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Construction of dissipative particle dynamics models for complex flu-
ids via the Mori-Zwanzig formulation
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We present a bottom-up coarse-graining procedure to construct mesoscopic force fields directly from microscopic dynamics. By
grouping many bonded atoms in the molecular dynamics (MD) system into a single cluster, we compute both the conservative
and non-conservative interactions between neighboring clusters. In particular, we perform MD simulations of polymer melts
to provide microscopic trajectories for evaluating coarse-grained (CG) interactions. Subsequently, dissipative particle dynamics
(DPD) is considered as the effective dynamics resulting from the Mori-Zwanzig (MZ) projection of the underlying atomistic
dynamics. The forces between finite-size clusters have, in general, both radial and transverse components and hence we employ
four different DPD models to account differently for such interactions. Quantitative comparisons between these DPD models
indicate that the DPD models with MZ-guided force fields yield much better static and dynamics properties, which are consistent
with the underlying MD system, compared to standard DPD with empirical formulae. When the rotational motion of the particle
is properly taken into account, the entire velocity autocorrelation function of the MD system as well as the pair correlation
function can be accurately reproduced by the MD-informed DPD model. Since this coarse-graining procedure is performed on
an unconstrained MD system, our framework is general and can be used in other soft matter systems in which the clusters can be
faithfully defined as CG particles.

1 Introduction

Atomistic simulation techniques such as molecular dynamic-
s track the motion of individual atoms and allow precise re-
construction of the molecular structure and chemical/physical
properties. However, in many applications of biological sys-
tems and soft matter physics, it is computationally imprac-
tical or impossible to produce large-scale effects with atom-
istic simulations1 even though some simplifications such as
the bead-spring models for polymers have been used2. When
only macroscopic properties are of practical interest, it may
not be necessary to explicitly take into account all the detail-
s of material at the atomic scale. Coarse-grained (CG) ap-
proaches including Langevin dynamics and dissipative parti-
cle dynamics drastically simplify the atomistic dynamics by
using a larger particle to represent a cluster of molecules3–5.
With less degrees of freedom, the CG model provides an eco-
nomical simulation path to capture the observable properties
of fluid systems on larger spatial and temporal scales beyond
the capability of conventional atomistic simulations. With in-
creasing attention on soft matter research, the CG modeling
has become a rapidly expanding methodology especially in
the fields of polymer and biomolecular simulation in recent
years4,5.

The basis for constructing CG models is the specification
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of CG force fields governing the motion of the CG particles.
Usually, empirical expressions for the CG potentials with ad-
justable coefficients are parameterized and optimized to gener-
ate desired properties. More complicated form for CG poten-
tials can be optimized by relative entropy rate based method-
ology6 and Bayesian inference7, which may provide good ap-
proximation to the many-body potential of mean force. Typi-
cally, simulations using the optimized potentials produce cor-
rect results for equilibrium properties including pair correla-
tion functions. However, the dynamical properties such as
time correlations are difficult to be reproduced using these po-
tentials. Furthermore, the empirical CG potentials obtained
by numerical optimizations are in principle neither transfer-
able to other systems, nor to the same system under different
thermodynamic conditions8. This dramatically limits the con-
venience and generality of these optimized CG potentials.

Alternatively, with an elimination of fast variables by using
Mori-Zwanzig (MZ) projection operators9,10, the CG interac-
tions can be directly evaluated from the microscopic dynamics
by mapping the microscopic system to a CG/mesoscopic sys-
tem. Based on the Mori-Zwanzig formalism, the fast degrees
of freedom in the microscopic system are eliminated and their
effects can be approximated by a stochastic dynamics under
the effects of dissipative and fluctuating interactions. Sever-
al studies have been reported on the application of the Mori-
Zwanzig projection operators, e.g., Akkermans and Briels11

applied the projector operator formalism to develop a coarse-
grained model of single polymer chain, and later Kinjo and
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Hyodo12 and Hijón et al.13 proposed the equations of motion
for the dynamics of the mesoscopic variables with an explic-
it relationship to the microscopic description. Based on the
Mori-Zwanzig formulation, the coarse-grained (mesoscopic)
system can be described by the generalized Langevin equa-
tion14

dp(t)
dt

=−
∫ t

0
ds

γ(t − s)p(s)
m

+δF(t) , (1)

which is consistent with the framework of the dissipative par-
ticle dynamics (DPD)13,15. Therefore, in the present work the
DPD model is considered as the effective dynamics resulting
from a projection of an underlying atomistic dynamics.

DPD was initially proposed by Hoogerbrugge and Koel-
man16 to combine the advantages of large timescale in lattice-
gas automata and mesh-free algorithm in molecular dynam-
ics (MD). Subsequently, the DPD modeling has been further
developed and successfully used in simulations of complex
systems including polymer solutions17, colloidal suspension-
s18, multiphase flows19 and biological systems20. However,
in these applications the parametrization of the DPD model
is predominantly empirical. In fact, the DPD method has its
roots in microscopic dynamics and it is usually considered as a
coarse-grained MD model. Many different methods have been
developed to incorporate the microscopic details into coarse-
grained models to obtain an optimal conservative force. Ex-
amples include inverse Monte Carlo21, iterative Boltzman-
n inversion procedure22, force matching method23, relative
entropy framework24, multi-scale coarse-graining method25,
and other approaches have been summarized by Noid26. How-
ever, the conservative force itself cannot produce the correct
dynamic properties. Generally speaking, the exclusion of the
friction arising from fluctuating interactions will result in a
faster CG dynamics than its underlying microscopic system27.
Therefore, the non-conservative interactions should be also in-
cluded when transport dynamics is concerned.

To extract the non-conservative forces from the microscopic
dynamics, constrained MD simulations have been performed
to provide the necessary microscopic information. Akkermans
and Briels11 proposed an algorithm to calculate such interac-
tions in a constrained MD simulation. Lei et al.15 and Hijón et
al.13 also carried out constrained MD simulations to obtain the
coarse-grained friction forces from the time-correlation func-
tion of the fluctuating force field of the MD system. Subse-
quently, Trément et al.28 followed the framework proposed
by Hijón et al.13 to calculate the coarse-grained forces from
constrained MD trajectories and constructed DPD models of
n-pentane and n-decane. However, the constraints imposed to
MD system may alter the dynamics of the system. Lei et al.15

have reported that the equation of state and dynamic proper-
ties of a constrained MD system are highly dependent on the
constraints.

In this paper, we will consider unconstrained MD system-
s of polymer melts to avoid the effects from artificial con-
straints. Our objective is to extract effective interactions gov-
erning DPD systems directly from the MD trajectories and
reproduce the MD system (to a maximum degree) by using
the DPD model. In practice, MD simulations consisting of
Lennard-Jones (LJ) particles are performed. We coarsen the
MD system by grouping many bonded LJ particles into single
cluster to evaluate the conservative, dissipative and random
forces governing the DPD system. The conservative force is
determined by ensemble averaging the pairwise interactions
between clusters, which is consistent with the force derived
from the potential of the mean force. The non-conservative
forces are computed based on the time-correlation function
of the fluctuating force field in MD systems following the
methodology used first by Lei et al.15 and subsequently Yoshi-
moto et al.29 Since the total force between two neighbor-
ing clusters is generally not parallel to the radial direction,
the coarse-grained force fields obtained from MD simulation-
s contain both the radial and the perpendicular interactions.
Moreover, the rotational motions of the finite-size clusters are
explicitly observed. Here, four different DPD models are em-
ployed to utilize these mesoscopic information obtained from
MD simulations. We demonstrate that the MD-informed DPD
models have significantly better performance than convention-
al DPD in reproducing the underlying microscopic system.

