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We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration

gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar

films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical

regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the

evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving

concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically

patterned with hydrophilic and hydrophobic stripes.

1 Introduction

Recent advances in fluid manipulation at submillimetre scales

have driven a resurgence of interest in evaporation phenom-

ena1. When a drop evaporates, the associated loss of mass

leads to readjustments in the drop shape which is in turn af-

fected by interactions with any adjacent solid surfaces. For ex-

ample, on rough rigid surfaces the rim of an evaporating drop

tends to pin on the solid leading to a stick-slip dynamics that

can affect the evaporation time2. When pinned, large-scale

internal flows force the accumulation of suspended particles

near the contact line. This so-called coffee-stain effect is a

powerful and still developing route to drive the self-assembly

of nano-materials3. If the solid is elastic, the competition be-

tween surface-tension and elastic forces can lead to interest-

ing effects4. For instance, evaporating drops have success-

fully been used to guide the controlled folding of elastic sheets

into prescribed structures5. The interplay between evapora-

tion, surface-tension and elasticity can also have undesired

outcomes, e.g., in solvent evaporation from micro-engineered

elastic surfaces, where surface-tension forces can lead to the

stiction and failure of the delicate micro-pattern6,7.

Modelling evaporation involves accounting for the dynam-

ics of both liquid and gas phases, the liquid-gas interface,

and the solid-liquid-gas contact line. In general, one needs

to account for mass, momentum and energy transport in both
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phases. Adding to the complexity of the problem, physical

systems involve changes in the surface energy and topography

of the solid. The resulting problem is thus challenging from a

computational perspective.

One popular computational tool for studying evaporation is

molecular dynamics (MD)8. The use of MD has led to sev-

eral new insights into evaporation driven by temperature dif-

ferences, including the observation that the temperature may

be discontinuous across the droplet interface9. However, MD

is most useful in situations where the the quantity of liquid

that is evaporating is relatively small since simulating large

ensembles of molecules is costly. This also makes modelling

situations that involve significant flow of the evaporating liq-

uid difficult.

Lattice-Boltzmann (LB) simulations have become a stan-

dard tool in computational fluid dynamics, offering a num-

ber of advantages compared to other methods. When com-

pared with MD, it is a particular advantage that LB is based

on a local kinetic algorithm that reproduces the mass and mo-

mentum balance equations at large scales. In doing so, LB

also circumvents the non-local constraints of other multiphase

models, such as boundary integral representations. Several LB

multiphase models have been used successfully to study a va-

riety of interfacial phenomena10. Recently, LB simulations

have proved useful to gain insight in complex geometries, such

as the wetting transition on superhydrophobic surfaces11,12,

3D effects in hydrodynamic instabilities13,14, contact-line hys-

teresis15, and entrainment16. A particular advantage that an

LB treatment of evaporation would bring is the possibility of

studying evaporation in the presence of flow and on complex

microstructured surfaces.

In this paper we focus on the validation of the LB method as

a physical way to model evaporation phenomena. As a proof

of principle we present simulations of the evaporation of pla-
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nar films and sessile droplets, i.e., drops of typical size below

the capillary length, from smooth rigid surfaces. In Section 2,

we start our discussion with a brief presentation of evapora-

tion in the context of Cahn-Hilliard dynamics and the LB al-

gorithm, where we include the effects of mass and momentum

transport in both phases. We focus on isothermal systems,

where the evaporation is dominated by concentration gradi-

ents. These are included by means of boundary conditions

at the edges of the simulation domain. Our approach departs

from the recent work of Safari et al17, who considered the

evaporation of one- and two-dimensional fronts subject to pre-

scribed thermal gradients imposed at the fluid-fluid interface.

Section 3 is devoted to simulation results of the evaporation of

a planar film, introducing and discussing the relevant physical

timescales. We then validate droplet evaporation simulations

against analytical predictions in simple 3D geometries in Sec-

tion 4 before applying the LB algorithm to give qualitative

understanding of the evaporation of a droplet from a chemi-

cally patterned substrate in Section 5. Finally, in Section 6 we

present the conclusions of this work.

