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We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution

as control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure

control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical

buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed

states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations,

osmotic pressure control is qualititatively similar to buckling under volume control with the volume prescribed by the osmolyte

concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on

the relation between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications.

We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytic formula is

derived for the relation between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows

to use elastic capsules as osmotic pressure sensors or to deduce elastic properties and the internal osmolyte concentration from

shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte

capsules.

1 Introduction

Elastic capsules consist of an elastic spherical shell enclosing

a fluid phase. They are commonly met in nature, prominent

examples exhibiting elastic properties similar to elastic shells

are red blood cells1, virus capsules2, or pollen grains3. Ar-

tificial capsules can be fabricated by various methods,4–6 for

example by interfacial polymerization at liquid droplets7 or by

multilayer deposition of polyelectrolytes8, and have numerous

applications as delivery systems. Capsules are easily deformed

by mechanical forces and their deformation behavior exhibits

buckling instabilities upon decreasing the interior pressure or

the enclosed volume.5,9–15 These deformation modes can po-

tentially be used to infer material properties of the enclosing

shell material6,16–18 or to control the shapes of capsules for

applications14.

Theoretically, the buckling instability of a spherical shell can

be described within classical shell theory,19–24 which identifies

a critical pressure where the spherical shape becomes unstable

with respect to decreasing volume and developing a finite dim-

ple. Beyond the critical mechanical pressure buckled shapes

with a small dimple remain unstable with respect to further

spontaneous growth of the dimple20,22 until opposite sides get

into contact, and the shells snap-through into a fully collapsed

state.16

Despite this theoretical prediction of a spontaneous snap-
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through into a collapsed state for buckling under mechanical

pressure, buckled shapes with a finite dimple, i.e., without

contact of opposite capsule sides, are usually observed in mi-

crocapsule experiments performed under osmotic pressure con-

trol.5,9,14,15 Buckling by osmotic pressure is intimately related

to buckling by controled volume reduction because an applied

external osmotic pressure defines an osmotically preferred vol-

ume. The capsule volume can also be considered as fixed when

it is filled with an incompressible fluid that cannot leave the

capsule, or leaves the capsule on a very slow time scale like

in dissolving or drying mechanisms.10–13,25,26 In such volume

controled experiments, buckled shapes with finite dimples are

also stable configurations. This raises the questions to what ex-

tent buckling under osmotic pressure control with the osmolyte

concentration of the exterior solution as control parameter dif-

fers from buckling under mechanical pressure control, where

we assume an “empty” capsule interior, and to what extent it

differs from buckling under volume control with the volume

prescribed by the condition of equal interior and exterior os-

molyte concentrations. A precise theoretical answer to these

questions is highly relevant for the control and analysis of buck-

led shapes in applications. Eventually, the shape of osmotically

buckled capsules can also be used to sense the osmotic pressure

and to deduce elastic material parameters based on quantitative

theoretical modeling.
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2 Model for axisymmetric shells

We analyze axisymmetric shapes by the use of non-linear shell

theory27,28 from which we can derive axisymmetric shape

equations.16 Solutions of these equations can represent stable,

metastable, or even unstable capsules shapes. Shape transi-

tions or bifurcations between different axisymmetric solution

branches can be investigated using general results from bi-

furcation theory.29 If a spherical shell develops a dimple, we

naively expect relevant shapes to be axisymmetric. However,

non-axisymmetric shapes are relevant both at the onset of the

buckling instability21,22 and for heavily deflated thin shells that

undergo a secondary buckling transition.13,30–33 Here, we aim

for a classification of the transition from the spherical to the

axisymmetric buckled shape under osmotic pressure, under me-

chanical pressure, and under volume control. Our analysis will

reveal important differences in the resulting buckling pathway

between these three types of control.