The remainder of this paper is organized as follows: In
section 2 we briefly introduce the theoretical background for
mapping a microscopic system to a mesoscopic system based
on the Mori-Zwanzig formulation. Section 3 describes in de-
tail how to implement the coarse-graining procedure for con-
struction of the mesoscopic force fields. Section 4 presents
the quantitative comparisons between four DPD models and
their performance in reproducing the MD system. Finally, we
conclude with a brief summary and discussion in section 5.

2 Theoretical background

We consider an atomistically well-defined n-particle system
whose microscopic state Γ = {rn,pn} is identified with the
coordinates r and momenta p of the atomic particles. The mi-
croscopic dynamics of the system is determined by the Hamil-
tonian,

H(Γ) =
n

∑
i=1

p2
i

2mi
+

1
2 ∑

i ̸= j
V (ri j) , (2)

where H(Γ) defines the phase space trajectories of the system
Γ ≡ {ri,pi, i = 1,n}.

When the atomistic information is not of practical interest,
the dynamics of the system can be represented by proper CG
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variables such as the coordinate R and translational momen-
tum P of the center-of-mass (COM) of a cluster of atoms, as
well as the angular momentum L when the rotational motion
is considered,

RI =
1

MI

Nc

∑
i=1

mIirIi , (3)

PI =
Nc

∑
i=1

pIi , (4)

LI =
Nc

∑
i=1

(rIi −RI)× (pIi −PI) , (5)

where Nc is the number of atomic particles in the Ith clus-
ter and MI = ∑i mIi is the total mass. Each cluster consisting
of Nc atomic particles is coarsened to be one CG particle in
the coarse-graining procedure with a CG level of Nc. Here
and in the following, the variables of CG particles are rep-
resented with capital symbols, such as M, R, P and L rep-
resent mass, position, translational momentum and angular
momentum, respectively, while the corresponding lowercases
m, r and p denote the variables of atomic particles. Usually,
the rotational momentum of a CG particle is neglected during
coarse-graining. However, there is no evidence showing that
the rotational momentum is dispensable for the finite-size CG
particles. In the present study, we will examine rigorously this
assumption.

We start with the projection formalism involving only trans-
lational momentum. The rotational momentum can be includ-
ed by generalizing the momentum term in the equations. With
the CG variables, the motion of the CG particles can be ap-
proximated via the Mori-Zwanzig projection11–13,15

d
dt

PI =
1
β

∂
∂RI

lnω(R)

− β
K

∑
J=1

∫ t

0
ds
⟨
[δFI(t − s)][δFJ(0)]T

⟩ PJ(s)
MJ

+ δFI(t) , (6)

where β = 1/kBT with T the thermodynamic temperature and
kB the Boltzmann constant, R = {R1,R2, · · · ,RK} is a phase
point in the CG phase space, and ω(R) is defined as a normal-
ized partition function of all the microscopic configurations at
phase point R given by

ω(R) =

∫
dN r̂δ (R̂−R)e−βU∫

dN r̂e−βU , (7)

where U is the potential energy corresponding to the phase
point R, and the integrations are performed over all the possi-
ble microscopic configurations {r̂i}.

In the right-hand side of Eq.(6), the first term represents the
conservative force due to the change of microscopic configura-
tion, and it is the ensemble average force on cluster I denoted
as ⟨FI⟩. The last term of Eq. (6) δFI is the fluctuating force
on cluster I and it is given by δFI = FI −⟨FI⟩ in which FI is
the total force acting on the cluster I. The second term of Eq.
(6) is the friction force determined by an integral of memory
kernel of the fluctuating force.

The time scale of the fluctuating force δFI is determined by
the atomic collision time, while the characteristic time scale of
the momentum is a relevant variable related to the mass of the
particle. When the momentum of COM is slow variable due
to the inertia of the CG particle while the fluctuating force is
fast variable, the typical time scales of the momentum and the
fluctuating force are separable and a Markovian process is ex-
pected. Then, the time correlation of the fluctuating force can
be replaced by the Dirac delta function based on the Marko-
vian approximation

β ⟨[δFI(t − s)][δFJ(0)]T ⟩= 2γγγ IJδ (t − s) , (8)

β
∫ t

0 ds
⟨
[δFI(t − s)][δFJ(0)]T

⟩ PJ(s)
MJ

= γγγ IJ ·
PJ(t)
MJ

, (9)

where the γγγ IJ is the friction tensor defined by

γγγ IJ = β
∫ ∞

0
dt
⟨
[δFI(t)][δFJ(0)]T

⟩
. (10)

With the Markovian approximation given by Eqs. (8) and
(9), the conservative, dissipative and fluctuating forces in E-
q. (6) can be computed from the trajectories of atomistic
simulations. Here, we assume that the non-bonded interac-
tions between neighboring clusters in the microscopic sys-
tem are explicitly pairwise decomposable30, and hence the to-
tal force consists of pairwise forces, e.g. FI ≈ ∑J ̸=I FIJ and
δFI ≈ ∑J ̸=I δFIJ . However, when we consider the force FIJ
that a molecule J exerts on another molecule I, in principle,
FIJ involving multi-body effects depends on all the COM co-
ordinates R as well as their microscopic configurations. Al-
though Eq. (6) based on the Mori-Zwanzig formalism is ac-
curate, a direct computation of the multi-body interactions is
very difficult, even for an one-dimensional harmonic chain31.
In practice, we neglect the many-body correlations between d-
ifferent pairs, and assume that the force FIJ between two clus-
ters I and J depends only on the relative COM positions RI
and RJ and is independent of the positions of the rest of clus-
ters. It should be noted that this approximation is not just a
pair approximation to the CG force field but is also an approx-
imate decomposition into pairwise forces.

Based on the Markovian approximation and the neglect of
many-body correlations, the fluctuating forces are indepen-
dent for different pairs and uncorrelated in times15,29, which
leads to an approximation

⟨
[δFI(t − s)][δFJ(0)]T

⟩
VJ(s) ≈

∑J ̸=I
⟨
[δFIJ(t − s)][δFIJ(0)]T

⟩
VIJ(s). This approximation
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neglects correlations between different pairs and it will work
less effectively when many-body correlations become impor-
tant32. However, as we will show in section 4, this approx-
imation yields good results in the cases of the present work.
The details of calculating pairwise CG interactions from MD
trajectories will be introduced in section 3.

3 Coarsening a microscopic system

To demonstrate the coarse-graining procedure, we consider a
MD system consisting of many Lennard-Jones (LJ) particles.
The effective interactions between CG particles are evaluated
using the methodology described in section 2. In the present
study, the molecule of a homostar, which is a kind of star
polymer whose arms have the same chemical structure, are
employed for the MD simulations. Each molecule of the star
polymer is treated as a single CG particle during the coarse-
graining process. In this section, we will show how a meso-
scopic force field can be constructed directly from the trajec-
tories of MD simulation rather than empirical expressions.