2 LB algorithm

In this section we describe the LB algorithm used in our sim-

ulations. We start by considering the equilibrium state of the

system. The thermodynamics of the liquid and vapour phases

is described by the free-energy functional18

F [φ(r),ρ(r)] =

∫
Ω

dΩ

(
V (φ)+

1

2
k|∇φ |2 + 1

3
ρ lnρ

)

+

∫
S

dS(hφs), (1)

where φ(r) is the phase field and ρ(r) is the fluid density

field. The first integral on the RHS of Eq. (1) corresponds to

the bulk contribution to the free energy and consists of three

terms: the ρ-dependent term represents the free-energy den-

sity of an ideal gas and is included to help enforce incom-

pressibility. The non-ideal behaviour of the system is con-

tained in the φ -dependent terms. First, the mixing free-energy

density V (φ) determines the phase behaviour of the fluid.

Here we choose the familiar Landau model for a binary fluid,

V (φ) ≡ 1
2
aφ2 + 1

4
bφ4, where a < 0 < b, allowing the forma-

tion of two equilibrium phases that represent the liquid and the

vapour. The square-gradient term prevents the stabilisation of

arbitrarily small neighbouring domains, inducing instead the

formation of a macroscopic interface whose surface energy

can be controlled by an appropriate choice of the parameter

k. The second integral on the RHS of Eq. (1) is a Cahn-type

surface free energy that depends on the local surface concen-

tration φs(r), where S is the surface of the solid-fluid interface.

By choosing the parameter h this term can be used to model

wetting properties, i.e., by introducing a preferential attraction

of one of the two phases to the solid surface.

The equilibrium density and concentration fields follow by

minimising the free energy; requiring that the first variation of

F vanishes leads to the set of equations

μ ≡ δF

δφ
=

dV

dφ
− k∇2φ = 0, (2)

and

n̂ ·∇φ |S =−h

k
, (3)

where μ(φ) is the chemical potential of the binary mixture

and n̂ is the local normal unit vector pointing into the solid

boundary.

Close to the interface, the phase field varies as a hyperbolic

tangent with the normal coordinate to the interface, r,

φ(r) = φeq tanh
( r

ε

)
, (4)

where φeq ≡
√
−a/b sets the bulk concentration values, i.e.

limr→±∞ φ(r) =±φeq, and ε ≡
√
−k/2a is the interface thick-

ness. The pressure tensor is

Pαβ =

[
1

3
ρ +φ

dV

dφ
−V − k

(
φ∇2φ +

1

2
|∇φ |2

)]
δαβ

+k∂α φ∂β φ , (5)

where the φ -dependent terms give rise to interfacial forces.

Specifically, it can be shown that the pressure drop across the

interface obeys the Young-Laplace equation,

ΔP = γκ ,

where γ ≡
√
−8ka3/9b2 is the surface tension and κ is

the interface curvature. Similarly, the force balance at the

solid-liquid-vapour boundary is dictated by Young’s equation,

which defines the equilibrium contact angle θe, via

cosθe =
1

2

[
−
(

1− h√
kb

)3/2

+

(
1+

h√
kb

)3/2
]
. (6)

In this paper we shall assume that the system is isother-

mal, which has been shown to be a reasonable approximation

for evaporation driven by concentration gradients1. The hy-

drodynamic equations governing the motion of the fluid are

therefore the continuity equation,

∂tρ + ∂α(ρvα) = 0, (7)

the Navier-Stokes equations,

∂t(ρvα)+ ∂β (ρvα vβ ) =−∂β Pαβ

+ ∂β [η(∂β vα + ∂α vβ − 2

3
δαβ ∂γ vγ)

+ ξ δαβ ∂γvγ ] (8)
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and the Cahn-Hilliard convection-diffusion equation,

∂tφ + ∂α(φvα ) =−∂α jα , (9)

where v(r) is the velocity field, η and ξ are the shear and sec-

ond viscosities, and summation over repeated Greek indices is

implied.

An important feature of the coupled system given by

Eqs. (8) and (9) is their behaviour close to the triple line. For

sharp interface approximations, enforcing the no-slip bound-

ary condition along the wall leads to the well-known viscous

dissipation singularity at the contact line19. This divergence is

naturally regularised by the diffuse interface model by virtue

of the diffusive term in Eq. (9), which allows for diffusive

transport along the wall20,21.

