

of bacteria). The swimmers’ motion is characterized by a mean drift velocity and an effective translational diffusivity that

becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical

stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed “swim stress”

tensor.[Takatori, Yan, and Brady, Phys Rev Lett, 2014.] This property can be exploited in the design of soft, compressible

materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers.

Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and

translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and

motors. Analytical solutions are corroborated by Brownian dynamics simulations.

1 Introduction

Understanding the complex dynamic behaviors of a suspen-

sion of self-propelled colloidal particles, or “active matter,”

has been an important but challenging problem owing to its

constituents’ ability to generate their own internal stress and

drive the system far from equilibrium. This allows intriguing

phenomena to arise that otherwise may not take place in a clas-

sical equilibrium system, like athermal self-assembly and pat-

tern formation.1 Recently a new principle was introduced to

study such fascinating phenomena—that is, through their self-

motion all active matter systems generate an intrinsic “swim

stress” that impacts their large-scale collective behavior.2 The

origin of the swim stress (or pressure) is based upon the notion

that all self-propelled bodies must be confined by boundaries

to prevent them from swimming away in space. The “swim

pressure” is the unique pressure exerted by the swimmers as

they bump into the surrounding walls that confine them. The

same principle applies to molecular gases that collide into the

container walls to exert a pressure or to the osmotic pressure

exerted by solute molecules.

In this work we build upon this new perspective to ana-

lyze an active matter system subjected to an external field

that affects its constituents’ swimming orientation and speed.

External fields like chemical and thermal gradients and/or

a Division of Chemistry and Chemical Engineering, California Institute of

Technology, Pasadena, CA 91125 USA. E-mail: Takatori@caltech.edu

the Earth’s magnetic and gravitational fields can cause mi-

croorganisms to modify their swimming behavior to facilitate

movement to a favorable region. For example, E. coli have

been known to undergo chemotaxis by preferentially swim-

ming towards (or away from) chemical gradients of nutrients

(or toxins).3 Other examples of taxis swimmers include pho-

totactic,4 magnetotactic,5 and gravitactic6 bacteria.

External orienting fields cause the effective translational

diffusivity to become anisotropic, which directly implies the

existence of normal stress differences. The micromechanical

stress in a dilute suspension is given by the first moment of

the force, σ = −n〈xF 〉, where n is the number density of

particles and the angle brackets denote an ensemble average

over all particles and time. The particle position at time t is

x(t) =
∫
U(t′) dt′, and from the overdamped equation of

motion, 0 = −ζU(t) + F (t), we obtain σ = −n〈xF 〉 =
−nζ

∫
〈U(t′)U(t)〉 dt′ = −nζ〈D〉, where ζ is the hydrody-

namic drag factor and the time integral of the velocity autocor-

relation is the diffusivity of the particle, D. A particle under-

going any type of random motion therefore exerts a stress and

a pressure, Π = −trσ/3 = nζD. This general result applies

for Brownian particles where D0 = kBT/ζ, leading to the

familiar ideal-gas Brownian osmotic pressure ΠB = nkBT .

Using the swim diffusivity of active particles in the absence

of an external field, 〈Dswim〉 = U2
0 τRI/6 where U0 is the

swim speed of the active particle and τR is the reorientation

time due to rotary Brownian motion and/or an intrinsic reori-
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Fig. 1 Schematic of the shape, size, and motion of a soft,

compressible gel loaded with light-activated synthetic colloidal

particles. When both the light and external field (H) are turned on,

the gel translates in the direction of the field (shown by arrows on

the gel). The external field strength can be tuned to change the

shape, size, and velocity of the gel.

entation mechanism, we obtain the “ideal-gas” swim stress:

σswim = −n〈xF swim〉 = −nζ〈Dswim〉 = −nζU2
0 τRI/6,

where F swim ≡ ζU0 is the self-propulsive force of the swim-

mer.2 Although it is clear that an external field may cause

the effective diffusivity and hence the swim stress to become

anisotropic, how is this normal swim-stress difference gener-

ated and what are its implications on the design of novel active

soft-matter materials?

To appreciate the importance of normal swim stresses, we

discuss an important application of this work in the design of

nano/micromechanical devices and motors. Suppose we load

a soft, compressible material (e.g., gel polymer network) with

light-activated synthetic colloidal particles. In the absence of

light, the colloidal particles simply fluctuate due to Brownian

motion, and the gel assumes some equilibrium shape as shown

on the top of Fig 1. The equilibrium volume of the gel is de-

termined by the balance of the force that drives the polymer to

expand and mix with the solvent versus the elastic force that

resists the expansion.7 When the light is turned on, the col-

loidal particles become active and exert an additional “ideal-

gas” swim pressure, Πswim = −trσswim/3 = nζU2
0 τR/6,

causing the gel to expand isotropically as shown in the sketch

on the right. The relative magnitudes of the swim pressure

versus the shear modulus of the gel, G, determine whether

the gel expands appreciably in the presence of the swim-

mers. In principle the shear modulus of polymer networks

can be adjusted to nearly zero. A dilute network of hydrated

mucus, which behaves as a non-Newtonian gel, has shear

moduli of order ∼ O(0.1 − 10)Pa,8,9 but here we estimate

G ≈ nckBT where nc is the number density of sub-chains

in the network (related to the cross-link density).7 The energy

scale associated with 1µm swimmers traveling in water with

speed U0 ∼ 10µm/s and reorienting in time τR ∼ 10s is

ζU2
0 τR/6 ≈ 4pN · µm. The thermal energy at room tem-

perature is kBT ≈ 4 × 10−3pN · µm, meaning that the

swimmers’ intrinsic self-propulsion is equivalent to approxi-

mately 1000kBT . In practice the intrinsic activity of active

synthetic colloidal particles can be even larger. The swim

pressure makes an appreciable contribution to the overall size

of the gel if G/Πswim = nckBT/(n1000kBT ) . O(1),
or when the ratio of the polymer sub-chain density to the

active-swimmer density is nc/n . 1000. The swim pres-

sure exerted at 10% volume fraction of active particles is

Πswim = nζU2
0 τR/6 ≈ O(1)Pa. For gels with a very small

shear modulus, the swim pressure can cause the gel to deform

its shape. As the gel expands due to the swim pressure, the

concentration of swimmers decreases. The new volume of

the gel is determined by the balance of the gel’s expansion

forces, the osmotic pressure of the polymer chains, and the

swim pressure exerted by the swimmers. Even if the gel does

not deform, it can still be translated and steered using the ac-

tive swimmers.

As we shall see in Section 6, when we then apply a weak

external field to the system (gel plus swimmers), the gel re-

acts in three ways as shown on the bottom of Fig 1: it ex-

pands even more due to an increase in the swim pressure; it

elongates in the field direction due to a positive normal stress

difference (i.e., the swimmers exert different magnitudes of

normal stresses in different directions of the bounding gel net-

work); the entire gel translates in the field direction due to the

net motion of the active swimmers colliding into the gel net-

work. Upon further increase in the external field strength, the

swim pressure decreases and the normal stress difference be-

comes negative, which causes the gel to shrink in size, trans-

late faster towards the field direction, and assume the shape of

a thin disk as shown on the left of Fig 1. When the external

field strength is made very high, the normal swim-stress differ-

ence and swim pressure vanish, causing the gel to return to its

equilibrium shape and size but translate in the field direction.