2.1 The elastic energy functional

We start with an elastic shell that is spherical in its relaxed

state, with a radius R0. This shape can be parametrized in

polar cylindrical coordinates (r0, z0) by

r0(s0) =

(

r0(s0)
z0(s0)

)

=

(

R0 sin(s0/R0)
−R0 cos(s0/R0)

)

(1)

with an arc-length coordinate s0. The shell is deformed by a

normal pressure difference p ≡ pin − pex, which is spatially

constant across the whole shell. The sign convention is such

that p < 0 if the shell is being deflated.

Nonlinear shell theory can be used to calculate the

parametrization r(s0) of the deformed shape from which the

strains and stresses in the shell can be deduced. Appropriate

shape equations have been introduced in ref. 16, to which the

reader is referred for the full mathematical treatment.

For the stability discussion that will be presented in the next

sections, the essential feature of the shape equations is that

they can be derived from an energy functional by calculus of

variations. The elastic energy that is stored in the deformed

shell depends on the meridional and circumferential stretches

λs and λϕ and the bending strains Ks = λsκs − 1/R0 and

Kϕ = λϕκϕ − 1/R0 which measure the change of curvature

in meridional and circumferential direction, with κs and κϕ

being the principal curvatures of the deformed midsurface.16,28

They can be calculated from the parametrizations r0(s0) and

r(s0) of the reference shape and deformed shape, respectively.

The surface energy density wS measures the elastic energy

per undeformed area,16,28

wS =
1

2

E2D

1− ν2
(

[λs − 1]2 + 2ν[λs − 1][λϕ − 1]

+ [λϕ − 1]2
)

+
1

2
EB

(

K2

s + 2νKsKϕ +K2

ϕ

)

(2)

with the two-dimensional Young modulus E2D, the two-

dimensional Poisson ratio ν and the bending stiffness EB . For

a shell consisting of a thin sheet of isotropic material, these ma-

terial constants are related to the bulk moduli by E2D = EH0,

ν = ν3D and EB = EH3
0/(12(1− ν2)), where H0 is the shell

thickness, E is the (three-dimensional) Young modulus and

ν3D is the (three-dimensional) Poisson ratio.

The elastic energy functional can now be written as the

integral of the energy density over the undeformed shape with

surface element dA0 = 2πr0ds0,

U [r] =

∫

2πr0wS ds0. (3)

2.2 Mechanical pressure control and volume control

In order to describe the deflation of the shell, additional terms

must be incorporated in the energy functional that account

for the external loads. When there is a prescribed mechan-

ical pressure difference p between the inside and outside,

the appropriate load potential is −pV [r] where the volume

V =
∫

πr2(s0)z
′(s0) ds0 is a functional of the shape.16,28

Then the shape equations follow from minimizing the enthalpy

functional H[r] = U [r]−pV [r] for given p, which means that

the first variation must vanish,

δH = δU − pδV = 0, (4)

see ref. 16 for the resulting Euler-Lagrange equations.

This minimization can be interpreted in two ways: either as

an unconstrained minimization of the enthalpy functional H or,

alternatively, as a minimization of the functional U under the

constraint that the functional V [r] equals some given volume.

The pressure p is then merely a Lagrange multiplier to con-

trol the shell volume. These two cases, termed (mechanical)

pressure control and volume control, respectively, produce the

same shapes as solutions of the shape equations. However, the

shapes show very different stability properties in the two cases:

While buckling under volume control will start with relatively

small (but finite) dimples and the size of the dimple is precisely

controled by the prescribed volume, buckling under mechanical

pressure control will lead to a complete collapse of the shell, so

that opposite sides are in contact with each other.16 A detailed

discussion follows below. Both cases are idealized and hard to

achieve in actual experiments: As long as capsules are filled

with some internal medium, there is a feedback between the

volume change and the internal pressure, so that the pressure
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difference p is not fixed but varies with the capsule volume,

which is in conflict with our notion of pressure control. Also

in a typical volume control experiment, e.g., when an enclosed

incompressible liquid evaporates, volume control is only an

approximation whose quality depends on how large the time

scale for evaporation is in comparison to the time scale for

elastic shape relaxation.