The key ingredient needed to model evaporation in the

Cahn-Hilliard equation is the diffusive flux j, which obeys the

constitutive equation

jα =−M∂α μ . (10)

Here M, often called the mobility parameter, plays the role of

a diffusivity. In the limit of weak deviations from equilibrium,

μ ∼ φ and Eq. (10) reduces to the familiar Fick’s law. In

general, M can be chosen to differ between the two phases or

even to depend on the local concentration field, e.g., to model

situations where diffusive transport is limited by one phase,

or is coupled to an external field. For our current purpose,

which is to examine the validity of the model for studying

evaporation under isothermal conditions, we restrict ourselves

to the case of constant M throughout both phases.

In order to complete the model equations we need to spec-

ify boundary conditions at the solid wall, and away from the

fluid-fluid interface. Similarly to Eq. 3, which is a Neumman

boundary condition for φ at the wall defined by the surface S,

we impose

n̂ ·∇ρ |S = 0, (11)

along with the impenetrability and no-slip boundary condi-

tions

n̂ ·v|S = 0 (12)

and

t̂ ·v|S = 0, (13)

with t̂ the unit tangent vector to the wall.

Because of the finite size of the simulation domain, we need

to impose further boundary conditions at the simulation do-

main edges. We use periodic boundary conditions for the ve-

locity and density fields. To drive the evaporation we impose

the Dirichlet boundary condition

φ |SH
= φH , (14)

where SH is a surface enclosing the system. Imposing a given

value of φ on this boundary, Eq. (14), is similar to imposing

a surface of constant concentration when solving the diffusion

equation for the vapour concentration. However, as in the clas-

sical diffusion problem, other boundary conditions, such as a

fixed flux, can be more suitable for certain situations.

To integrate the set of equations (7)-(9) we use the LB algo-

rithm described in Ref. 22. We discretise the system using a

cubic mesh with lattice spacing Δx = 1. We consider the dis-

crete time evolution of two sets of velocity distribution func-

tions, fi and gi, each associated with a velocity vector ci. The

time dependence of the distribution functions is given by the

LB equations

fi(r+ ciΔt, t +Δt)− fi(r, t) =−Δt

τ
( fi − f

eq
i ), (15)

and

gi(r+ ciΔt, t +Δt)− gi(r, t) =−Δt

τg

(gi − g
eq
i ). (16)

The distribution functions undergo a collision step, corre-

sponding to the right-hand side of Eqs. (15) and (16), where

they relax towards the equilibrium values f
eq
i and g

eq
i . Here

we use the BGK collision operator, where the relaxation step

occurs over the timescales τ and τg, respectively. After the

collision step, distribution functions are advected to neigh-

bouring sites in the lattice as indicated by the left-hand side

of Eqs. (15) and (16). We set the time step to Δt = 1, so the set

of velocity vectors {ci} completely defines the connectivity of

the lattice. Here we use the D3Q15 model22, where each lat-

tice site is connected to its six nearest and eight third-nearest

neighbours.

The link between the LB algorithm and the hydrodynamic

equations is established by enforcing mass and momentum

conservation during collisions and by choosing the equilib-

rium distribution functions to be consistent with both the form

of the stress tensor and the thermodynamic model. The hydro-

dynamic variables are defined as

ρ ≡ ∑
i

fi, ρvα ≡ ∑
i

ciα fi, φ ≡ ∑
i

gi. (17)

Mass and momentum conservation are thus enforced by re-

quiring

∑
i

f
eq
i = ρ , ∑

i

ciα f
eq
i = ρvα , ∑

i

g
eq
i = φ , (18)

and the higher order moments of the distribution functions are

defined as

∑
i

f
eq
i ciα ciβ = Pαβ +ρvαvβ , (19)

and

∑
i

g
eq
i ciα ciβ = M̄μδαβ +φvα vβ . (20)
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(a) (b)
zi

zH
RRH

Fig. 1 Schematic representation of the (a) planar film and (b)

spherical droplet configurations used in the simulations. The

evaporation is driven by setting the phase field out of equilibrium at

the orange shaded surfaces.