We can make a simple estimate of the gel speed. If an

active particle is tethered to a passive particle then it must

drag along the passive particle as it swims. The propul-

sive force available to the swimmer, F swim ≡ ζU0, must

now balance the combined drag of the swimmer (-ζU ) and

its “cargo,” which is characterized by a Stokes drag coef-

ficient ζC . Thus, the velocity of the combined object is

U = ζU0/(ζC + ζ). If N swimmers are attached the ve-
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locity would now go as U = NζU0/(ζC + Nζ). The same

principle and estimate apply to swimmers confined to a gel.

The total propulsive force available is F ∼ nVgelζ〈u〉, where

Vgel is the volume of the gel and 〈u〉 is the mean swim-

mer velocity in the presence of the external field (calculated

in Sections 4 and 6). This force must balance the gel and

swimmers’ drag F drag = −(ζgel + nVgelζ)Ugel to give

Ugel ∼ nVgel〈u〉ζ/ζgel(1/(1 + nVgelζ/ζgel)). The poros-

ity and geometry of the gel would influence ζgel, but the drag

is proportional to Ugel as in any Stokes-flow problem.

When the external field is turned off, the gel stops translat-

ing and an entire cycle is completed as depicted in Fig 1. Here

we have assumed that the active particles are confined to the

gel and that the fluid (solvent) is able to flow through the gel as

needed. Instead of a gel we can also have a membrane, vesicle,

fluid sack, or droplet. To ensure that the system is in osmotic

balance with the solvent inside the vesicle, the surrounding

membrane must be permeable to the solvent. The resistance

to motion of the vesicle would now be set by the permeability

of the membrane and the propulsive force determined by the

number of swimmers contacting the (interior) upstream sur-

face of the vesicle. If we had a vesicle or fluid droplet that is

impermeable to the solvent, then the droplet may still deform

and may also translate depending on its shape and mechani-

cal properties of its surface or bounding membrane. A rigid

object filled with fluid and swimmers would not deform nor

translate; the active motion of the swimmers would set up a

recirculating flow within the rigid object.

To continue in the design of nano/micromechanical devices

and motors, suppose we rotate the external field by 90 degrees.

For a moderate external field strength (sketched on the left

of Fig 1), the gel reacts differently depending on the relative

magnitude of the characteristic angular velocity induced by

the external field, Ωc, and the rate at which we rotate the field,

Ωext. When we rotate the field slowly, Ωext/Ωc ≪ 1, the gel

maintains its current shape and slowly changes its orientation

with the swimmers, tracing an arc and continuing a path along

the new field direction, as shown on the top of Fig 2. When we

rotate the field quickly, Ωext/Ωc ≫ 1, the swimmers respond

quickly and begin to swim in the new field direction. In this

limit the gel temporarily stops translating because the swim-

mers do not take any swim steps between their reorientations.

After the swimmers change their orientations toward the new

field direction, the gel again assumes a disk shape and trans-

lates with the swimmers. As illustrated in Figs 1 and 2, by tun-

ing the properties of the gel (or vesicle or drop), the activity of

the swimmers, and the strength of the external orienting field,

a wide range of controllable motion is possible. It is important

to note that if one can measure the effective translational dif-

fusivity of active particles in an orienting field, then the stress

is known from the relationship σ = −nζ〈D〉. We can thus

make predictions of the shape and size of the gel based upon

H
Slow

H
Quick

Fig. 2 Schematic of the motion of a soft, compressible gel loaded

with active particles when the external field is rotated by 90 degrees.

The shape and trajectory of the gel depends on the relative rate of

rotation of the field and the strength of the field.

a simple diffusivity measurement of the swimmers.

The motion of a single particle due to an intrinsic swim

force and an external force are the same. At higher concen-

trations or when considering the swimmer’s interactions with

other bodies or boundaries a distinction must be made—the

intrinsic swim mechanism does not generate a long-range 1/r
Stokes velocity field as does an external force. In our analy-

sis we neglect hydrodynamic interactions among the particles,

which would contribute additional terms to the active-particle

stress and affect the reorientation time of the particles. It is

important to note that the swim stress presented here is dis-

tinct and different from the “hydrodynamic stresslet,” which

is also a single-particle property but scales as ∼ nζU0a where

a is the particle size.10,11 No study to date has studied the

effect of an external field on the swim stress of active mat-

ter. The ratio of the magnitude of the hydrodynamic stresslet

over the swim pressure is the reorientational Péclet number,

PeR = U0a/〈Dswim〉 ∼ a/(U0τR), which compares the

swimmer size a to its run length U0τR.2 The hydrodynamic

contribution to the deformation of soft materials becomes neg-

ligible at low PeR, the regime in which many synthetic active

particles operate.12,13

In this paper we present a micromechanical model that de-

termines the average translational velocity, diffusivity, and

swim stress of a suspension of active particles in any exter-

nal field. Previous studies of the translational diffusivity of

Brownian particles have used a generalized Taylor dispersion
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method to analyze the behavior when subjected to an external

orienting field and/or a homogeneous shear flow.14–18 Manela

and Frankel17 analyzed the effective translational diffusivity

of dipolar swimmers subjected to a simple shear flow and an

external field, and Bearon and coworkers19,20 extended the

analysis to different flow conditions. Owing to slow numer-

ical convergence, most studies have focused on weak external

fields; in practice, however, active particles may be exposed

to strong external fields, be it a chemical or thermal gradi-

ent field. As shown in this work, strong external fields are

interesting because the convective enhancement to the effec-

tive translational diffusivity (〈Dswim〉 = U2
0 τR/6) vanishes

entirely. Furthermore, most studies assume a constant swim-

ming speed of the particles, irrespective of the external field

strength. In nature or in the laboratory, the local chemical

and thermal environments can affect the swimming speeds of

active particles. Indeed, bacteria modulate their swimming

speeds when exposed to a thermal21 or chemoattractant con-

centration field.22 We address this problem by allowing the

swimmers to modify their speeds based on their instantaneous

orientation. Our analytical model is corroborated by Brownian

dynamics (BD) simulations.

The balance between the strength of the orienting field and

the effects that randomize the particle orientation is charac-

terized by the Langevin parameter, χR = ΩcτR, where Ωc

is the characteristic angular velocity induced by the external

field and τR is the reorientation time from rotary Brownian

motion and/or an intrinsic reorientation mechanism. Simple

dimensional reasoning provides predictions of the effect of the

external field on the average swimming speed, effective trans-

lational diffusivity, and swim stress. The self-propulsive en-

hancement to a swimmer’s effective translational diffusivity

scales as 〈Dswim〉 ∼ L2
eff/τR, where Leff is the effective

step size. In the absence of an external field Leff ∼ U0τR,

giving 〈Dswim〉 ∼ U2
0 τR. With the external field in the lin-

ear response regime, the change in the effective step size,

∆Leff ∼ χRU0τR, so the change in swim stress scales

as ∆σswim = −nζ〈∆Dswim〉 ∼ −nζ(U2
0 τR)χ

2
R. The

average velocity along the external field scales as 〈u‖〉 ∼
Leff/τR ∼ U0χR, linear in the forcing. The average ve-

locity transverse to the external field is zero for all values of

χR: 〈u⊥〉 = 0. Thus, 〈D〉 ∼ D0 +U2
0 τR/6(1 +O(χ2

R)) and

σswim ∼ −nζU2
0 τR/6(1 +O(χ2

R)) and is anisotropic.