3.1 Microscopic model

MD simulations of star polymer melts are performed in a cu-
bic computational box with periodic boundary conditions. S-
tar polymers are represented as chains of beads connected by
short springs33,34. Each molecule of the star polymer has Na
arms with Nb monomers per arm. Excluded volume interac-
tions between monomers are included via a purely repulsive
Lennard-Jones potential also known as the Weeks-Chandler-
Andersen (WCA) potential35,

VWCA(r) =

{
4ε
[(σ

r

)12 −
(σ

r

)6
+ 1

4

]
, r ≤ 21/6σ

0 , r > 21/6σ
(11)

where the cutoff distance rc = 21/6σ is chosen so that only
the repulsive part of the Lennard-Jones potential is consid-
ered; also, ε sets the energy scale and σ the length scale of
the monomers. Each arm of the star polymer is connected to
a core atom, hence the total number of atoms per star polymer
is Nc = Na ×Nb + 1. For neighbouring monomers the bond
interactions are modeled as a spring with a finitely extensible
nonlinear elastic (FENE) potential36,

VB(r) =
{
− 1

2 kr2
0 ln
[
1− (r/r0)

2
]
, r ≤ r0

∞ , r > r0
(12)

where k = 30ε/σ2 is the spring constant and r0 = 1.5σ de-
termines the maximum length of the spring33. Then, the total
potential VWCA(r)+VB(r) between connected monomers has
a minimum at r ≈ 0.97σ . The spring is made stiff and short
enough to minimise neighbouring bonds from crossing each

other34. However, we note that the use of infinitely extensible
harmonic springs to model bond interactions13 is more likely
to yield artificial bond crossings.

The combination of FENE and WCA potentials can suc-
cessfully represent stretching, orientation, and deformation of
polymer chains and simple biomolecules36. This has been
widely used for the investigation of viscoelastic behavior of
polymer melts37, stretching of polymers in flow38, and oth-
er rheological properties39. Though the strategy of coarse-
graining is demonstrated with this model system, it is worth
noting that the current scheme for atomistic-to-mesoscopic
coarse-graining is not relevant to any specific system. The
separation of lengthscales between microscopic and CG mod-
els will ensure that this scheme can work with truly atom-
istic models if it works on heuristic models with similar long-
wavelength properties.

The polymer melts are modeled with 1000 molecules of s-
tar polymer in periodic cubic boxes of length (1000Nc/ρ)1/3,
in which ρ is the number density of monomers. The MD
simulations are performed in a canonical ensemble (NV T )
with the Nosé-Hoover thermostat40,41. Throughout this paper,
the results are interpreted with the reduced LJ units includ-
ing length, mass, energy and time units being σ = 1, m = 1,
ε = 1 and τ = σ(m/ε)1/2, respectively. The polymer volume
fraction is ψ =N(π/6)σ3/Vol = ρπ/6, where N is total num-
ber of monomers and Vol is the volume of the computational
box. All the MD simulations are performed at the temperature
kBT = 1.0 with the integration time step δ t = 1.0×10−3τ .

Figure 1 displays the typical configurations of star polymers
consisting of different number of monomers. When we evalu-
ate the interactions between CG particles, the monomers in a
given star polymer are grouped into a single cluster.

Prior to the calculation of the CG interactions between
neighboring clusters, we need to equilibrate the polymer melt-
s. For star polymer with short arms, the ideal way to generate

Fig. 1: Typical configurations of star-polymers consisting of dif-
ferent number of monomers. Star polymers have 10 arms with 1,
2 and 3 monomers per arm, hence Nc = 11,21 and 31, respectively.
Monomers interact with WCA potential and connected monomers are
attached by FENE bonds. One molecule of the star polymer is con-
sidered to be a CG particle when we evaluate the CG interactions.
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an equilibrated melt is to start from an arbitrary initial con-
figuration and continue the atomistic simulation out to several
times the longest relaxation time of the polymer molecules34.
In this work, we constructed star polymer melts with random
initial configurations and run the MD simulations for 103τ to
obtain the thermal equilibrium state. Then, the rest of the com-
putational time (up to 103τ) is used to accumulate the inter-
actions between clusters and construct the mesoscopic force
fields for DPD models. Moreover, 1024 ensemble samples are
used to minimise the uncertainties in our computations.

3.2 Analysis of the microscopic system

The properties of a polymer melt lie somewhere between
liquids and solids depending on the concentration and mi-
crostructure of the polymers42. With the purpose of construct-
ing a mesoscopic force filed for DPD, which is designed for
modeling fluids, the atomistic system of choice should be in
the liquid state. Figure 2(a) presents the radial distribution
functions (RDF) of the COM of star polymer Nc = 11 at d-
ifferent monomer densities ρ = 0.4, 0.6 and 0.8. The curve
of RDF exhibits sharp peaks as the monomer density increas-
es, which indicates that the molecules of star polymer have
less mobility and behave like crystal/solid at high monomer
densities. However, at ρ = 0.4 the RDF shows absence of
“long-range order” consistent with typical liquid-state RDFs.
Therefore, ρ = 0.4 is adopted in our MD simulations, and the
corresponding polymer volume fraction is ψ = 0.209.

Fig. 2: (a) Radial distribution functions (RDF) of the center-of-mass
(COM) of star polymers and (b) velocity and force autocorrelation
functions of star polymers at different monomer densities ρ = 0.4,
0.6 and 0.8, Nc = 11 and kBT = 1.0. (Results from MD simulations.)

The velocity autocorrelation functions (VACF) and the
force autocorrelation functions (FACF) of COM at various
monomer densities are plotted in Fig. 2(b). For ρ = 0.8
the time scales of VACF and FACF are comparable and the
Markovian approximation is questionable. By contrast, the
VACF and the FACF at ρ = 0.4 have correlation times well-
separated, hence a Markovian behaviour is expected. This fur-
ther confirms that the monomer number density ρ = 0.4 is a

reasonable choice for the MD system to be coarse-grained.

Fig. 3: (a) Verification of the equipartition theorem at the coarse-
grained level with the PDFs of the translational and rotational mo-
tions about the COMs. Points correspond to MD results and lines are
from analytical expressions. (b) Probability density function (PDF)
of MRg

2 of star polymers calculated by Eq. (15).

In a well-defined MD system consisting of N atoms, the
temperature of the system is monitored with the average ki-
netic energy of its atoms given by ⟨p2/2m⟩. According to the
equipartition theorem the thermal energy is shared equally a-
mong all of its degrees of freedom, and we have ⟨p2/2m⟩ =
3
2 kBT . If the atoms in the same molecule are packed into a
cluster and we use the momentum P and coordinate R of the
COM to describe the system, then the average kinetic energy
of the COMs can be calculated as follows,⟨

P2
I

2MI

⟩
=

1
K

K

∑
I

⟨
P2

I
⟩

2MI
=

1
K

K

∑
I=1

1
2MI

⟨(
Nc

∑
i=1

pIi

)2⟩

=
1
N

K

∑
I=1

Nc

∑
i=1

⟨
p2

Ii
⟩

2m
+

1
N

K

∑
I=1

Nc

∑
i ̸= j

⟨
pIi ·pI j

⟩
2m

, (13)

where K is the number of clusters and Nc = N/K is the num-
ber of atoms in each cluster. Here, all the atoms have the
same mass m and we have MI = Nc ·m. In the last equality
of Eq.(13), the first term describes the average kinetic ener-
gy of atoms ⟨p2/2m⟩, and the second term is a summation
of
⟨
(pi ·p j) j ̸=i

⟩
in the same cluster. When the thermal en-

ergy is distributed equally on all the degrees of freedom and
⟨P2/2M⟩ = ⟨p2/2m⟩, the second term is expected to vanish.
However, we need to explicitly check the validity of the e-
quipartition theorem at the coarse-grained level. Figure 3(a)
shows the probability density functions (PDFs) of the veloci-
ties of the monomer and the COM. For a particle-based system
in thermal equilibrium, the PDF of velocity is given by

f (vx) =

(
m

2πkBT

)1/2

exp
(
− mv2

x

2kBT

)
, (14)

where m is the mass. The lines in Fig. 3 are analytical distribu-
tions while the symbols are obtained from the MD simulation.