The equilibrium distribution functions are written as expan-

sions in the velocity, e.g.,

f
eq
i = ρωi

(
Ai + 3vαciα +

9

2
vα vβ ciαciβ − 3

2
v2 +Gαβ ciα ciβ

)
,

(21)

where the coefficients are fixed by enforcing Eq. (19) and by

observing the symmetry conditions imposed by the lattice. A

similar expression is used for g
eq
i . The values of the coeffi-

cients are reported in Ref. 22 and are omitted here for brevity.

The hydrodynamic equations are recovered by performing a

Chapman-Enskog expansion of Eqs. (15) and (16), and using

Eqs. (17)-(20). The transport coefficients are related to the LB

relaxation times by

η =
2τ − 1

6

and

M =
τg − 1

2
M̄.

Boundary conditions at solid surfaces are imposed using

bounce-back rules23, which recover the impenetrability and

no-slip boundary conditions approximately half way between

solid and fluid lattice sites.

3 Evaporation of a planar film

3.1 Analytical approach

We first consider the evaporation of a planar fluid film from

a solid. The liquid is taken as the phase where φ > 0. The

interface is oriented parallel to the xy plane and sits initially

at z = z0 while the solid wall is located at z = zw < z0 (see

Fig. 1a). To drive the evaporation of the film we impose the

boundary condition φ(z = zH , t) = φH , where φH <−φeq. This

induces a gradient in the chemical potential field μ(φ(z, t)).
In response to this imbalance, the system reduces φ , which

corresponds to the evaporation of the film.

0.10.20.30.4

φ
(z
)/

φ
eq

φ
(z
)/

φ
eq z

z

(a)

�������

�������

���� ����

0.1

0.2

0.3

0.4

μ
(z
)

μ
i

φH

z

(b)

Fig. 2 Phase-field and chemical potential profiles for the

planar-film evaporation after 5×105 simulations steps. (a) The

concentration field is driven out of equilibrium by imposing a

prescribed concentration value φH at the edge of the simulation box

(z = zH ). The inset shows the time evolution for ΔφH/φeq = 0.2 at

intervals of 105 time steps. (b) The chemical potential shows a

linear profile in the gas phase, and remains constant in the liquid,

except for small deviations at the interface, which grow with the

external driving (inset). The numbers next to each curve correspond

to the phase-field imbalance, ΔφH .

For small departures from equilibrium we expect that con-

vective effects are negligible. Therefore, Eq. (9) simplifies to

∂φ

∂ t
= M

∂ 2μ

∂ z2
. (22)

Furthermore, we assume that the timescale of diffusion of the

phase field, τD, is much shorter than the evaporation timescale

4 | 1–10
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of the film, τE. In such a case the volume behaviour of the

phase field is expected to be quasi-static, so that ∂ 2μ/∂ z2 = 0.

It follows that in the gas phase (z > zi) the chemical potential

profile is

μ(z) = μi +
μH − μi

zH − zi(t)
(z− zi(t)), (23)

where μH ≡ μ(zH) ≈ μ(φH), μi ≡ μ(zi) and zi is the instan-

taneous position of the interface. Note that here the boundary

condition Eq. (14) is traduced into a condition for the chemi-

cal potential. The chemical-potential gradient at the interface

is
dμ

dz

∣∣∣∣
zi

=
μH − μi

zH − zi(t)
.

Inserting this expression into Eq. (10) and using the relation

żi ≡ dzi/dt ≈ j/Δφ we find the speed of the interface żi. This

can then be integrated with respect to time to find the evolution

of the interface height,

zi(t) = zH −
(
(zH − z0)

2 − 2
M(μH − μi)

Δφ
t

)1/2

. (24)

3.2 LB Simulations

The simple planar film geometry allows us to test the appli-

cability of the LB algorithm to model evaporation. We per-

formed simulations in a box consisting of Nx × Ny × Nz =
1× 1× 150 lattice sites. Periodic boundary conditions were

set in the x and y directions. A wall was located at zw = 1,

while the concentration was fixed to a value φH at zH = Nz

to drive the system out of equilibrium. The initial height of

the film was set to z0 = 100. Model parameters, in simulation

units, are summarised in table 1. Note that the density and re-

laxation times in both fluids were set to unity. This minimises

the effect of spurious velocities associated with the single-

relaxation time LB used here. However, viscosity contrasts

can be modelled using multiple-relaxation time algorithms24.