2.3 Osmotic pressure control

Many deformation experiments with microcapsules are based

on osmosis.5,9,14,15 In osmotic buckling, solvent diffuses

through the semi-permeable capsule membrane because of

an osmolyte concentration gradient between the inside and out-

side. Osmosis tends to decrease the concentration gradient, and

deflation of the capsule stops when the concentrations in the

inside and outside are sufficiently matched. This is an impor-

tant difference to mechanical pressure control with an “empty”

interior, where the deflation only stops when the opposite sides

of the capsule are in contact and the capsule volume is virtually

zero.

Ideal dilute solutions of osmotically active particles can be

treated like ideal gases.34 The appropriate energy functional

that is to be minimized in the case of osmosis must take into

account the osmotic free energy of the inner and outer solu-

tions,35

Fos = −kBTNin ln

[

e

λ3
B

V

Nin

]

− kBTNex ln

[

e

λ3
B

Vex − V

Nex

]

.

(5)

In this expression, kB is the Boltzmann constant, T the tem-

perature of the solutions, λB = h/
√
2πmkBT the thermal de

Broglie wavelength with Planck constant h and particle mass

m. Nin and Nex are the number of osmotically active parti-

cles inside and outside the shell, respectively, V the volume

inside the shell and Vex − V the outside volume. The osmoti-

cally active particles cannot diffuse through the shell wall, such

that Nin is fixed during the deflation; the experimental control

parameter for osmotic pressure control is the number Nex of

osmotically active molecules in the outside solution via their

concentration Nex/(Vex −V ) ≈ Nex/Vex (assuming V ≪ Vex).

Furthermore, the temperature T is considered to affect only the

ideal solutions; we do not incorporate thermal fluctuations in

the elastic shell, which is a good approximations unless shells

are extremely thin.36

For V ≪ Vex, the second logarithm in Fos can be expanded

and simplifies to

Fos = −kBTNin lnV +
kBTNex

Vex

V + const. (6)

Constant terms not depending on V are fixed when we mini-

mize the total energy functional with respect to the shape of the

shell, which only has an influence on V in eq. (6). The osmotic

pressure difference can be derived from this equation by

pos = −∂Fos/∂V = kBT (Nin/V −Nex/Vex) ≡ pin − pex.
(7)

The first term represents the internal osmotic pressure pin,

the second term the external osmotic pressure pex, which also

occurs in eq. (6) as the prefactor of the term linear in V . The ex-

ternal pressure pex is proportional to the external concentration

of osmotically active particles, and thus it is the experimentally

controled pressure component. The osmotic free energy Fos in

eq. (6) is minimized by a volume V = NinVex/Nex indicating

that the preferred state of the system has equal concentrations

of osmotically active particles inside and outside the capsule.

The total energy functional accounts for the elastic energy of

the deformed shell and the free energies of the solutions, and

reads

G[r] = U [r]− kBTNin lnV [r] + pexV [r]. (8)

In this functional, U and V depend on the shape of the shell,

and its variation is δG = δU + (∂Fos/∂V )δV = δU − posδV .

Thus, in comparison with mechanical pressure control as de-

scribed by eq. (4) and according to eq. (7), the same shape equa-

tions are obtained with a pressure difference p = pos = pin−pex

exerted on the shell.

Also for the experimental situation of a shell containing an

ideal gas, the same energy functional (8) is obtained. The in-

ternal gas has a free energy Fgas = −kBTNin lnV , where Nin

is now the number of gas atoms. According to the ideal gas

equation pV = NkBT , the prefactor can also be written as

kBTNin = pinV with an internal gas pressure pin. For isother-

mal processes, the left-hand side of the equation is constant

during the deflation, and we may choose the initial state as

the reference, where the shell volume is V0 and the internal

pressure equal to some ambient pressure pa, and so we have

Fgas = −paV0 lnV . For the applied external pressure pex, an

energy contribution pexV must be included. The total energy

functional is thus G = U − paV0 lnV + pexV , which is of

the same form as eq. (8). Note that in the undeformed con-

figuration, the force balance requires pex = pa. The buckling

of spherical shells with an internal ideal gas has in part been

studied numerically in ref. 37.