For χR ≫ 1, the external field is so strong that the swim-

mers spend most of their time oriented along the field. This

suggests that the average swimmer velocity is 〈u‖〉 ∼ U0(1−
χ−1
R ); the instantaneous swimmer velocity is the same as the

average velocity, minus a small O(χ−1
R ) correction. The effec-

tive translational diffusivity depends on the fluctuation of the

swimmers’ instantaneous speed from the average speed. This

gives the effective step size, Leff ∼ (〈u〉 − U0)τR. Parallel

to the external field we thus have σswim
‖ = −nζ〈Dswim

‖ 〉 ∼

O

x, ex

y, ey

z, ez = H
Field, (H = H0H)

q(θ,φ)

φ

θ

Z = (x,y,z)

Fig. 3 Definition sketch of an active particle at position z with

orientation q in an external field, H .

−nζU2
0 τRχ

−3
R . In the transverse direction, the average veloc-

ity is zero so a small fluctuation in an individual swimmer’s

perpendicular motion affects the dispersion more strongly

than small fluctuations along the external field. This sug-

gests that the swimmers’ perpendicular velocity decays more

slowly, as u⊥ ∼ O(χ
−1/2
R ), giving σswim

⊥ = −nζ〈Dswim
⊥ 〉 ∼

−nζU2
0 τRχ

−2
R . Interestingly, under strong external fields the

swim stress and diffusivity tend to zero.

In the next section, we formulate an expression for the aver-

age translational flux, from which we deduce the swim stress

and the average translational velocity and diffusivity. In sec-

tion 3, we derive the evolution equations governing the orien-

tation distribution and fluctuation fields. A similar approach

has been used to study two-body collisions in nonlinear mi-

crorheology,23 which we extend here into orientation space.

In part 4, we consider our first example of swimmers with

uniform speeds. We build up our BD simulation framework in

section 5 to verify the analytical theory. To obtain a more com-

plete description, in section 6 we allow the swimming speeds

to vary with orientation and field strength.

2 Average swimmer motion

We focus on the motion of a single active Brownian particle

that swims in a quiescent fluid with an orientation-dependent

velocity u(q), where the unit vector q specifies its orien-

tation. The swimming velocity can be a result of intrin-

sic self-propulsion from a living microorganism or an acti-

vated synthetic catalytic particle.1,24 The particle also under-

goes random thermal motion with a translational diffusivity

D0, and reorients due to rotary Brownian motion and/or an

intrinsic mechanism (e.g., flagella), characterized by a re-

orientation time τR. For torqued swimmers like gravitac-

tic or magnetotactic bacteria, the external field induces an

orientation-dependent torque on the particle, Lext(q). In con-
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trast, force and torque-free swimmers like phototactic bacte-

ria or other microorganisms undergoing chemotaxis or ther-

motaxis may possess an internal mechanism (e.g., biological

sensor) to reorient themselves along the field. Our general

analysis remains valid whether the reorientation is induced

by an external torque or as a result of an intrinsic particle

property. The dynamics of an active particle is contained in

P (z, q, t|z0, q0, t0), the conditional probability of finding the

particle at position z and orientation q at time t, given that it

was at z0 and q0 at time t0. This probability density obeys the

Smoluchowski equation

∂P

∂t
+∇ · jT +∇q · jR = 0, (1)

where the translational and rotary fluxes are given by, respec-

tively,

jT = u(q)P −D0 · ∇P, (2)

jR = ω(q)P − 1

τR
∇qP, (3)

where ω(q) is the orientation-dependent angular velocity of

the swimmer, D0 is its Brownian translational diffusivity, and

∇ and ∇q are the physical-space and orientation-space gradi-

ent operators, respectively.

We are interested in times t > τR in which all orientations

have been sampled. To this end, we follow Zia and Brady23

and introduce the Fourier transform with respect to position,

denoted by .̂ Averaging Eqs 1 and 2 over orientation space,

we obtain

∂n̂(k, t)

∂t
+ ik · 〈ĵT 〉 = 0, (4)

〈ĵT 〉 =
∮

uP̂ dq −D0 · ikn̂, (5)

where n̂(k, t) ≡
∮
P̂ (k, q, t) dq is the local number density of

active particles. We introduce P̂ (k, q, t) = g(k, q, t)n̂(k, t),
and focus on the orientation distribution through the structure

function g(k, q, t). For the long-time self-diffusion we con-

sider the short wave vector (long length scale) limit23 and thus

expand for small k: g(k, q, t) = g0(q, t) + ik · d(q, t) +
O(kk). The field g0 is the orientation distribution function,

and d is the probability-weighted displacement or fluctuation

of a particle about its mean velocity (i.e., the strength and

direction of the swimmer’s displacement due to the external

field). Readers familiar with Brenner’s25 generalized Taylor

dispersion theory will notice that g0 and d are similar to his

P∞
0 and B fields, respectively. Introducing this expansion

into Eq 5, we obtain the mean particle translational flux:

〈ĵT 〉 = n̂ [〈u〉 − ik · 〈D〉] , (6)

where the average translational velocity and diffusivity are,

respectively,

〈u〉 =
∮

u(q)g0 dq, (7)

〈D〉 −D0 = 〈Dswim〉 =
∮

(〈u〉 − u(q))d dq. (8)

In Eq 8 the term 〈u〉 was inserted to emphasize that it is the

velocity fluctuation that generates dispersion.

In the Introduction we derived a direct relationship between

the translational diffusivity and the micromechanical stress:

σ = −nζ〈D〉. Substituting Eq 8 into this expression gives

the stress generated by the active particle, σ = σB + σswim,

where we identify the Brownian osmotic stress as σB =
−nζD0 = −nkBTI , and the swim stress as the convective

enhancement to the diffusivity (right-hand side of Eq 8):

σswim = −nζ

∮
(〈u〉 − u(q))d dq. (9)

Equations 7 to 9 are the main results we wish to determine.

The swim pressure is given by Πswim = −trσswim/3 and is

interpreted as the average normal swim stress (i.e., the con-

finement forces) necessary to prevent an active body from

swimming away in space.2

3 Non-equilibrium orientation and fluctuation

fields

We now develop the evolution equations governing the

orientation-distribution function g0 and the fluctuation field d

for use in Eqs 7 to 9. From the Smoluchowski Eq 1, g(k, q, t)
satisfies

∂g

∂t
+∇q · (ω(q)g)− 1

τR
∇2

qg =

g ik · [〈u〉 − u(q)− ik · (〈D〉 −D0)] , (10)

where g is finite on the unit sphere and is normalized:∮
g(k, q, t) dq = 1.

To proceed we need a form of ω(q), the rotary velocity

that reorients the biased swimmer along the external field or

gradient, H . For force and torque-free swimmers, like mi-

croorganisms undergoing phototaxis, chemotaxis, and/or ther-

motaxis, we assume that they possess an intrinsic mechanism

(e.g., biological sensor) to reorient themselves along H . A

simple expression for the rotary velocity that models this be-

havior is ω(q) = Ωcq × Ĥ , where Ωc is the magnitude of

the angular velocity and Ĥ is the unit vector along the field.