1–15 | 5

Page 5 of 15 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



It is obvious that the equipartition theorem is still valid for
the quantities of COM. Thus, the CG systems should have the
same thermal energy as its underlying microscopic systems.

To obtain the rotational inertia of the CG particles, we take
the size of each cluster to be its gyration radius Rg defined by

MIRg
2
I =

Nc

∑
i=1

mIir̂2
Ii =

Nc

∑
i=1

mIi(rIi −RI)
2 , (15)

where MI is the mass of cluster I, and r̂Ii = rIi−RI are the rel-
ative displacements of particles i with respect to their COMs.

Figure 3(b) shows the PDF of MRg
2 with the mean

⟨MRg
2⟩ = 9.83 for the star polymer with Nc = 11. Consider-

ing the spherical symmetry of the star polymer, the rotational
inertia of the CG particle is IRx = ⟨∑mi(ŷ2

i + ẑ2
i )⟩ = 2

3 ⟨MR2
g⟩.

Thus, we found the rotational inertia IR = 6.55 for the star
polymer Nc = 11. With this IR value, we also compare the
PDF of the angular velocity about the COM with the analyti-
cal solution in the form of Eq. (14) with IR instead of m, and
find good consistency, as shown in Fig. 3(a).

3.3 Mesoscopic force field

Since the molecule of a star polymer consists of discrete
monomers, the total force FIJ between two clusters I and J
is generally not parallel to the radial vector eIJ , which is di-
rected along center-to-center from J to I. Figure 4 displays a
schematic picture depicting the three directions for consider-
ing pairwise interactions between clusters I and J. The sym-
bol “∥” in Fig. 4 represents the direction parallel to eIJ , while
“⊥1” denotes the direction along the perpendicular velocity
component V⊥1

IJ = VIJ − (VIJ · eIJ)eIJ and “⊥2” the direction
orthogonal to both eIJ and VIJ .

Fig. 4: Schematic depiction of the directions describing pairwise
interactions between clusters I and J. The symbol “∥” represents the
direction parallel to eIJ , while “⊥1” denotes the direction along the
perpendicular velocity component V⊥1

IJ = VIJ − (VIJ · eIJ)eIJ , and
“⊥2” the direction orthogonal to both eIJ and VIJ .

3.3.1 Conservative force. The rotational symmetry of the
CG pairs about the eIJ axis suggests that, on average, FIJ has
zero components in the ⊥1 and ⊥2 directions, which has been
verified by computing the mean transversal forces ⟨FIJ · e⊥1

IJ ⟩
and ⟨FIJ ·e⊥2

IJ ⟩ based on MD data. Hence, the average pairwise
force ⟨FIJ⟩, which is taken as the conservative force FC

IJ , will
be of the form,

⟨FIJ⟩= FC
IJ = FC

IJ(RIJ)eIJ = α ·ωC(RIJ)eIJ , (16)

where eIJ is the unit vector from particle J to I given by
eIJ = (RI −RJ)/RIJ with RIJ = |RI −RJ |, and FC

IJ(RIJ) rep-
resents the magnitude of conservative force FC

IJ , which is dis-
tance dependent and can be equally replaced by a constant α
multiplying a weighting function ωC(RIJ).

To compute the magnitude of the conservative force
FC

IJ(RIJ) = α ·ωC(RIJ), we divide the distance between two
molecules into many bins with width of δ . The value of
FC

IJ(RIJ) is obtained by averaging the result of ⟨FIJ · eIJ⟩ over
all those pairs I and J with intermolecular distance between
RIJ − δ/2 and RIJ + δ/2. Figure 5 shows the conservative
force FC

IJ(RIJ) versus the intermolecular distance RIJ for the
cases Nc = 11,21 and 31 at ρ = 0.4 and kBT = 1.0. At short
distances the RDF of COM rapidly approaches zero, which in-
dicates the improbability of pairs at very short distances. This
is the reason why there are no data available at short distances
in Fig. 5.

Fig. 5: Conservative force FC
IJ(RIJ) versus the intermolecular dis-

tance RIJ for the cases Nc = 11,21,31 at ρ = 0.4 and kBT = 1.0.

The computed data obtained from the MD simulations sug-
gest a bell-shaped function f (R) for fitting both conservative
and dissipative forces,

f (R) =
{

Λ(1+χ R
Rcut

)(1− R
Rcut

)χ , R ≤ Rcut

0 , R > Rcut
(17)
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where Λ and χ are two undetermined coefficients, and Rcut is a
cutoff radius for fitting the data. In Eq. (17) a weighting func-
tion can be defined as ω(R) = (1+ χ ·R/Rcut)(1−R/Rcut)

χ ,
which has its maximum value 1.0 at R = 0 and smoothly de-
cays to 0 at R = Rcut . For the conservative force, the cut-
off radius Rcut is determined by the distance beyond which
the pairwise force FC

IJ(RIJ) is smaller than 10−6 ·FC
max, where

FC
max is the maximum value of available data of FC

IJ(RIJ). Us-
ing the least squares method, the data in Fig. 5 are best
fitted with parameter sets (Λ,χ,Rcut), which are given as
(795.69,4.00,3.32) for Nc = 11, (71.09,3.75,5.23) for Nc =
21, and (61.97,4.55,6.97) for Nc = 31. These fitting functions
in the form of Eq. (17) will be used as the conservative force
for DPD models in section 4. A global view of these fitting
curves is provided in the inset of Fig. 5.

3.3.2 Non-Conservative forces. With the pairwise ap-
proximation, the total fluctuating force δFI on a cluster I is
approximated by δFI ≈ ∑J ̸=I δFIJ in which δFIJ is the pair-
wise fluctuating force defined as,

δFIJ = FIJ −⟨FIJ⟩ , (18)

where FIJ is the instantaneous force exerted by cluster J on
cluster I, and ⟨FIJ⟩ is the ensemble average of FIJ obtained by
Eq. (16).

Generally, the fluctuating force δFIJ is not parallel to the ra-
dial direction eIJ . However, δFIJ , on average, is transversely
isotropic with respect to eIJ because the instantaneous pair-
wise force FIJ has no preference between directions ⊥1 and
⊥2, as shown in Fig. 4. Here, when we calculate the magni-
tude of perpendicular fluctuating force, we do not distinguish
between the directions ⊥1 and ⊥2 and decompose δFIJ into
two parts

δFIJ = (eIJeT
IJ) ·δFIJ +(1− eIJeT

IJ) ·δFIJ

= δF∥
IJ +δF⊥

IJ , (19)

where δF∥
IJ is the component along vector eIJ and δF⊥

IJ the
perpendicular part whose modulus is equally distributed on
directions ⊥1 and ⊥2.

The friction tensor between clusters I and J can be calculat-
ed from the memory kernel φφφ IJ = β

∫ τ0
0

⟨
δFIJ(t)δFIJ(0)T

⟩
dt.