3 Bifurcation diagrams, stability discussion,

and capsule collapse (snap-through)

The shape equations are solved numerically as described in ref.

16 with the mechanical pressure p as control parameter. For the

numerical analysis, it is convenient to choose a length unit R0

and tension unit E2D. The shape equations then depend only

on the dimensionless pressure pR0/E2D, the Poisson ratio ν

1–12 | 3
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and the dimensionless bending stiffness

ẼB =
EB

R2
0
E2D

=
H2

0

12(1− ν2)R2
0

=
1

γFvK

(9)

which equals the inverse of the Föppl-von-Kármán-number

γFvK.

Solutions for given elastic moduli and over a wide range of

pressures p have been computed. From this dataset, bifurca-

tion diagrams can be obtained from which the stability in the

three load cases – mechanical pressure control, volume control

and osmotic pressure control – can be derived. They contain

different solution branches,16 and we concentrate here on the

two most relevant ones: One with uniformly contracted spheri-

cal shapes, and one with buckled shapes with a single dimple.

A third solution branch are top-down symmetric shapes with

two dimples; they have been shown to be less favorable for

mechanical pressure control and volume control,16 and it will

be shown in section 4 that this is also true for osmotic pressure

control.

The buckled branch with a single dimple develops from the

spherical branch by flattening a region around one pole of the

shell, then creating a dimple by inverting the region around

the pole that subsequently grows until it finally leads to self-

intersecting shapes. We suppress unphysical self-intersecting

shapes by replacing them by shapes with opposite sides in

contact, for which a simplified model has been developed in

ref. 16. However, not all of the calculated shapes are stable.

We split the buckled solution branch with a single dimple into

parts A, B, C and C’, see fig. 1, according to their stability

under pressure and volume control as obtained from bifurcation

theory. Branches A, B, and C represent buckled shapes without

opposite sides in contact, branch C’ is the continuation of

branch C after opposite sides made contact.

3.1 Theorems from bifurcation theory

We exploit very general mathematical theorems about the sta-

bility of the solution branches in bifurcation diagrams due to

Maddocks29 in order to characterize the stability of the differ-

ent parts of the buckled solution branches. A solution of the

shape equations is only stable when it represents a local mini-

mum of the energy functional (and not a maximum or saddle

point). The theorems from bifurcation theory allow us to infer

stability from the slope of the volume-pressure relations and

can be applied both to mechanical and osmotic pressure.

For the reader’s convenience we will briefly summarize the

relevant results of ref. 29 concerning the stability of solution

branches in a bifurcation diagram. The solution branches

shall originate from the variational problem of minimizing

a functional F [r, λ] with respect to the function r, while λ is

a bifurcation parameter. For our buckling problems, F repre-

sents the total energy functional, i.e., the above functionals H

for mechanical pressure control and G for osmotic pressure

control, respectively, and the bifurcation parameter λ is the

mechanical pressure p or the external osmotic pressure pex,

respectively. The function r contains the parametrization of

the capsule shape. Specifically, we consider the case that the

bifurcation parameter enters the functional linearly in the form

F [r, λ] = U [r] − λV [r], which applies both to mechanical

and osmotic pressure, where U is the corresponding energy of

the shape r and V its volume, cf. eqs. (4) and (8).

The solution branches r(λ) of this minimization problem

are best visualized in the distinguished bifurcation diagram in

which the functional −∂λF , evaluated at a solution r(λ), is

plotted against the bifurcation parameter λ, see fig. 2. Points

of vertical tangency are called folds, in our example this is the

point between branches B and C.