This expression implies that the swimmer attains the maxi-

mum rotary velocity when q ⊥ Ĥ and zero rotary velocity
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when q ‖ Ĥ . Another common class of swimmers, like mag-

netotactic or gravitactic bacteria, reorient themselves owing to

a torque induced by the external field, ω(q) = MR · Lext,

where MR is the rotary mobility tensor. Following Brenner

and Condiff,26 one can show that this leads to the same ex-

pression as that of the torque-free swimmers. This implies

that the detailed reorientation mechanism is unimportant, and

both types of swimmers can be modeled with the same expres-

sion for the rotary velocity. When analyzing the motion of a

single particle, there is no distinction between rotation caused

by an external torque and motion arising inherently from the

swimmer.

The equations are made dimensionless by scaling u ∼
U0,ω(q) ∼ Ωc, and d ∼ U0τR. Using the small-k expansion

and considering a spherical particle with a constant, isotropic

Brownian diffusivity, the steady-state orientation distribution

function satisfies a convection-diffusion equation:

∇2
qg0 − χR∇q ·

[
(q × Ĥ)g0

]
= 0, (11)

with
∮
g0 dq = 1, and χR ≡ ΩcτR is the Langevin param-

eter. The d-field satisfies a similar equation, but is forced by

deviations from the mean velocity:

∇2
qd− χR∇q ·

[
(q × Ĥ)d

]
= −g0 (〈u〉 − u(q)) . (12)

4 Uniform swimming velocity

In this section, we assume all particles have the nondimen-

sional swim velocity u(q) = q. We shall see in section 6 that

allowing the speed to change with orientation leads to addi-

tional interesting dispersive effects. Equations 11 and 12 have

exact analytical solutions, but we first consider the limiting

behaviors at low and high χR.

4.1 χR ≪ 1 limit

As shown in Appendix A, we apply a regular perturbation

to obtain g0(q) = 1/(4π) + Ĥ · P 1(q)χR/(4π) + ĤĤ :
P 2(q)χ

2
R/(12π) + O(χ3

R), where P n(q) are the nth-order

tensor surface spherical harmonics.27 This is identical to Al-

mog and Frankel’s15 result who considered the sedimentation

of axisymmetric non-centrosymmetric particles by gravity.

Whether the orienting torque is caused by shape-dependent

gravitational settling or from dipole-induced alignment, the

orientation distribution is the same.

Substituting this solution into Eq 7, the average transla-

tional velocity of the swimmers at low χR is

〈u〉 = 1

3
χRĤ +O(χ3

R). (13)

The average velocity increases linearly with χR, as predicted

from simple scaling arguments. As χR → 0 the orientation

distribution becomes uniform, resulting in no net swimming

speed.

To obtain a leading-order correction in the swim stress and

translational diffusivity, we must proceed to the O(χ2
R) d-field

problem. Substituting the d-field solution (see Appendix A)

into Eqs 8 and 9, we obtain the swim diffusivity and stress for

χR ≪ 1:

σswim = −nζ〈Dswim〉 = −nζU2
0 τR
6

[
I−6

5
χ2
R

(
7

27
ĤĤ+

1

8

(
I − ĤĤ

))]
+O(χ4

R). (14)

We have adopted the transversely isotropic form, where ĤĤ

and I − ĤĤ correspond to the parallel and perpendicular

components relative to the field direction, respectively. As

χR → 0 we recover the “ideal-gas” swim pressure, Πswim =
nζU2

0 τR/6.2 The first effect of the external field appears at

O(χ2
R), in agreement with our scaling arguments in the Intro-

duction. Notice that the external field causes a decrease in the

translational diffusivity, in contrast to the increase seen in the

sedimentation problem.15 The dispersion decreases here be-

cause the particles now swim collectively toward Ĥ , reducing

their tendency to take random swim steps.

4.2 χR ≫ 1 limit

A singular perturbation scheme is required for χR ≫ 1 be-

cause the problem separates into an outer and inner region.

Near µ ≡ Ĥ · q ≈ 1 there is an orientation-space bound-

ary layer and the angular coordinate is rescaled as µ̂ = (1 −
µ)χR ∼ O(1). To leading order, g0 and d are zero in the

outer region because the orientation of the swimmer is con-

fined to a 1/χR-thick “cone” around µ ≈ 1. As shown in

Appendix B, the leading-order boundary-layer solution to Eq

11 is g0(µ̂;χR) = χRe
−µ̂/(2π) + O(1). As χR → ∞, the

orientation distribution approaches a delta-function peaked at

µ̂ = 0, confining the swimming trajectory to a narrow “cone”

about the field direction. From Eq 7, the average translational

velocity is 〈u〉 =
(
1− χ−1

R

)
Ĥ . To leading order, all swim-

mers move along the field direction, Ĥ , at the same speed,

U0.

The d-field problem is resolved into a direction parallel (d‖)

and perpendicular (d⊥) to the external field. The swim diffu-

sivity and stress for χR ≫ 1 are

σswim = −nζ〈Dswim〉 = −nζU2
0 τR

[
1

2
χ−3
R ĤĤ+

χ−2
R

(
I − ĤĤ

)]
. (15)
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As χR → ∞, the swim stress vanishes entirely, including the

“ideal-gas” pressure Πswim = nζU2
0 τR/6 that was present

at low χR (see Eq 14). Since all particles are oriented along

a 1/χR-thick “cone” about the field, each particle swims at

the same velocity U0 towards the same direction, resulting in

a vanishingly small dispersion. Since it is the random dif-

fusional motion of a particle that gives rise to a swim pres-

sure, Πswim = nζtr〈Dswim〉/3, a small diffusivity results in a

small swim pressure. Another way to understand this is to sup-

pose that the bounding walls in a simulation cell were trans-

lating with the average particle velocity, 〈u〉. As χR → ∞,

all particles are swimming with the same speed in the same

direction so no confinement pressure is required to contain the

particles inside the simulation cell.2

4.3 Exact solution for arbitrary χR

As given in Appendix C, the solution to Eq 11 for arbitrary

χR is

g0(µ;χR) =
χR

4π sinhχR
eµχR , (16)

where µ ≡ Ĥ · q as before in the domain −1 ≤ µ ≤ 1. From

Eq 7, the average translational velocity for arbitrary χR is

〈u〉 =
(
cothχR − χ−1

R

)
Ĥ ≡ L(χR)Ĥ, (17)

where L(χR) is the Langevin function. As expected, the av-

erage perpendicular velocity is zero for all χR. We resolve

the corresponding displacement field in Eq 12 into the paral-

lel and perpendicular directions. As shown in Appendix C,

the parallel direction has an exact solution. In the perpendicu-

lar direction, we expand our solution as a series of associated

Legendre polynomials. Finally, the effective translational dif-

fusivity and swim stress are obtained from Eqs 8 and 9.

5 Brownian dynamics (BD) simulations

The motion of active particles in an external field can also

be analyzed via BD simulations. The system follows the N -

particle Langevin equations: 0 = −ζ(U − U0) + FB and

0 = −ζRΩ+Lext+LR, where U and Ω are the translational

and angular velocities, F swim ≡ ζU0 is the self-propulsive

force, FB is the Brownian force, ζR is the hydrodynamic re-

sistance coupling angular velocity to torque, and Lext and LR

are the torques induced by the external field and rotary Brow-

nian motion and/or an intrinsic reorientation mechanism, re-

spectively. The left-hand sides are zero because inertia is neg-

ligible for colloidal dispersions.