In each simulation the phase and chemical potential fields

were tracked, with particular focus on the effect of the phase-

field imbalance, defined as ΔφH ≡ −φeq − φH . Fig. 2 shows

profiles of φ(z) and μ(z) for different values of ΔφH after

5× 105 simulation steps. As expected, the interface moves

towards the wall, i.e., zi decreases as the liquid evaporates.

Furthermore, evaporation proceeds faster for larger ΔφH or,

rather, the amount of liquid lost after a given time has elapsed

increases with increasing ΔφH . In all cases, the chemical po-

tential shows an approximately linear profile through the gas

Table 1 Simulation Parameters

ρ τ τg a b k M

1 1 1 -0.00305 0.00305 0.0078 5.0

ΔφH = 0.1

ΔφH = 0.2

ΔφH = 0.3

ΔφH = 0.4

żi

dμ/dz|zi

(a)

ΔφH = 0.1
ΔφH = 0.2
ΔφH = 0.3
ΔφH = 0.4

zi

time (sim. steps)

(b)

Fig. 3 Measurable quantities in the evaporation of a planar film. (a)

Rate of evaporation as a function of the local gradient of the

chemical potential. Symbols correspond to LB simulations. The

thick black line is a linear fit to the data. The arrow indicates the

direction of increasing time in the simulations, reflecting a slowing

down of the interface. (b) Interface position as a function of time.

Symbols correspond to LB simulations. The thick black curves

correspond to the theoretical prediction, Eq. (24).

phase, which changes to a flat profile in the liquid over a length

scale comparable to the interface thickness ε . We observe

small deviations from the equilibrium concentration in the liq-

uid phase; the size of these deviations increases with ΔφH .

These lead to a small increase of the plateau in the chemical

potential with ΔφH , which can be characterised by the value at

the interface μi as shown in the inset of Fig. 2b.
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Since ΔφH is kept constant throughout the simulations, the

interface gradually slows down as evaporation proceeds. We

recorded both the evaporation speed and the gradient of the

chemical potential at the interface at various times during

the simulation. As shown in Fig. 3a, the speed of evapo-

ration żi scales linearly with the chemical-potential gradient

as expected from Eq. (10). A linear fit of the data gives

a slope ≈ 2.4, in close agreement with the expected value

M/Δφ = 2.5.

The time evolution of the position of the interface is shown

in Fig. 3b. We present simulation results along with the ana-

lytical prediction, Eq. (24), where μi is fixed at the value mea-

sured in the simulations (Fig. 2b inset) and μH ≈ aφH + bφ3
H .

We find good agreement between theory and simulation, with

the smallest deviations observed for the smallest ΔφH values.

To understand why the simulations deviate from the analyt-

ical predictions for large ΔφH , we note that two main mecha-

nisms control the motion of the liquid front. On the one hand,

evaporation takes place over a time scale τE =
∫ 0

z0
dzi/żi which

gives

τE =
Δφ z0 (2zH − z0)

M(μi − μH)
. (25)

On the other hand, the concentration imbalance ΔφH is lev-

elled by diffusion over a timescale, τD, which can be estimated

using Eq. (22) in scaling form:

ΔφH

τD

∼ M(μi − μH)

z2
H

,

giving,

τD ∼ ΔφHz2
H

M(μi − μH)
. (26)

Combining Eqs. (25) and (26) gives the ratio of diffusive to

evaporative timescales,

τD

τE

∼ ΔφH

Δφ

[
z0

zH

(
2− z0

zH

)]−1

. (27)

To verify this prediction, we measured the total evaporation

time for freely evaporating films at different values of φH , z0

and zH . To measure the corresponding timescales for diffusive

transport, we ran simulations of initially homogeneous sys-

tems where the initial condition was set to φ(z,0) =−φeq, sub-

ject to the boundary condition φ(zH , t) = φH . As the system

evolved to equilibrium, we measured τD according to the cri-

terion φ(z = zw,τD)−φH = 0.9ΔφH . Fig. 4 shows a plot of the

measured τD/τE ratios as a function of ΔφH where the x-axis

has been normalised by the size-dependent factor in Eq. (27).