A solution branch is called stable when it represents min-

ima of the functional F . Mathematically, this is related to the

second variation of F : If it is positive definite in a solution r,

i.e., has only positive eigenvalues, r is a minimum and, thus, a

stable solution of the minimization problem. We quote two re-

sults from ref. 29 concerning the stability of solution branches:

(i) The slope of a stable solution branch in the distinguished

bifurcation diagram is non-negative, and (ii) the upper branch

of a simple fold opening to the left has one more negative eigen-

value than the lower branch. In the example of fig. 2, A and C

are candidates for stable branches according to (i). However,

(ii) states that the upper branch (consisting of A and B) of the

fold has one more negative eigenvalue than C. If C is stable,

i.e., has no negative eigenvalues, then A and B are unstable and

have precisely one negative eigenvalue.

Maddocks also discusses the variational problem to min-

imize the functional U [r] under the constraint that V [r] =
const. He calls branches that are stable in this constrained

problem c-stable. Stability in the constrained problem is a

weaker condition than stability in the unconstrained problem,

because only variations that leave V constant can give rise to

instabilities. Mathematically speaking, the second variation

must be non-negative on the tangent space to the constraint

surface V (r) = const.29 Maddocks shows that (iii) all sta-

ble branches are also c-stable, and (iv) the branches that are

c-stable but not stable are those with precisely one negative

eigenvalue and negative slope in the distinguished bifurcation

diagram. In our example of fig. 2, where we assume that A and

B have one negative eigenvalue, this means that branch B is

c-stable.

The criteria (i) - (iv) can now be applied to study stability

under mechanical pressure control or osmotic pressure control

and to study c-stability under volume control.
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Fig. 1 Bifurcation diagrams for buckling by mechanical pressure and volume control: a) volume-pressure relation, b) enthalpy as a function of

the pressure, c) elastic energy as a function of the volume. The dotted blue line represents the spherical solution branch, the other colored lines

represent buckled solution branches A, B, C and C’ according to the labels and pictograms on the right. The insets in the energy diagrams in b)

and c) show the differences between buckled and spherical branches. In all plots, the elastic moduli are ẼB = 10
−4 and ν = 1/3, and the same

qualitative behavior has been obtained for all bending stiffnesses under consideration, from ẼB = 10
−6 to 10

−2, see also ref. 16. On the right,

schematic diagrams clarify the qualitative course of the solution branches.
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Fig. 2 The distinguished bifurcation diagram with exemplary

solution branches.

3.2 Mechanical pressure control

Let us start with the case of mechanical pressure control, which

requires unconstrained minimization of the enthalpy H =
U − pV . This case has already been discussed in ref. 16, we

include it here for completeness. The bifurcation parameter

is p, and the distinguished bifurcation diagram is the V (p)
diagram of fig. 1 a). Branches A, B, and C/C’ of the V (p)
diagram have the same structure as our example in fig. 2. The

H(p) diagram in fig. 1 b) reveals that the branches C and C’

are stable: C’ seems to be the global enthalpy minimum over a

large pressure range, and if C’ is stable, C must also be stable

because the stability only changes at folds. Thus, branch C/C’

has only positive eigenvalues in the second variation, and A

and B have precisely one negative eigenvalue, and are therefore

unstable under pressure control.

The bifurcation behavior under mechanical pressure control

can thus be summarized as follows. When spherical shells are

loaded with a negative internal pressure they remain spheri-

cal for small loads because the spherical branch is the global

enthalpy minimum. At a critical pressure pc, the branch C’

(consisting of buckled shapes with self-contact) crosses the

spherical branch in the H(p) diagram. Beyond this pressure,

branch C’ is the global energy minimum. Although it is ener-

getically preferable for the shell to change from the spherical

into a fully buckled shape at pc, this will not happen sponta-

neously because both branches are metastable energy minima,

and an energy barrier must be overcome. Spontaneous buckling

is possible only at the classical buckling pressure19

pcb = −4

√

ẼBE2D/R0. (10)

Here, the spherical solution branch becomes unstable, and the

shell will “fall” from the spherical branch onto the branch C’

where it is completely collapsed (see pictograms in fig. 1 b) on

the right). This direct transition into a completely collapsed

state is also called snap-through. Remarkably, the absolute

value of pc is much smaller than that of pcb, for the elastic

moduli of fig. 1 approximately pc = 0.12pcb (below in eq.