The Brownian force and reorientation torque have the white

noise statistics FB = 0, FB(0)FB(t) = 2kBTζδ(t)I ,

LR = 0, and LR(0)LR(t) = 2ζ2Rδ(t)I/τR. Particle orienta-

tions were updated by relating Ω to the instantaneous orienta-

tion q.28 We varied the Langevin parameter χR and analyzed
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χR = ΩcτR

〈u
‖
〉/
U
0

Fig. 4 Average translational velocity along the external field as a

function of χR. The solid curve is the exact analytical solution, and

the circles are data from Brownian dynamics (BD) simulations.

the motion of a single active particle for over 4000 realizations

and for at least 100τR time.

The average translational velocity and diffusivity are given

by 〈u〉 = d〈x〉/dt and 〈D〉 = lim
t→∞

d〈x′x′〉/(2dt), where

x′ = x−〈u〉∆t is the displacement of the swimmer from the

mean motion. The swim stress was computed from σswim =

−nζ〈x′F swim′〉, where F swim′

= F swim − 〈F swim〉. The

average swim force over all realizations, 〈F swim〉, must be

subtracted to account for the drift velocity of the particles

caused by the external field.

5.1 Results

Both the asymptotic and exact solutions of the Smoluchowski

equation and BD simulation results are presented here to-

gether. Figure 4 shows the nondimensional average swimmer

velocity along the external field direction as a function of χR.

The average velocity increases linearly following Eq 13 for

low χR, and approaches 1 as χR → ∞. There is no average

speed transverse to the external field.

In the BD simulations, the swim stress was computed us-

ing two methods. One approach is to use the definition of the

swim stress, σswim = −n〈x′F swim′〉 (shown in circles in

Fig 5). The alternative method is to first calculate the long-

time self diffusivity of an active particle and then obtain the

swim stress using the relationship σswim = −nζ〈Dswim〉
(shown in squares). The two methods give identical results,

verifying that the stress is indeed directly related to the diffu-

sivity, σ = −nζ〈D〉. Here we present results for the stress,
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Fig. 5 The swim stress in the parallel (in black) and perpendicular

(in red) directions as a function of χR, computed in the simulations

from σswim
= −n〈x′F swim

′

〉 (in circles) and also from first

obtaining the effective translational diffusivity and then using

σswim
= −nζ〈Dswim〉 (in squares). The solid and dashed curves

are the exact and asymptotic analytical solutions, respectively.

but the effective translational diffusivity can be obtained by

simply dividing the stress by −nζ.

For χR ≪ 1, the swim stress reduces to the ideal-gas

swim pressure.2 The swim stress then decreases as ∼ O(χ2
R)

following Eq 14. At intermediate values of χR (≈ 2), the

curves decline as ∼ O(χ−1
R ), which means that the dis-

persion is controlled by convective rotation, i.e., σswim ∼
−nζU2

0 τRχ
−1
R ∼ −nζU2

0 /Ωc. The diffusivity continues

to decay at high χR following Eq 15. An interesting fea-

ture at high χR is the faster decay of σswim
‖ ∼ O(χ−3

R )

than σswim
⊥ ∼ O(χ−2

R ). This can be explained by consid-

ering the driving force for dispersion, ∆u = 〈u〉 − u(q).
Gradients in ∆u determine the driving force for dispersion:

d∆u‖/dµ̂ ∼ χ−1
R and d∆u⊥/dµ̂ ∼ χ

−1/2
R µ̂−1/2. The par-

allel direction has a small driving force for all µ̂ because an

individual particle’s instantaneous velocity is the same as the

mean, 〈u‖〉. A very large fluctuation is required to generate an

appreciable contribution to the parallel diffusivity. In contrast,

the gradient is maximized at µ̂ = 0 in the perpendicular di-

rection because the mean transverse velocity is zero. A small

fluctuation in the perpendicular direction contributes more to

the dispersion than in the parallel direction, so σswim
‖ decays

faster than does σswim
⊥ .

Figure 5 shows that the swim stress tensor is anisotropic,

which allows us to identify the first normal swim-stress dif-

ference: N1 = σswim
‖ − σswim

⊥ . Remarkably, this normal
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Fig. 6 The first normal swim-stress difference,

N1 = σswim

‖ − σswim

⊥ , as a function of χR. The circles are results

from BD simulations, and the solid and dashed curves are the exact

and asymptotic analytical solutions, respectively. The illustration

shows an instantaneous configuration of the swimmers under a weak

(sketch on left) and moderate (on right) external field.

swim-stress difference is a single-particle property that arises

uniquely from the biased motion of an active particle. As

shown in Fig 6, N1 goes to zero for χR → 0 since the

swim stress tensor becomes isotropic. It also goes to zero

for χR → ∞ because the swim stress decays to zero in

both the parallel and perpendicular directions (see Eq 15). It

reaches a maximum at intermediate values of χR owing to

the rapid decay of the swim stress in the parallel direction

(σswim
‖ ∼ O(χ−3

R )). Due to axisymmetry the second normal

swim-stress difference is zero for all χR.

An anisotropic σswim means that the confining force re-

quired to contain the swimmers by the bounding walls would

be different in the parallel and perpendicular directions. The

swim pressure represents the average of the normal swim

stresses (i.e., confinement pressure) exerted on the bound-

ing walls: Πswim = −trσswim/3.2 As shown in Fig 7, the

swim pressure approaches the “ideal-gas” value as χR → 0:

Πswim = nζU2
0 τR/6. At higher χR, the swim pressure de-

creases since the external field confines the swimming trajec-

tories along the field direction, reducing the confinement pres-

sure on the surrounding walls.

Since normal stress differences indicate how a soft mate-

rial might elongate or shrink, results from Figs 6 and 7 can be

exploited in the design of various novel active soft materials.

Using the results of this section we can now describe how a
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Fig. 7 The swim pressure, Πswim
= −trσswim/3, as a function of

χR. The circles are results from BD simulations, and the solid and

dashed curves are the exact and asymptotic analytical solutions,

respectively. The illustration shows an instantaneous configuration

of the swimmers under a weak (sketch on left) and moderate (on

right) external field.

polymer network (e.g., a gel) loaded with active particles with

uniform swim speeds behaves in the presence of an external

field. In the absence of the external field, the active particles

exert an equal magnitude of normal stress in all directions of

the gel, namely σswim = −nζU2
0 τRI/6. Upon turning on

the external field, the gel shrinks due to the decrease in swim

pressure (see Fig 7), assumes the shape of a thin 3D disk due

to the negative normal stress difference (see Fig 6), and the gel

translates due to the average velocity of the swimmers (see Fig

4). Such a device can be used as a mechanical device/motor

where its shape, size, and motion can be carefully tuned by an

external field. The gel behavior discussed in the Introduction

(Fig 1) is for non-uniform swim speeds of the particles, which

we discuss in Section 6. It is important to note that if one can

measure the effective translational diffusivity of active parti-

cles in an orienting field, then the stress is known from the

relationship σ = −nζ〈D〉. We can thus make predictions of

the shape and size of the gel based upon a simple diffusivity

measurement of the swimmers.