The evaporation time shows a strong increase as the driving

chemical potential, or equivalently ΔφH , vanishes. The diffu-

sion time, however, increases as ΔφH → 0 at a much smaller

rate: this is because while the driving chemical force vanishes

z0/zH = 0.5, ΔφH = 0.1

z0 = 20, ΔφH = 0.1, varying zH

zH = 100, ΔφH = 0.2, varying z0

z0/zH = 0.4, varying ΔφH

z0/zH = 0.2, varying ΔφH

ΔφH

[
z0
zH

(
2− z0

zH

)]−1

τ D
/

τ E

Fig. 4 Ratio of diffusive to evaporative times of planar films for

different values of the driving order parameter imbalance, ΔφH , and

the film to system size ratio, z0/zH . The data collapse onto a master

curve as predicted by Eq. (27).

at small ΔφH , the concentration difference to be balanced also

vanishes. The ratio of both timescales grows linearly with the

concentration difference in agreement with Eq. (27). Thus the

assumption of a diffusion time that is short compared to the

evaporation time used to derive Eq. (24) breaks down as ΔφH

becomes larger; this explains the increasing discrepancy be-

tween the analytical prediction and the simulation results ob-

served in Fig. 3b for ΔφH > 0.2.

For water droplets evaporating at ambient temperature, the

driving concentration difference of water molecules in air is

much smaller than the density of the liquid. As a consequence,

the ratio τD/τE is very small (of order 10−5). While τD/τE is

significantly larger in our simulations, there is still a sufficient

separation of timescales to reproduce the quasi-static theory

precisely (e.g., for a ratio of 0.25 the rate of evaporation devi-

ated from the theoretical value by less than 5%). Altogether,

the quasi-static regime of the experiments and the analytical

theory can be captured by the LB simulations.

4 Evaporation of a sessile droplet

We now study the evaporation of a small 3D sessile droplet (of

typical size below the capillary length) in contact with a plane.

Such a simple system is convenient to analyse the evaporation

of droplets in the Cahn-Hilliard model before comparing with

LB simulations.

6 | 1–10
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4.1 Analytical results

Consider a droplet sitting on a smooth horizontal surface (see

Fig. 1b). The equilibrium shape of the droplet can be con-

trolled by choosing the contact angle θe, which we take for

simplicity to be the neutral wetting case θe = 90◦. Because of

the smoothness of the surface, the contact angle θ (t) remains

close to θe as evaporation proceeds. Furthermore, the negligi-

ble effect of gravity at sizes below the capillary length means

that the shape of the droplet is completely described by the

instantaneous value of the base radius R(t); it follows that the

droplet volume is V = 2π
3

R3.

For quasi-static dynamics, where τD � τE, the chemical po-

tential in the ambient phase satisfies Laplace’s equation. Due

to the symmetry of the configuration, we consider solutions

that depend only on the distance from the centre of the droplet

r in a spherical co-ordinate system. At the interface we im-

pose μ(R) = μi. To drive the evaporation of the droplet, we

impose φ(RH) = φH which leads to μ(RH) = μH , where RH is

the radius of a shell of prescribed φH .

The chemical potential profile obeys

μ(r) = μH − (μH − μi)
RH − r

RH −R

(
R

r

)
, (28)

where r ≥ R. Using Eq. (10) and integrating over the droplet

surface we obtain the rate of change of the droplet volume

dV

dt
=

2πM

Δφ

(μH − μi)R

1− R
RH

, (29)

which can be integrated to give

3

2

[
V (t)2/3 −V

2/3

0

]
− V (t)−V0

V
1/3
H

= (2 ·31/2π)2/3 M

Δφ
(μH − μi)t, (30)

where VH = 2πR3
H/3. We note that (30) accounts for the fi-

nite size of the system through the radius of the hemispherical

shell, RH , at which the outer boundary condition is applied.

As such, this result is the analogue of results used in molec-

ular dynamics simulations of thermal evaporation to account

for a similar finite size effect8,9. Crucially, in the limit of large

system size (or small droplets), V0 � VH , Eq. (30) reduces to

the well-known ‘D2 evaporation law’8

R2 ∼ (t∗ − t), (31)

where t∗ is the time at which the droplet vanishes completely.