The details of the derivation can be found in the works of Lei
et al.15 and Yoshimoto et al.29. We decompose the fluctuat-
ing force δFIJ into its radial and perpendicular components.
Then, the friction tensor becomes:

φφφ IJ =β
∫ ∞

0

⟨
δFIJ(t)δFIJ(0)T ⟩dt

=φ∥(RIJ)eIJeT
IJ +φ⊥(RIJ)(1− eIJeT

IJ) , (20)

where φ∥(RIJ) and φ⊥(RIJ) are the radial and perpendicular
components of the friction coefficient determined by

φ∥(RIJ) =β
∫ ∞

0

⟨
δF∥

IJ(t) ·δF∥
IJ(0)

⟩
dt

=γ∥ω∥
D(RIJ)

=
1
2

β [σ∥ω∥
R(RIJ)]

2 , (21)

φ⊥(RIJ) =
1
2

β
∫ ∞

0

⟨
δF⊥

IJ(t) ·δF⊥
IJ(0)

⟩
dt

=γ⊥ω⊥
D (RIJ)

=
1
2

β [σ⊥ω⊥
R (RIJ)]

2 . (22)

The correlation function
⟨
[δFIJ(t)][δFIJ(0)]T

⟩
is time-

dependent and the time integrals in Eqs. (21-22) can be con-
tinued forever. In practice, Kirkwood43 introduced a cutoff
upper limit τ0 in the time integral. There is no rigorous defi-
nition for the specific value of τ0 except that it should be large
enough for the integral to attain the plateau region but short
enough not to decay appreciably to zero. The problem of the
plateau was further discussed by Suddaby44 and Helfand45

for a Brownian particle, and Lagarkov and Sergeyev46 have
proposed to chose as τ0 the first zero of the FACF, which was
justified by Brey and Ordonez47, who performed a molecu-
lar dynamics simulation and computed the FACF of a mas-
sive Brownian particle immersed in a Lennard-Jones fluid.
Furthermore, Hijón and collaborators13 carried out a con-
strained dynamics simulation to obtain a plateau of the inte-
gral K(t) =

∫ ∞
0 ⟨δFI(t) ·δFI(0)⟩dt, and they found that the

plateau in constrained dynamics has similar value as the peak
of K(t) in unconstrained dynamics. In the present work we
use a cutoff upper limit τ0 when the integrals in Eqs. (21) and
(22) have their first peak to determine the value of φ∥(RIJ) and
φ⊥(RIJ), as shown in Fig. 6.

The radial and perpendicular components of the friction co-
efficients versus the distance RIJ for the case Nc = 11 are p-

Fig. 6: (a) Time correlations of random force along radial direction
ϕ∥(t) = ⟨δF∥

IJ(t)δF∥
IJ(0)⟩ at five intermolecular distances RIJ for the

case Nc = 11, ρ = 0.4 and kBT = 1.0. The insets of (a) and (b) show
the value of φ∥(t) and φ⊥(t) given by Eqs. (21-22).
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Fig. 7: Radial and perpendicular components of friction coefficients
versus the distance RIJ for the case Nc = 11. There are no data avail-
able for the friction coefficients at RIJ < 2.2 because the correspond-
ing g(r) is zero. The fitting parameter set (Λ,χ ,Rcut) using Eq. (17)
for φ∥ is (146.18,3.00,3.32), while for φ⊥ is (110.76,3.95,3.32).

resented in Fig. 7. There are no data available for RIJ < 2.2
because the corresponding RDF is zero when RIJ < 2.2. The
parameter sets (Λ,χ,Rcut) for fitting the data obtained from
MD simulations are listed in table 1, which will be utilized by
the DPD models in section 4.

Table 1: Parameters in Eq. (17) for fitting the force fields ob-
tained from MD simulations, also the rotational inertia IR and
cutoff distance Rc (maximum of Rcut ) for DPD simulations.
Nc Forces Λ χ Rcut IR Rc

11
α ·ωC(R) 795.69 4.00 3.32

6.55 3.32γ∥ ·ω
∥
D(R) 146.18 3.00 3.32

γ⊥ ·ω⊥
D (R) 110.76 3.95 3.32

21
α ·ωC(R) 71.09 3.75 5.23

27.51 5.23γ∥ ·ω
∥
D(R) 53.58 3.52 5.15

γ⊥ ·ω⊥
D (R) 21.86 3.48 5.02

31
α ·ωC(R) 61.97 4.55 6.97

64.20 6.97γ∥ ·ω
∥
D(R) 50.37 4.40 6.93

γ⊥ ·ω⊥
D (R) 24.04 4.20 6.70

4 DPD Models

In this section, we compare four different DPD models and
their performances in reproducing the properties of the ref-
erence MD system. The first one is the conventional DPD
model (DPD), which considers only radial interactions with

empirical weighting functions. The second model is the Mori-
Zwanzig DPD model (MZ-DPD), which considers only radi-
al interactions as well, but the MZ-DPD model utilizes the
CG force field obtained in section 3. The third is the Mori-
Zwanzig Transverse DPD model (MZ-TDPD) considering the
interactions in both radial and perpendicular directions. How-
ever, the MZ-TDPD excludes the rotational momentum of D-
PD particles and does not conserve the angular momentum of
the system. The last one is the Mori-Zwanzig Full DPD model
(MZ-FDPD), which considers the interactions in all the three
directions e∥, e⊥1 and e⊥2 as well as the rotational motion of
DPD particles. It is worth noting that the MZ-FDPD model
conserves both the translational and angular momenta of the
system. The main differences among these DPD models are
summarized in table 2.

Table 2: Description of four DPD models. Here “empiri-
cal” force field means empirical weighting functions, while
“bottom-up” represents MD-informed CG force field. Sym-
bols V and ΩΩΩ represent the translational and rotational mo-
tions, respectively.

Models Force Directions V ΩΩΩField of Forces
DPD Empirical ∥ Yes No
MZ-DPD Bottom-up ∥ Yes No
MZ-TDPD Bottom-up ∥+⊥1 Yes No
MZ-FDPD Bottom-up ∥+⊥1+⊥2 Yes Yes

4.1 Conventional DPD (DPD)

The time evolution of a DPD particle I is governed by New-
ton’s equation of motion dRI/dt = VI and dPI/dt = FI =

∑J ̸=I(FC
IJ +FD

IJ +FR
IJ). The pairwise interaction between D-

PD particles consists of the conservative force FC
IJ , dissipative

force FD
IJ and random forces FR

IJ , which are considered parallel
to the radial direction3

FC
IJ = α ·ωC(RIJ)eIJ , (23)

FD
IJ =−γ∥ ·ω

∥
D(RIJ)(eIJ ·VIJ)eIJ , (24)

FR
IJ = σ∥ ·ω

∥
R(RIJ) ·ξ ∥

IJ∆t−1/2eIJ , (25)

where RIJ is the distance between particles I and J, eIJ the u-
nit vector from particle J to I, and VIJ = VI −VJ the velocity
difference. Here, α is repulsive force coefficient, γ∥ the dis-

sipative coefficient and σ∥ the strength of random force. ξ ∥
IJ

are symmetric Gaussian white noises, which are independent
for different pairs of particles and at different times48. Al-
so, ωC(R), ω∥

D(R) and ω∥
R(R) are the weighting functions of
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FC, FD and FR, respectively. The fluctuation-dissipation the-
orem requires the relationship48 σ2

∥ = 2γ∥kBT and ω∥
D(R) =

[ω∥
R(R)]

2.
A common choice3,18,49 for the weighting functions is

ωC(R) = 1−R/Rc and ω∥
D(R) = (1−R/Rc)

s for R ≤ Rc and
zero for R > Rc. With the empirical weighting functions, the
parameters α and γ∥ are optimized to capture the correct pres-
sure and diffusivity of the reference MD system. A parame-
ter set (α,γ∥) = (13.5,32.0) with Rc = 3.4 and s = 0.5 gives
pressure P = 0.194±0.004 and diffusivity D = 0.119±0.002
compared to P = 0.191±0.006 and D = 0.119±0.002 of the
MD system.