6 Nonuniform swimming velocity

The swimming speeds of bacteria have been shown to change

when exposed to chemical22 and thermal21 gradients. To this

end, we now consider the effects of nonuniform swimming

speeds on the swim stress and the average translational ve-

locity and diffusivity. Specifically, we allow the swimmers’

speed to vary with their orientation relative to the external

field, q ·H . Consider the swimming velocity

u(q) = q
(
1 + u′(αH0Ĥ · q)

)
, (18)

where u′(αH0Ĥ ·q) is a dimensionless perturbed velocity rel-

ative to the uniform speed, U0. We introduce α as an intrinsic

particle property relating the external field strength, H0, to the

translational velocity.

The g0 solution is identical to Eq 16 since the orientation

distribution is independent of u(q). However, the d-field dif-

fers because the driving force ∆u = 〈u〉 − u(q) is different.

Equation 12 now becomes

∇2
qd− χR∇q ·

[(
q × Ĥ

)
d
]
= −g0 [〈u〉−

q
(
1 + u′(αH0Ĥ · q)

)]
, (19)

where

〈u〉 =
∮

g0

[
q
(
1 + u′(αH0Ĥ · q)

)]
dq. (20)

The swim diffusivity and stress become

σswim = −nζ〈Dswim〉 = −nζU2
0 τR

∮
[〈u〉−

q
(
1 + u′(αH0Ĥ · q)

)]
d dq. (21)

Equations 19-21 are the only changes required to account for

nonuniform swimming speeds. With a choice of u′(αH0Ĥ ·
q), the problem statement is complete. Here we consider a

linear relationship for the velocity perturbation: u′(αH0Ĥ ·
q) = αH0Ĥ · q. A swimmer’s velocity is now

u(q) = q
[
1 + αH0(q · Ĥ)

]
, (22)

which may be a more complete description than the uniform-

speed case considered earlier. When oriented along Ĥ , the

swimmer increases its speed, and when oriented antiparallel

to Ĥ , it decreases its speed.

Substituting Eqs 22 and 16 into Eq 20, the average velocity

is

〈u〉 = Ĥ
[
cothχR − χ−1

R + αH0

(
1− 2χ−1

R cothχR+

2χ−2
R

)]
. (23)

Comparing with Eq 17, we see that the average velocity in-

creases by the last term in parentheses on the right-hand side.

At low χR, the mean velocity of the swimmers is

〈u〉 = Ĥ

(
1

3
αH0 +

1

3
χR +

2

45
αH0χ

2
R +O(χ3

R)

)
. (24)
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The first term on the right-hand side represents a mean drift

velocity arising from the perturbed velocity. At high χR, the

swimmers are strongly oriented along the field direction, so

the average velocity approaches U0(1 + αH0) following Eq

22.

An analytic solution of Eq 19 for arbitrary χR and

αH0 is available in Appendix D, but here we analyze

the behavior at low and high χR. At low χR, a regu-

lar perturbation scheme gives the swim stress σswim =

−nζ
[
〈Dswim

‖ 〉ĤĤ + 〈Dswim
⊥ 〉(I − ĤĤ)

]
, where

〈Dswim
‖ 〉 = U2

0 τR

[(
1

6
+

2

135
(αH0)

2

)
+

2χR

27
αH0−

χ2
R

(
7

135
− (αH0)

2

189

)]
+O(χ3

R), (25)

〈Dswim
⊥ 〉 = U2

0 τR

[(
1

6
+

1

90
(αH0)

2

)
+

χR

18
αH0−

χ2
R

(
1

40
− 59(αH0)

2

22680

)]
+O(χ3

R). (26)

As αH0 → 0, the results reduce to the uniform-speed solution

considered earlier. The striking feature is that the dispersion

increases at small χR, unlike the uniform-velocity case (com-

pare with Eq 14). Since the swimmers oriented towards the

field move faster than those oriented away from the field, we

see an enhanced dispersion (and swim stress) at low to inter-

mediate χR. As we shall see from the exact solution, the swim

stress in both parallel and perpendicular directions continue to

increase and reach a maximum at intermediate χR.

Another key difference is the anisotropic swim stress at

χR = 0; the parallel diffusion is larger (2/135 versus 1/90 for

αH0 = 1). The average drift velocity from Eq 24 increases

the effective translational diffusivity above U2
0 τR/6 even at

χR = 0. This drift velocity may help explain the observed

migration of bacteria along a temperature gradient.21

At high χR, the behavior is similar to the uniform-velocity

case. Since all particles are oriented along the external field,

the effect of swimming-speed nonuniformity becomes negli-

gible and the particles swim in the same direction with the

same speed. The swim stress at high χR is

σswim = −nζU2
0 τR

[
1

2
(1 + 2αH0)

2χ−3
R ĤĤ+

(1 + αH0)
2χ−2

R (I − ĤĤ)
]
. (27)

The swim stress as a function of χR for αH0 = 1 is shown

in Fig 8A. The instantaneous swimming speed is twice the

uniform speed when the swimmer is oriented along the field

(2U0) and zero when oriented in the opposite direction. The

10
�2

10
�1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

χR = ΩcτR

−
σ
sw

im
/
(n
ζ
U

2 0
τ R

/
6
)

σswim
⊥

σswim
‖

∼ χ
R

∼ χ
R

�2

∼ χ
R

�3

A.

10
í2

10
í1

10
0

10
1

10
2

í0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

χR = ΩcτR

−
N

1
/
(n

ζ
U

2 0
τ R

/
6
)

B.

Fig. 8 (A.) Swim stress in the parallel (in black) and perpendicular

(in red) directions as a function of χR for αH0 = 1. The αH0

parameter allows the swimming speed to vary with particle

orientation. (B.) First normal swim-stress difference. The

illustration shows an instantaneous configuration of the swimmers

under a weak (sketch on left) and moderate (on right) external field.

In both (A) and (B), the solid curves are the exact solutions, and the

dashed curves are the asymptotic solutions. BD simulation results

are shown in circles and squares for the parallel and perpendicular

directions, respectively.

swim stress increases at low to moderate χR and reaches a

maximum at χmax
R = 0.60 and χmax

R = 0.95 in the parallel

and perpendicular directions, respectively. We see maxima be-

cause the field redistributes the orientations and modifies the

swimming speeds. This is different from the uniform-speed

case where the field affected only the swimming orientations.
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As shown in Fig 8B, the normal swim-stress difference is non-

monotonic and also changes in sign from negative to positive

at χR ≈ 0.8.

We saw in Fig 7 that an external field that affects the parti-

cles’ swimming orientation (but not their speed) resulted in a

monotonically decreasing swim pressure with χR. As shown

in Fig 9, the swim pressure becomes non-monotonic when

both the particles’ swimming orientation and speed are af-

fected by the external field. This is interesting because an ex-

ternal field can give a non-monotonic pressure profile at the

single-particle level (i.e., an infinitely dilute system).

In the Introduction we discussed an important application

of loading a soft, compressible gel with active particles. Here

we support the description of Fig 1 with our results. When the

colloidal particles are inactive, the gel assumes some equilib-

rium shape as shown on the top of Fig 1. Activating the col-

loidal particles causes the gel to swell due to the “ideal-gas”

swim pressure of the active particles, Πswim = nζU2
0 τR/6.

Since the shear modulus of polymer networks can be adjusted

over a wide range (in principle to nearly zero) and the intrin-

sic activity of the swimmers can be made much larger than the

thermal energy, ζU2
0 τR ≫ kBT , the swim pressure can make

an appreciable contribution to the overall size of the gel.