4.2 LB Simulations

We now test whether the LB simulations can reproduce the

evaporation of 3D sessile droplets. We considered a simula-

tion domain of dimensions Nx ×Ny ×Nz = 100× 100× 50.

ΔφH = 0.1

ΔφH = 0.2

ΔφH = 0.3

ΔφH = 0.4

ΔφH = 0.5

time (sim. steps)

V/V0

Fig. 5 Time evolution of the volume of a 3D droplet at different

ΔφH . Symbols correspond to LB simulations. The black curves

correspond to the theoretical prediction, Eq. (30).

ΔφH = 0.1

ΔφH = 0.2

ΔφH = 0.3

ΔφH = 0.4

ΔφH = 0.5

R/RH

∣ ∣dV d
t

∣ ∣ ×[
Δ

φ
2

π
M
(μ

H
−μ

i)
R

H

]

Fig. 6 Rate of evaporation as a function of the dimensionless

droplet radius R/RH for different values of φH . The data has been

scaled according to Eq. (29), showing a good collapse onto the

master curve (R/RH)/(1−R/RH ) (solid curve). The dashed line

corresponds to the limit dV/dt ∼ R/RH , which is recovered for

small R/RH .

We focus on the effect of φH on droplets of neutral wetting

properties (θe = 90◦). A droplet of initial radius R0 ≈ Nz/2

was allowed to equilibrate on top of a solid wall (located at

zw = 1). During the equilibration stage periodic boundary

conditions were imposed at all simulation boundaries. As re-

ported in a previous study25 there is a small shrinkage of the
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droplets because of the competition between the bulk and sur-

face terms in the free energy which allows mass transfer from

the interface to the volume. We observe the same effect in

our simulations. The change in the droplet volume was typi-

cally under 10%. After the equilibration stage we imposed the

boundary condition φ(RH) = φH , with RH =Nx/2, to drive the

evaporation of the droplet. Fig. 5 shows curves for the volume

of the droplet as a function of time, along with the analyti-

cal prediction, Eq. (30). We find a good agreement between

theory and simulation at small ΔφH . As for the planar-film

simulations, the agreement deteriorates for large ΔφH , where

the relaxation of the phase field no longer occurs significantly

faster than evaporation.

Beyond the results for the time evolution of the droplet size,

it is instructive to plot the evaporation rate of the droplets.

Fig. 6 shows the rate of change of the droplet volume as a

function of R/RH for different values of ΔφH . The rate of

evaporation is an increasing function of R/RH . This is because

the diffusive flux increases when the surface of the droplet is

in close proximity to the boundary shell. The linear regime,

corresponding to the evaporation becoming independent of the

size of the shell, is recovered for R/RH � 0.2. Overall, there

is a good agreement between simulations and the theoretical

prediction, Eq. (30), with only small deviations at the largest

ΔφH values considered.

5 Evaporation from a chemically patterned

substrate

To illustrate the applicability of the LB method to more com-

plex situations, we carried out simulations of a sessile droplet

evaporating on a flat chemically patterned surface. Our aim is

to offer a qualitative comparison between our results and ex-

perimental results presented previously26. We consider a solid

surface patterned with concentric rings in which the equilib-

rium contact angle alternates between θe = 90◦ and θe = 50◦.

In the simulations, this variable contact angle is implemented

by imposing Eq. (3) close to the contact line. The width of

the rings, is Λ � 10ε and so is larger than the typical interface

width, ε .

The time evolution of the drop is characterised by measur-

ing the instantaneous contact radius, R, and contact angle, θ .

Fig. 7a shows the radius as a function of time. The dynamics

of the droplet on the chemically patterned surface (red contin-

uous curve) is composed of a series of steps consistent with the

experimentally reported stick-slip dynamics. For each step the

contact line initially advances freely on rings with θe = 90◦,

but slows down significantly as the contact line enters a ring

with θe = 50◦. Subsequently, as the drop enters the next hy-

drophobic ring, the contact line speeds up. Apart from the

qualitative agreement with the experiments presented in Ref.