Fig. 8: Performance of the conventional DPD model (DPD) in repro-
ducing the MD system on (a) the radial distribution function (RDF),
(b) the velocity autocorrelation function (VACF) and (c) the mean
squared displacement (MSD) at ρ = 0.4 and Nc = 11. (d) Velocity
profile for measuring the viscosity with periodic Poiseuille flow.

Figure 8 shows the performance of the conventional DPD
model in reproducing the RDF and the VACF of the MD sys-
tem. The behavior of VACF implicitly includes the dynamical
properties of the system. At short timescales particles in the
fluid experience the ballistic regime, and the VACF decays ex-
ponentially with a characteristic timescale τp = M/η , where
M is the mass of the particle and η is the Stokes viscous drag
coefficient. For timescales much larger than τp, the VACF
shows a long-time tail proportional to t−3/2 in the presence
of the hydrodynamic memory effects. Correspondingly, the
mean squared displacement (MSD) of the particle approach-
es (3kBT/M)t2 in the ballistic regime at short timescales, and
becomes 6Dt at larger times. Moreover, the diffusion constant

D is also related to the VACF via Green-Kubo relations

D =
1
3

∫ ∞

0
⟨V(t) ·V(0)⟩dt . (26)

The diffusivity D can be computed by using either the
Green-Kubo relation given by Eq. (26) or the Einstein relation
6Dt = ⟨|r(t)−r(0)|2⟩t→∞. The two measurements of diffusiv-
ity based on MSD and VACF are equal in theory. With the data
of MD and DPD simulations, the measurement based on MSD
gives 0.120 while the Green-Kubo integral gives 0.119.

To quantitatively compare the mesoscopic system and it-
s underlying microscopic system, the macroscopic properties
of the MD and DPD systems are listed in table 3, in which
the diffusion constants D are determined by the Green-Kubo
integral. The viscosity is computed based on the periodic
Poiseuille flow50 at low shear rate, as shown in Fig. 8(d) in
which the lines are quadratic fit curves for each case. A smal-
l body force gz = 0.002 is applied to generate low shear rate
flow. To ensure the validity of our measurements a smaller
body force gz = 0.001 is also tested and it gives same viscosi-
ties.

From table 3 it is obvious that the pressure of the MD sys-
tem is correctly captured by the DPD model. However, the
DPD model has inconsistent RDF compared to that of the ref-
erence MD system as shown in Fig. 8(a), which reveals that
the local structure and the size of the cluster in MD system
are incorrectly reproduced. Moreover, the Stokes-Einstein ra-
dius RSE of DPD particle is 2.510 compared to 1.155 of MD
system. Furthermore, the VACF of DPD system decays dif-
ferently from the VACF of MD system, which implies that the
viscous forces on the particles are different between the DPD
and the MD systems. Table 3 shows that the viscosity of DPD
system is approximately half the value of MD system though
the diffusivity is correctly reproduced.

4.2 Mori-Zwanzig DPD (MZ-DPD)

The MZ-DPD model has same expressions of forces as the
conventional DPD model given by Eqs. (23-25). However,
the forces are given by the CG force field obtained in section 3
rather than empirical formulas. The parameters listed in table
1 are utilized to generate the DPD force field. For example,
we have α = 795.69, ωC(R) = (1+ 4R/3.32)(1−R/3.32)4,
γ∥ = 146.18 and ω∥

D(R) = (1+3R/3.32)(1−R/3.32)3 corre-
sponding to the MD system Nc = 11 at ρ = 0.4 and kBT = 1.0.

The comparisons on the RDF and the VACF between the
MZ-DPD system and the MD system are made in Fig. 9. We
find that the CG force field obtained from MD simulations
generates much better results than the empirical force field
widely used in the conventional DPD simulations. Without
any iteratively optimized parameter, the MZ-DPD model has
the same local structure represented by RDF and close VACF
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Table 3: Static and dynamic properties for MD and DPD systems at ρ = 0.4 and kBT = 1.0, and three degrees of coarse graining
Nc = 11,21 and 31. The symbols P, D, ν , Sc = ν/D and RSE = kBT/(6πDνρ) represent pressure, diffusivity, kinematic viscosity,
Schmidt number and Stokes radius, respectively. The maximum relative statistical error of 32 independent measurements is
±2.3%. The errors of different DPD models relative to MD results are displayed in parentheses.
Nc Models P(error %) D(error %) ν(error %) Sc(error %) RSE(error %)

11

MD 0.191 0.119 0.965 8.109 1.155
DPD 0.194 (+1.6) 0.119 (0) 0.444 (-54.0) 3.731 (-54.0) 2.510 (+117.3)

MZ-DPD 0.193 (+1.0) 0.138 (+16.0) 0.851 (-11.8) 6.167 (-23.9) 1.129 (-2.2)
MZ-TDPD 0.193 (+1.0) 0.111 (-6.7) 1.075 (+11.4) 9.685 (+19.4) 1.112 (-3.7)
MZ-FDPD 0.193 (+1.0) 0.120 (+0.8) 0.954 (-1.1) 7.950 (-2.0) 1.158 (+0.3)

21

MD 0.198 0.061 1.413 23.163 1.539
MZ-DPD 0.194 (-2.0) 0.083 (+36.1) 1.100 (-22.1) 13.253 (-42.8) 1.453 (-5.6)

MZ-TDPD 0.194 (-2.0) 0.053 (-13.1) 1.771 (+25.3) 33.415 (+44.3) 1.413 (-8.2)
MZ-FDPD 0.194 (-2.0) 0.060 (-1.6) 1.457 (+3.1) 24.283 (+4.8) 1.517 (-1.4)

31

MD 0.210 0.040 1.878 46.950 1.765
MZ-DPD 0.202 (-3.8) 0.059 (+47.5) 1.361 (-27.5) 23.068 (-50.1) 1.652 (-6.4)

MZ-TDPD 0.202 (-3.8) 0.030 (-25.0) 2.666 (+42.0) 88.867 (+89.3) 1.658 (-6.1)
MZ-FDPD 0.202 (-3.8) 0.036 (-10.0) 2.087 (+11.1) 57.972 (+23.5) 1.765 ( 0)

curve as those of the MD system, which means that the MZ-
DPD model reproduces better static and dynamical properties
than the conventional DPD model.

Fig. 9: Performance of the Mori-Zwanzig DPD model (MZ-DPD)
in reproducing the MD system on (a) the radial distribution function
(RDF) and (b) the velocity autocorrelation function (VACF) at ρ =
0.4 and Nc = 11.

We note that the MZ-DPD model considers only the radial
interaction and neglects the perpendicular forces. The result is
an underestimation of the friction between neighbouring par-
ticles. Therefore, the MZ-DPD system has smaller viscosity
and larger diffusion constant compared to these of the MD
system, which can be validated by the data listed in table 3.