When we then apply a weak external field (i.e., χR < 1),

the gel expands even more due to increased swim pressures

(see Fig 9), elongates due to positive normal stress differences

(see Fig 8B), and translates due to the net motion of the active

swimmers (see Eq 24) within the gel. When we increase the

external field strength (1 < χR ≪ ∞), the swim pressure de-

creases and the normal stress difference becomes negative (Fig

8B graphs −N1), which causes the gel to shrink in size, trans-

late faster towards the field direction, and assume the shape

of a thin disk as shown to the left of Fig 1. When the exter-

nal field strength becomes very high (χR → ∞), the normal

swim-stress difference and swim pressure vanish, causing the

gel to return to its equilibrium shape and size but translate in

the field direction. When the external field is turned off, the

gel stops translating and an entire cycle is completed as de-

picted in Fig 1. Each transformation of the gel is corroborated

by our calculations and BD simulations.

Allowing the swimming speeds to vary with orientation in-

troduces features similar to the sedimentation problem consid-

ered by Brenner14 and Almog and Frankel.15 In the effective

translational diffusivity (Eqs 25 and 26), the terms involving

(αH0)
2 are identical to those by Almog and Frankel.15 When

analyzing the motion of a single particle, there is no distinc-

tion between a motion caused by an external force (i.e., grav-

ity) and a motion arising from intrinsic particle activity (i.e.,

swim force). Therefore, the perturbation u′ = αH0Ĥ ·q in the

modified velocity expression is the same as adding a contribu-

tion from an external force, M(q) ·F ext, where M(q) is the

orientation-dependent mobility and F ext is the external force.
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Fig. 9 The swim pressure, Πswim
= −trσswim/3, as a function of

χR for αH0 = 1. The circles are results from BD simulations, and

the solid and dashed curves are the exact and asymptotic analytical

solutions, respectively. The illustration shows an instantaneous

configuration of the swimmers under a weak (sketch on left) and

moderate (on right) external field.

Of course, one could assume an expression of u′(αH0Ĥ · q)
that is different from the linear relationship (Eq 22) considered

here, and the results would no longer be the same as the sed-

imentation problem. Therefore, the sedimentation problem is

a special case of our general formulation.

7 Conclusions

We have introduced a new approach to understand and com-

pute the active stress in a system of self-propelled bodies.

All active matter systems generate a unique swim pressure

through their intrinsic self-motion. Here we used this swim

stress perspective to analyze the effect of an external field on

the motion and deformation of active matter. We saw that the

external field engendered anisotropic stresses, meaning that

the swimmers experience a different confining force in the

parallel and perpendicular directions. This lead directly to

the shrinking/expanding, elongating, and translating of soft,

compressible materials that are loaded with active particles.

The external field can thus be used to manipulate the shape

and size of soft materials such as a gel or perhaps a biological

membrane. Another important application may be the analysis

of various biophysical systems, such as the interior of a cell.

Molecular motors that activate the cytoskeleton must exert a

swim pressure on the cell owing to their self-motion along a

track.
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Our analysis remains valid for non-spherical particles with a

varying swim velocity U0 and/or reorientation time τR. Here

we focused on a dilute system of swimmers, but inclusion of

two-body effects in the Smoluchowski Eq 1 is straightforward.

For non-spherical particles the hydrodynamic drag tensor, ζ,

varies with the director q, and the effective hydrodynamic drag

factor ζeff = (2ζ⊥ + ζ‖)/3 becomes the relevant quantity

in the stress-diffusivity relationship, where ζ⊥ and ζ‖ are the

transverse and parallel components of the hydrodynamic drag

tensor, respectively. At finite volume fractions, the particle

size, a, would enter in the form of a nondimensional rotary

Péclet number, PeR = U0a/〈Dswim〉 ∼ a/(U0τR), which

compares the swimmer size a to its run length U0τR. With

the inclusion of translational Brownian motion, all three pa-

rameters must be varied in the analysis: χR = ΩcτR, PeR =
a/(U0τR), and the swim Péclet number Pes = U0a/D0.

In our analysis we neglected hydrodynamic interactions

among the particles, which would contribute additional terms

to the active-particle stress and affect the reorientation time of

the particles due to translation-rotation coupling. It is impor-

tant to note that the swim stress is distinct and different from

the “hydrodynamic stresslet”, which is also a single-particle

property but scales as ∼ nζU0a.10,11 As mentioned before,

the motion of a single particle due to an intrinsic swim force

and an external force are the same. At higher concentrations or

when considering the swimmer’s interactions with other bod-

ies or boundaries a distinction must be made—the intrinsic

swim mechanism does not generate a long-range 1/r Stokes

velocity field as does an external force.

Here we focused on a dilute system of active particles, but

at higher concentrations active systems have been known to

exhibit unique collective behavior.1,29 The swim pressure pre-

sented here remains valid and appropriate for hydrodynam-

ically interacting active systems, but one needs to carefully

examine the individual contributions to the active stress. A

single particle hydrodynamic contribution to the stress is of

the form ∼ nζaU , which, while important, is much smaller

by a factor of U0τR/a than the swim pressure. A complete

study would need to consider the effects of both the swim and

hydrodynamic stresses. We believe that the experimental, nu-

merical, and theoretical analyses of active systems may need

to be revisited in light of the new swim stress concept.

Experimentally, the precise manipulation of colloids using

external fields is critical in many applications, like the targeted

transport and delivery of specific chemicals.30 Active-matter

systems are ideal candidates for understanding dynamic self-

assembly and developing synthetic structures. For example,

dipolar particles subjected to a magnetic or electric field have

been shown to form patterns.30–32 Self-assembly and cluster-

ing behavior in active matter have been analyzed from the

swim stress perspective,2 and it would be straightforward to

extend these ideas to self-propelled particles that are biased

by an external orienting field.
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Appendix

A: Low-χR limit

A regular perturbation expansion of Eqs 11 and 12 assumes

solutions of the form g0(q;χR) = g
(0)
0 (q) + g

(1)
0 (q)χR +

g
(2)
0 (q)χ2

R +O(χ3
R) and d(q;χR) = d(0)(q) + d(1)(q)χR +

d(2)(q)χ2
R +O(χ3

R).
Substituting these into Eq 11 of the text, the leading-order

orientation distribution function g
(0)
0 satisfies ∇2

qg
(0)
0 = 0

and
∮
g
(0)
0 dq = 1. The solution is the uniform distribution,

g
(0)
0 = 1/4π. The O(χR) problem is −Ĥ · q/(2π) = ∇2

qg
(1)
0

with
∮
g
(1)
0 dq = 0. From Brenner27, vector spherical surface

harmonics satisfy

∇2
qP n(q) = −n(n+ 1)P n(q). (A1)

We hence substitute the trial solution g
(1)
0 = P 1(q) · a1 into

Eq A1, and obtain a1 = Ĥ/4π. Thus, the solution is g
(1)
0 =

Ĥ · P 1(q)/(4π). The O(χ2
R) problem is solved similarly:

∇2
qg

(2)
0 = −ĤĤ : P 2(q)/(2π) with

∮
g
(2)
0 dq = 0. The

solution is g
(2)
0 = ĤĤ : P 2(q)/(12π). Substitution of these

three contributions into the perturbation expansion, we arrive

at the solution in the text.