(17), we will give a more general analytical estimate for pc).

Our numerical studies show that the complete collapse under

pressure control happens on the whole parameter range under

investigation, ẼB = 10−6 to 10−2. Although we cannot give

a strict analytical argument we found no numerical evidence

that the qualitative behavior would change for even smaller

oder larger bending stiffnesses. We always find that branch C’

rather than branch C crosses the spherical branch in the H(p)
diagram. This leads us to the conjecture that complete capsule

collapse is generic for buckling under pressure control.

3.3 Volume control

Stability under volume control corresponds to c-stability of

shapes. Since we have seen that branches A and B have pre-

cisely one negative eigenvalue of the second variation and B

has a negative slope ∂pV < 0, we can conclude that branch B

is stable under volume control, but A is not. C and C’ are, of

course, also stable under volume control. This is in accordance

with the U(V ) diagram, from which we see that branch B is

the global energy minimum when the volume is lowered be-

yond a critical volume V1st. As in the case of pressure control,

buckling at this point involves overcoming an energy barrier

which can be read off from the inset in fig. 1 c). This barrier

vanishes at the classical buckling volume32

Vcb

V0

≈ 1− 6(1− ν)

√

ẼB for ẼB ≪ 1. (11)

This behavior is analogous to the case of pressure control but,

for volume control, the first stable shapes after buckling are

those of branch B, with a medium large dimple, and not the

completely collapsed ones of branch C’ as for pressure control.

Branch B, which contains the buckled shapes with small

to medium sized dimples that are frequently observed in mi-

crocapsule experiments,5,10,11,13,14 has thus a very interesting

property: It changes from stable to unstable when the mechani-

cal pressure is controlled instead of the volume. We will see

that for osmotic pressure control parts of branch B will become

stabilized again.

Legendre transformations provide a link between the three

bifurcation diagrams in fig. 1. The function H(p) stems from

the functional H[r, p] = U [r]− pV [r] by inserting the numer-

ical solutions r(p) of the shape equations for a given pressure

p, i.e.,

H(p) = U [r(p)]− pV [r(p)]. (12)

Taking the derivative with respect to p, we must consider that

the shape changes by δr when the pressure is changed by dp.

We thus obtain

dH

dp
=

δU − p δV

dp
− V [r(p)] = −V (p), (13)

where we use δU − p δV = 0 because the shape equations

were derived from this condition. This result connects the V (p)
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Fig. 3 Bifurcation diagrams for osmotically induced buckling or buckling under pressure control with an internal gas. a) Energy G as a function

of the external osmotic pressure. b) Volume-pressure relation. The diagrams were created from the same data set used for fig. 1 (with

ẼB = 10
−4, ν = 1/3 and kBTNin = −pcbV0), and the color code of the different branches is also the same. In comparison with fig. 1 a) and

b) it should be noted that p and pex have different signs, and that a part of the orange branch B is stable now. The thick gray line in the

background of diagram b) represents the analytic result (23) derived below.

diagram, fig. 1 a), to the H(p) diagram, fig. 1 b). Now, the

function U(V ) is obtained as U = H + pV , or more precisely

as

U(V ) = H(p(V )) + p(V )V, (14)

where p(V ) is the inverse function of V (p). We recognize that

the energy U(V ) is the Legendre transform of the enthalpy

H(p), just like in thermodynamics34 from where our notation

is adopted. Consequently, it follows that dU/dV = p and that

H is also the Legendre transform of U .