4.3 Mori-Zwanzig Transverse DPD (MZ-TDPD)

In addition to the radial forces, the MZ-TDPD model includes
the dissipative and random forces in the direction of e⊥1 . The

details of the transverse DPD model can be also found in the
work of Junghans and collaborators51. The equation of mo-
tion governing the MZ-TDPD system is given by

dPI

dt
=∑

J ̸=I
FIJ = ∑

J ̸=I
α ·ωC(RIJ)eIJ

−∑
J ̸=I

γ∥ ·ω
∥
D(RIJ)(eIJ ·VIJ)eIJ

−∑
J ̸=I

γ⊥ ·ω⊥
D (RIJ)[VIJ − (eIJ ·VIJ)eIJ ]

+∑
J ̸=I

σ∥ ·ω
∥
R(RIJ) ·ξ ∥

IJ∆t−1/2eIJ

+∑
J ̸=I

√
2σ⊥ ·ω⊥

R (RIJ) ·ξ⊥
IJ ∆t−1/2e⊥1

IJ , (27)

where σ2
⊥ = 2γ⊥kBT and ω⊥

D (R) = [ω⊥
R (R)]2. The dissipa-

tive and random forces in the direction of eIJ , as well as
those forces in e⊥1

IJ , obey the fluctuation-dissipation theorem
to maintain the MZ-TDPD system at constant temperature.

Since the RDF is only determined by the conservative force,
the changes of non-conservative forces will not affect the RDF
even if the DPD thermostat is replaced by the Nosé-Hoover
thermostat we still have the same RDF. Because the MZ-DPD,
MZ-TDPD and MZ-FDPD models use the same conservative
force, these models have the same RDF as shown in Fig. 9(a),
hence only the RDF of the MZ-DPD model is displayed in this
paper.

Since the forces between particles in the MZ-TDPD model
are not central while the rotational motions of the particles are
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Fig. 10: Performances of Mori-Zwanzig Transverse DPD model (MZ-TDPD) and Mori-Zwanzig Full DPD model (MZ-FDPD) in reproducing
the velocity autocorrelation function (VACF) of the MD systems for the cases with (a,b) Nc = 11, (c,d) Nc = 21 and (e,f) Nc = 31 at ρ = 0.4.
The negative values of the VACF in the insets of (e,f) are displayed between the two vertical dashed lines. The dashed lines show exponential
decay (3kBT/M · e−t ) in (a,b) and the dash-double dotted lines show algebraic decay. The slopes (-3/2) are drawn for reference.

excluded, the angular momentum of the MZ-TDPD system is
not conserved51. By imposing the perpendicular forces in the
absence of rotational motions, the friction between neighbour-
ing particles is overestimated by the MZ-TDPD model. There-
fore, the viscosity of the MZ-TDPD system is higher than the
MD system. As a result, it can be observed in Fig. 10(a) that
the MZ-TDPD model yields a VACF below that of the MD
system.

4.4 Mori-Zwanzig Full DPD (MZ-FDPD)

The Mori-Zwanzig Full DPD model has the same formula-
tion as the fluid particle model (FPM) proposed by Español52,
which considers the interactions in all the three directions e∥,
e⊥1 and e⊥2 shown in Fig. 4, and includes the rotational mo-
tions of DPD particles. Compared to the MZ-TDPD mod-
el, the MZ-FDPD model also conserves the angular momen-
tum of the system since the particles are allowed to rotate.
The time evolutions of the MZ-FDPD particles are governed
by18,52

dLI

dt
=TI = ∑

J ̸=I

RIJ

2
×FIJ , (28)

dPI

dt
=∑

J ̸=I
FIJ = ∑

J ̸=I
α ·ωC(RIJ)eIJ

−∑
J ̸=I

γ∥ ·ω
∥
D(RIJ)(eIJ ·VIJ)eIJ

−∑
J ̸=I

γ⊥ ·ω⊥
D (RIJ)[VIJ − (eIJ ·VIJ)eIJ ]

−∑
J ̸=I

γ⊥ ·ω⊥
D (RIJ)

[
RIJ

2
× (ΩΩΩI +ΩΩΩJ)

]
+∑

J ̸=I

1√
3

σ∥ ·ω
∥
R(RIJ)∆t−1/2 · tr[dWIJ ]eIJ

+∑
J ̸=I

√
2σ⊥ ·ω⊥

R (RIJ)∆t−1/2 ·dWA
IJ · eIJ , (29)

where ΩΩΩI is the angular velocity of particle I, TI is the torque
and LI = IRI ΩΩΩI the angular momentum. The magnitudes of the
rotational inertia for Nc = 11,21 and 31 are listed in table 1.
Also, dWIJ is a matrix of independent Wiener increments and
dWA

IJ =
1
2 (dWµν

IJ −dWνµ
IJ ) is an antisymmetric noise matrix.

After including the rotational motion of the particles, the
MZ-FDPD model has better performance than both the MZ-
TDPD and the MZ-DPD models. Fig. 10(b) shows the com-
parison of the VACF between MD and MZ-FDPD systems for
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Fig. 11: (a) Probability density functions (PDF) of the gyration ra-
dius and (b) radial distribution functions (RDF) for MD clusters of
the cases Nc = 11,21,31 at ρ = 0.4 and kBT = 1.0. Mean gyration
radius ⟨Rg⟩= 0.945,1.402 and 1.763 for Nc = 11,21 and 31, respec-
tively.

the case Nc = 11. It can be seen that both the short time be-
havior with an exponentially decay and the long-time tail pro-
portional to t−3/2 are correctly reproduced by the MZ-FDPD
model, which reveals that the transport properties of the MZ-
FDPD system are consistent with those of the MD system.

For these star polymers with long arms, each cluster is sur-
rounded by its near neighbors in a cage-like structure and as
soon as the cluster moves it is likely to hit the wall of the cage
and will be pushed back. As a result, the VACF becomes nega-
tive after a few collisions for the cases Nc = 21 and Nc = 31 un-
der this backscattering effect, as shown in Fig. 10(c-f). Figure
11(a) shows the PDF of the gyration radius of the MD clusters
for cases Nc = 11,21 and 31, which reveals that the clusters
are elastic with variable radius. When we use identically sized
DPD particles to represent these clusters, the variations of par-
ticle size are neglected, which results in larger peak values in
RDF as shown in Fig. 11(b). Although the MD-informed D-
PD models are able to capture this backscattering effect, Fig.
10(f) shows that the negative part of VACF is not accurately
reproduced because the effects induced by the variations of the
cluster size are not considered in the DPD model.

Figure 12 displays the Green-Kubo integral of the VACF
using Eq. (26) for the cases Nc = 11,21 and 31. For all the
cases, the magnitude of the plateau of D(t) determines the d-
iffusion constant of each system. The dashed horizontal line
denotes the diffusivity obtained based on MSD of the MD sys-
tem. It explicitly shows that the MZ-DPD generates higher
diffusivity because of the underestimation of the friction be-
tween neighboring particles, while the MZ-TDPD has lower
diffusivity resulting from the overestimation of the friction.

Our results here show that the MZ-FDPD model has the
best performance in accurately reproducing the MD system.
It works well for the star polymer with short arms such as
Nc = 11 and 21. However, as the length of arm increases, the
relative error becomes −10.0% on the diffusivity and +11.1%

on the viscosity for the case with Nc = 31. The reason appears
to be that we ignored the many-body correlations between d-
ifferent pairs during the coarse-graining procedure, however,
such correlations become significant for polymers with long
arms.