26, our results show that the total evaporation time on the pat-

terned surface exceeds the evaporation time of drops of equal

initial volume on homogeneous surfaces with contact angles

θe = 50◦ and θe = 90◦ (dotted and dashed curves in Fig. 7a),

in qualitative agreement with recently reported analytical re-

sults2.

Fig. 7b shows the instantaneous value of the contact angle

as a function of time. Because of the finite size of the inter-

R
/

R
0

t/t90

(a)

θ

t/t90

(b)

Fig. 7 Time evolution for the contact radius (a) and contact angle

(b) of a sessile droplet evaporating on a chemically patterned

surface. Time is measured in units of t90, the evaporation time of a

drop on a homogeneous surface of θe = 90◦. In (a) the greyed

regions correspond to θe = 50◦, while white regions correspond to

θe = 90◦. In (b) the horizontal lines show the equilibrium contact

angles of the rings.
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Fig. 8 Flow field at different times within a sessile droplet evaporating on a chemically patterned surface. The surface is composed of

concentric rings of varying contact angle: θe = 90◦ (black portions of x axis) and θe = 50◦ (light grey portions of x axis). The light red arrows

show the direction of motion of the top of the drop at a given time.

face, the contact angle varies smoothly in time between the

two equilibrium values.

Finally, in Fig. 8 we present images of the flow field dur-

ing the evaporation process. The arrows show the direction of

the velocity field at each point. At early times (left panel), the

contact line is initially over a hydrophobic ring. The flow is

directed from the top of the droplet towards the contact line.

This feature is preserved as the contact line crosses to a hy-

drophilic ring, as shown in the middle panel and is consis-

tent with previous theoretical results for droplets evaporating

at constant contact area27 (pinned contact line). Finally, the

drop enters a hydrophobic ring again, and the drop shape re-

laxes to a higher contact angle. As a consequence, the flow

pattern is reversed, with liquid flowing from the contact line

to the top of the drop (also leading to a transient increase in

drop height).

6 Discussion and Conclusions

We have tested the validity of the lattice-Boltzmann algorithm

as a way to study evaporation by comparing numerical re-

sults to analytic solutions in one and three dimensions. We

showed that it is possible to achieve a ratio of diffusion to

evaporation time scales, τD/τE, of between 0.1 and 1 with fea-

sible computational resources. Although, the physical value

is much smaller for the evaporation of a water droplet into

air, τD/τE = 0.1 was found to give a sufficient separation of

timescales to allow an excellent match between the simula-

tions and the exact results (obtained in the limit τD/τE = 0).

It would also be interesting to use the algorithm to investigate

systems for which the diffusive and evaporative timescales are

not sharply separated, τD/τE ∼ 1. For example, colloidal liq-

uid pairs are increasingly used in microfluidics to mimic nano-

metric systems due to their ultra-low surface tension and large

interface thickness13,14. These systems often have comparable

densities and solubilities which can lead to timescale ratios of

order unity.

In the 3D case we introduced ’shell’ boundary conditions

which allow an exact solution for a finite geometry. On the

other hand, it is also possible to simulate freely evaporating

droplets, as finite size effects droplet below 5% when the ratio

of the radii of droplet and boundary is less than ≈ 0.2.

The lattice-Boltzmann approach used here does not take

heat transport into account. Our model is therefore valid for

situations where any excess latent heat can be quickly re-

moved by, for example, thermal coupling to the substrate.

Here we use the phase field φ to label the different phases,

and density is constant. This does not affect the evaporation

process, but care must be taken about dissipation and inertia

in the gas phase in dynamical simulations.

To illustrate the applicability of our LB approach in more

complex situations, we have carried out simulations of a

droplet evaporating on a chemically patterned surface. Our

results show good qualitative agreement with previous stud-

ies, further supporting the validity of LB to study evapora-

tion phenomena subject to complex boundary conditions. We

hope that the availability of the lattice-Boltzmann algorithm as

a tool to model evaporation (and, equally condensation) will

motivate further work to examine more complex situations fo-

cusing on the interplay between the fluid dynamics, capillarity

and evaporation. These might include the change in evapo-

ration rates due to moving air currents and the dynamics of

droplets and fronts in complex geometries.
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