The Maxwell construction from thermodynamics16,34 can

therefore be applied to the V (p) diagram, in order to con-

struct the critical pressure pc and volume V1st of the buckling

transition. They are defined as the points in the energy dia-

grams H(p) and U(V ), respectively, where the buckled solu-

tion branch crosses the spherical one. In the V (p) diagram, the

critical pressure pc thus fulfills the condition of equal shaded

areas in fig. 1 a). The critical volume V1st can be constructed

analogously, with equal enclosed areas between the horizontal

line V1st and the spherical and buckled branches.

3.4 Osmotic pressure control

Let us now turn to the stability analysis for osmotically induced

buckling, or buckling under pressure control with an internal

gas. Now, the bifurcation parameter is the external part of the

osmotic pressure pex = kBTNex/Vex, because this quantity

can be controled in experiments by changing the concentra-

tion of osmotically active particles outside the shell. In order

to study stability under osmotic pressure control we can use

the available solutions of the shape equations for mechanical

pressure control, which have already been used to draw the

bifurcation diagram fig. 1. For each solution of the shape equa-

tions for a given mechanical pressure p and with a volume V ,

a corresponding external osmotic pressure can be obtained as

pex = pin − p if a value for kBTNin is chosen.

Figure 3 shows the resulting bifurcation diagrams: on the

left, the energy diagram G(pex) and, on the right, the reduced

volume V (pex)/V0. The latter one is related to Maddock’s dis-

tinguished bifurcation diagram, since −∂pex
G = −V , and his

stability discussion can be applied to the V (pex) diagram when

the minus sign is kept in mind. From both bifurcation diagrams

it is evident that, compared to pressure control without internal

gas, some of the buckled shapes of branch B are stabilized. To

illustrate this, we use the same color code for the shapes as in

fig. 1, i.e., a shape corresponding to an orange point in fig. 1

also gives an orange point in fig. 3. Figure 3 immediately shows

that the buckled shape at the critical external pressure is for

osmotic pressure control a shape on branch B, with a medium

large dimple, rather than a collapsed state with opposite sides

in contact.

As for mechanical pressure control, there are also two critical

external osmotic pressures, pex,c corresponding to the point

where the buckled and spherical branches cross in the energy

diagram, and pex,cb corresponding to the classical buckling

threshold, where the spherical shape becomes unstable and the

buckled branch separates from the spherical one. Again, the

threshold pex,c where buckling becomes energetically favorable

(but is only accessible by overcoming an energy barrier, see

the inset in fig. 3) is much smaller than the classical threshold

pex,cb where the spherical branch loses its stability. The latter

value can be calculated as

pex,cb = kBTNin/Vcb − pcb = pin(Vcb)− pcb (15)

with Vcb and pcb from eqs. (11) and (10), respectively.
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How much of branch B becomes stabilized under osmotic

pressure control and whether branch B (as in the example

shown in fig. 3) or branch C or the snap-through branch C’

cross the spherical branch in the G(pex) diagram depends on

the number of osmotically active particles Nin or the initial

internal osmotic pressure: In the limit Nin → 0, where there

are no osmotically active particles (or gas particles) enclosed

in the shell, the behavior for mechanical pressure control is

recovered in which the whole branch B is unstable and the

first buckled shape after the instability is a collapsed snap-

through state on branch C’. For an increasing number Nin,

we first find buckling into shapes C and, then, a stabilization

of and buckling into branch B. Further increasing Nin then

further extends the stabilized part of branch B. The bifurcation

behavior under osmotic pressure control becomes qualitatively

similar to buckling under volume control if Nin is sufficiently

large such that the spherical branch exchanges stability with

branch B as in the example shown in fig. 3.