5 Summary and Discussion

Based on microscopic simulations of star polymer melts in
a canonical ensemble, we extracted mesoscopic force fields
for coarse-grained models by mapping the microscopic system
to a coarse-grained/mesoscopic system via the Mori-Zwanzig
projection. Two main assumptions, Markovian approximation
and pairwise approximation, have been used to implement the
coarse-graining process. Based on the Mori-Zwanzig formu-
lation, the fast degrees of freedom in the microscopic system
are eliminated and their effects can be approximated by a s-
tochastic dynamics under the effects of dissipative and fluctu-
ating interactions, which is consistent with the framework of
dissipative particle dynamics (DPD). Therefore, we consider
the DPD model to be the effective dynamics resulting from a
projection of the underlying atomistic dynamics.

By grouping many bonded atoms of the molecular dynamic-
s (MD) system into a single cluster, we evaluated both the con-
servative and non-conservative interactions between neighbor-
ing clusters and constructed the coarse-grained (CG) force
field governing the motion of CG particles. Since the MD
clusters consist of discrete particles, the interactions between
these finite-size clusters are not parallel to the radial direction.
As a result, the CG force field obtained from MD simulations
has both radial and perpendicular components. Moreover, the
rotational motion of the cluster could be another CG variable
to be considered because it carries the same kinetic energy
as the translational motion. However, the conventional DPD
model accounts for radial interactions only and ignores the
perpendicular forces obtained from MD simulations. Obvi-
ously, we need other DPD models to include the perpendicular
interactions as well as the rotational motions of particles. To
this end, we employed four DPD models to consider different
microscopic information and compared their performances in
reproducing the MD system.

The first DPD model we tested is the conventional DPD
model (DPD), which includes only radial interactions and
has empirical weighting functions with adjustable parameters.
The parameters of the DPD model are optimized to capture
the correct values of pressure and diffusivity. With the empir-
ical formulae, the DPD model incorrectly generates the radi-
al distribution function (RDF), the viscosity and the Schmidt
number.

The second one is the Mori-Zwanzig DPD model (MZ-
DPD), which also considers only the radial interactions. But
the MZ-DPD model utilizes the MZ-guided CG force fields
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Fig. 12: The time integral of VACF defined by D(t) = 1
3
∫ t

0⟨V(τ)V(0)⟩dτ with different models for star polymers (a) Nc = 11, (b) Nc = 21 and
(c) Nc = 31 at ρ = 0.4.

obtained from the MD simulations rather than empirical for-
mulae. We would like to emphasize that, without any iterative-
ly optimized parameters, the MZ-DPD model generates the
same local structure represented by the RDF and close veloci-
ty autocorrelation function as those of its underlying MD sys-
tem. However, since perpendicular forces are neglected in this
model, the result is an underestimation of the friction between
neighbouring particles. Therefore, the MZ-DPD systems have
smaller viscosity and larger diffusion constant compared to
their MD systems.

The third model is the Mori-Zwanzig Transverse DPD mod-
el (MZ-TDPD). In addition to the radial forces, the MZ-TDPD
model includes the dissipative and random forces in the trans-
verse direction. By imposing the perpendicular forces in the
absence of rotational motions, the friction between neighbour-
ing particles is overestimated in the MZ-TDPD model. Thus,
the MZ-TDPD system has larger viscosity and smaller diffu-
sivity than its MD system. It is worth noting that the angular
momentum of the MZ-TDPD model is not conserved because
the forces between particles are not central while the rotational
motion of the particles is not accounted for.

The last DPD model we employed is the Mori-Zwanzig Full
DPD model (MZ-FDPD). It considers the interactions in al-
l the three directions and also the rotational motions of the
particles. After the rotational motion of the particles is taken
into account, the MZ-FDPD model has the best performance
in reproducing the MD system. Both the short time behavior
distinguished by an exponentially decay and the long-time tail
proportional to t−3/2 in the VACF are correctly reproduced by
the MZ-FDPD model, which reveals that the transport proper-
ties of the MZ-FDPD system are consistent with those of the
MD system.

Compared to the CG procedure reported by Hijón and col-
laborators13, who also studied the polymer melts, we used the
FENE bonds rather than harmonic springs to minimise bond
crossings in the MD systems. Moreover, we considered more

microscopic information in our DPD models, especially the
rotational motion. Therefore, the performance of the MD-
informed DPD model has been improved.

It is worthy noting that the rotational motion does not af-
fect the static properties, and hence the MZ-DPD, MZ-TDPD
and MZ-FDPD models result in the same static properties, e.g.
pressure and RDF. However, the rotational motion does affect
the time correlations and the dynamic properties, which is ver-
ified by the data listed in Table 3 and Fig. 12. This conclusion
is obtained in the short nonentangled polymer systems. Lim-
ited by the Markovian approximation, we do not study dense
polymer melts or high volume fractions. It is not clear that if
the rotational motion is still important for the dynamic proper-
ties in coarse-graining of dense polymer melts. Nevertheless,
without the rotational dynamics together with transverse inter-
actions, the conservation of the angular momentum is definite-
ly violated.

The present work provides a direct relationship between the
mesoscopic system and its underlying microscopic system.
It also proposes a general methodology to construct coarse-
grained force fields from the information provided by atom-
istic simulations. This strategy of coarse-graining is not rele-
vant to any specific system and can be employed for other sys-
tems in which the clusters can be faithfully defined as CG par-
ticles. With a MD system of polymer melts, we demonstrated
that a coarse-grained model without any iteratively optimized
parameter can accurately reproduce the entire VACF as well
as the correct RDF of its underlying microscopic system.

We note that the approximations introduced in section 2
are applied to make the Mori-Zwanzig formulation practical.
Therefore, the performance of the coarse-graining method re-
lies on whether those approximations are valid for specific
systems. Although we have shown that the MZ-FDPD model
has excellent performance in reproducing the MD system of
polymers with short arms, the errors on macroscopic proper-
ties between the MD and MZ-FDPD systems becomes large
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(∼ 10% error at Nc = 31) for the polymer with long arms. The
reason appears to be that we assumed that the non-bonded
interactions between neighboring clusters in the microscop-
ic system are explicitly pairwise decomposable and ignored
the many-body correlations between different pairs. However,
for the polymer with long arms, polymer entanglements yield
strong many-body correlations and such approximation will
work less effectively. In future work we plan to reformulate
the DPD model to also consider the many-body correlations
for those polymers with long arms.

Fig. 13: For ρ = 0.8 and Nc = 11, the performance of the Mori-
Zwanzig Full DPD model (MZ-FDPD) in reproducing its underlying
MD system on (a) the radial distribution function (RDF) and (b) the
velocity autocorrelation function (VACF). The negative values of the
VACF in the inset of (b) are displayed by lines without symbols.

Furthermore, we employed the Markovian approximation
to compute the memory kernel of the dissipative force. How-
ever, we have already noted that the validity of the Markovian
approximation is questionable for polymer melts at high den-
sity (see Fig. 2(b)), in which the typical time scales of the mo-
menta and the fluctuating forces are not fully separable. Since
the Markovian approximation does not affect the static proper-
ties, the MZ-guided DPD model can still reproduce the correct
static properties, e.g. pressure and RDF, even for polymers at
high densities, as shown in Fig. 13(a). However, for the dy-
namic response, the failure of the Markovian approximation
yields incorrect time correlations and hence wrong dynam-
ic properties. Figure 13(b) displays the performance of the
MZ-FDPD model in reproducing the VACF of its underlying
MD system at ρ = 0.8. The results show that the characteris-
tic timescale of exponential decay in VACF of the MZ-FDPD
model differs from that of the MD system, which reveals that
errors in dynamic properties induced by the Markovian ap-
proximation become significant. In future work we plan to
correct this error by preserving the memory effects of interac-
tions rather than involving a Markovian approximation.
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