A similar procedure for the d-field gives

d = − 1

8π
P 1(q)−

5χR

72π
Ĥ·P 2(q)+

χ2
R

π

(
29

1440
ĤĤ · P 1(q)−

13

720
ĤĤ : P 3(q)−

3

160
P 1(q)

)
+O(χ3

R). (A2)

As in the force-induced microrheology problem considered

by Zia and Brady23, the O(1) solution for d is the same as

the O(χR) problem for g0. In the linear-response regime, the

problems are identical whether the swimmers are reoriented

by the external field (g0) or by thermal energy kBT (d) and

the same holds true when the reorientation is athermal with

τR.

B: High-χR limit

The problem is singular in the χR ≫ 1 limit, so we expand

the solution in the inner region as g0(µ̂;χR) = χRg
(0)
0 (µ̂) +
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g
(1)
0 (µ̂) + O(χ−1

R ). Substituting into Eq 11 of the text, the

leading-order solution satisfies

d

dµ̂

[
µ̂

(
g
(0)
0 +

dg
(0)
0

dµ̂

)]
= 0, (B1)

with
∫ 2π

0

∫∞

0
g
(0)
0 (µ̂) dµ̂ dφ = 1. For the fluctuation

field, we separate the solution into scalar components paral-

lel and perpendicular to Ĥ as d(µ, φ;χR) = d‖(µ;χR)Ĥ +
d⊥(µ;χR)(ex cosφ+ey sinφ), where ex and ey are unit vec-

tors in the x and y directions, respectively (see Fig 3). We as-

sume subject to posteriori verification that d‖ and d⊥ are only

a function of µ. Substituting the scaled µ̂ variable into Eq 12,

we obtain

d

dµ̂

[
µ̂

(
d‖ +

dd‖

dµ̂

)]
= − 1

4π
e−µ̂χ−1

R (µ̂− 1) ,

(B2)

d

dµ̂

[
µ̂

(
d⊥ +

dd⊥
dµ̂

)]
− d⊥

4µ̂
=

√
2

4π
χ
−1/2
R e−µ̂µ̂1/2. (B3)

The leading nonzero solution is of order d‖ ∼ O(χ−1
R )

and d⊥ ∼ O(χ
−1/2
R ). In the parallel direction, the so-

lution is d‖(µ̂;χR) = χ−1
R e−µ̂(µ̂ − 1)/(4π) + O(χ−2

R ),
which satisfies both the regularity and normalization condi-

tions. In the perpendicular direction, we obtain d⊥(µ̂;χR) =

−χ
−1/2
R µ̂1/2e−µ̂/(

√
2π) + O(χ−1

R ). Using boundary-layer

coordinates, the effective translational diffusivity is computed

from

〈D〉−D0 = 〈Dswim〉 = πU2
0 τR

∫ ∞

0

[
2χ−2

R (1− µ̂)d‖ĤĤ+

√
2χ

−3/2
R d⊥µ̂

1/2
(
I − ĤĤ

)]
dµ̂. (B4)

C: Exact solution for arbitrary χR: Uniform speeds

We rewrite Eq 11 as

d

dµ

[
(1− µ2)

dg0
dµ

]
− χR

d

dµ

[
(1− µ2)g0

]
= 0, (C1)

where µ ≡ Ĥ · q. Twice integrating and invoking the nor-

malization and regularity conditions (finite dg0/dµ and g0 at

µ = ±1), we arrive at Eq 16 of the text. The corresponding

displacement field is broken into the parallel and perpendicu-

lar components. The solution in the parallel direction is

d‖(µ;χR) =
eµχR

8π(sinhχR)2

[
cosh(χR) log

(
1− µ

1 + µ

)
−

sinh(χR) log
(
1− µ2

)
+ eχREi (−χR(µ+ 1))−

e−χREi (χR(1− µ))

]
+A‖e

µχR , (C2)

where Ei(t) is the exponential integral Ei(t) ≡∫ t

−∞
e−ζ/ζ dζ, and A‖ is the normalization constant:

A‖ = − χR

16π(sinhχR)3

∫ 1

−1

eµχR

[
cosh(χR) log

(
1− µ

1 + µ

)
−

sinh(χR) log
(
1− µ2

)
+ eχREi (−χR(µ+ 1))−

e−χREi (χR(1− µ))

]
dµ. (C3)

In the perpendicular direction, the solution is expanded as

d⊥ =

∞∑

n=1

CnP
1
n(µ). The coefficients Cn are found by solving

a tridiagonal matrix problem:

− χR
(n+ 1)(n− 1)

2n− 1
Cn−1 + n(n+ 1)Cn+

χR
n(n+ 2)

2n+ 3
Cn+1 = bn, (C4)

with C0 = CN+1 = 0, and the forcing coefficients bn are

given by

bn = − 2n+ 1

2n(n+ 1)

∫ 1

−1

g0(µ;χR)
√
1− µ2P 1

n dµ. (C5)

From Eq 9, the swim diffusivity and stress are

σswim = −nζ〈Dswim〉 = −nζU2
0 τRπ

∫ 1

−1

[
2d‖ (cothχR−

χ−1
R − µ

)
ĤĤ + d⊥

√
1− µ2

(
I − ĤĤ

)]
dµ, (C6)

where only the symmetric terms contribute to the quadrature.

In the perpendicular direction, the convenience of using asso-

ciated Legendre polynomials is evident in

σswim
⊥ = −nζU2

0 τRπ

∫ 1

−1

∞∑

n=1

CnP
1
n(µ)P

1
1 (µ) dµ

= −4π

3
nζU2

0 τRC1. (C7)

D: Exact solution for arbitrary χR: Nonuniform speeds

Resolving Eq 19 into the parallel and perpendicular compo-

nents, the exact d-field solution in the parallel direction is

d‖ =
eµχR

8π(sinhχR)2

{(
1− 2αH0

χR

)[
cosh(χR) log

(
1− µ

1 + µ

)

− sinh(χR) log
(
1− µ2

)
+ eχREi (−χR(µ+ 1))−

e−χREi (χR(1− µ))

]
− 2αH0µ sinhχR

}
+ Ã‖e

µχR ,

(D1)
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where Ã‖ is found from the normalization constraint to be

Ã‖ = − χR

16π(sinhχR)3

∫ 1

−1

eµχR

{(
1− 2αH0

χR

)
×

[
cosh(χR) log

(
1− µ

1 + µ

)
− sinh(χR) log

(
1− µ2

)
+

eχREi (−χR(µ+ 1))− e−χREi (χR(1− µ))

]
−

2αH0µ sinhχR

}
dµ. (D2)

Substitution of this equation into Eq 9 gives the swim stress in

the parallel direction.

In the perpendicular direction, the form of the solution is

the same as before (Eq C4) except the forcing coefficients bn
are given by

bn = − 2n+ 1

2n(n+ 1)

∫ 1

−1

g0(µ;χR)
√

1− µ2 (1 + αH0µ)P
1
n dµ.

(D3)

The tridiagonal matrix problem is solved for the coefficients

Cn−1, Cn, and Cn+1. The effective translational diffusivity in

the perpendicular direction is given by

〈D⊥〉 = 4πU2
0 τR

(
1

3
C1 +

1

5
αH0C2

)
, (D4)

where we have used the orthogonality of the associated Leg-

endre functions P 1
1 = −

√
1− µ2 and P 1

2 = −3µ
√

1− µ2 to

evaluate the integral.
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