4 Enthalpy landscape for buckled shapes: os-

motic pressure control and stabilization of

non-collapsed shapes

The stabilizing effect of an internal medium on the non-

collapsed shapes can be shown more explicitly by considering

the energy landscape during the buckling process. The “re-

action coordinate” that describes the progress of buckling is

∆V = V0 − V . An analytic estimate of the elastic energy in a

shell with one dimple has been given by Pogorelov,38

UPog ≈ 2πJmin

(

8

3

)3/4
E2D

(

1− ν2
)1/4

(

ẼB
∆V

V0

)3/4

R2

0

(16)

where Jmin = 1.15092 is a numerical factor. For mechan-

ical pressure control, a term −pV = −p(V0 − ∆V ) must

be added to obtain the total energy (or enthalpy) H(∆V ) =
UPog(∆V )+p∆V+const. This results in a function H(∆V ) ∼
∆V 3/4 − |p|∆V (because p is negative) as plotted in fig. 4

a), blue line. There exists an energy barrier which has to

be overcome, for example by manually indenting the shell,

by imperfections or by thermal fluctuations, but once this is

achieved, the shell tends to maximize ∆V in order to minimize

its energy. This means that, under pressure control, the shell

collapses completely upon buckling. This model is, of course,

over-simplified because it relies on the Pogorelov model that

becomes inaccurate for very large dimples.30,31,38 The shell

cannot reach ∆V ≥ V0, and even before there will be addi-

tional terms in the elastic energy caused by the constraint of no

self-intersection.

The global minimum of H(∆V ) becomes a boundary mini-

mum at ∆V = V0 for pressure values |p| > |pc|. The criterion

H(0) = H(V0) thus provides an estimate for the critical pres-

sure pc,

pc = −2 · 61/4Jmin

E2DẼ
3/4
B

R0(1− ν2)1/4

=
1

2
· 61/4Jmin

Ẽ
1/4
B

(1− ν2)1/4
pcb (17)

We checked with our numerical results the accuracy of this

estimate over a large range of bending stiffnesses, from ẼB =
2 · 10−6 to 10−3, and found that also the numerical prefactor

is in reasonable agreement with the numerical results, despite

the simplicity of the enthalpy landscape.

Pogorelov’s model also becomes inaccurate for very small

dimples.30,31 For the energy landscape, this has the effect that

the energy barrier is always present. The height of the energy

barrier is Hbarrier ∼ E4
2DẼ

3
B/|p|3R0(1− ν2). The barrier is

even present for pressures p exceeding the critical buckling

threshold pcb, where buckling should become spontaneous and

a barrier should be absent. Therefore, one can simply assume

that small barriers Hbarrier ∼ E4
2DẼ

3
B/|pcb|3R0(1− ν2) ∼

E2DẼ
3/2
B R2

0/(1 − ν2) can be overcome spontaneously. For

an isotropic shell material, with E2D = EH0 and ẼB =
EH3

0/(12(1− ν2), this barrier height corresponds to an in-

dentation of the order of the shell thickness H0 at the barrier.

This argument is similar to a corresponding argument in ref.

20, where it is assumed that the buckling threshold pcb can

be identified with the necessary pressure for an indentation

of the order of the shell thickness H0 to grow spontaneously.

Apart from this problem for pressures p close to the buckling

threshold pcb, the energy landscape is qualitatively correct for

|p| < |pcb|.
When we consider the appropriate energy functional for

osmotic pressure or pressure control with an internal gas, a term

∝ − lnV must be added to the energy functional. It penalizes

small volumes and, therefore, prevents the shell volume from

approaching ∆V → V0. The total energy (or free enthalpy)

reads

G(∆V ) = UPog(∆V )−pex∆V −kBTNin ln(V0−∆V ) (18)

and has the qualitative shape plotted in fig. 4 a), red line. There

is no boundary minimum at ∆V = V0 corresponding to a fully

collapsed state with V = 0 but a local energy minimum at a

finite volume, i.e., ∆V < V0. The volume at this minimum

depends on the elastic moduli, the external pressure pex and the

internal particle number Nin. This qualitatively explains why

an internal gas or internal osmotically active particles prevent

the full collapse of the shell and stabilize buckled shapes with

medium volume reduction (parts of branch B).

It remains to justify why we concentrated our investigations

on buckled shapes with a single dimple only, and disregarded
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Fig. 4 a) Enthalpy landscape for the buckling transition under mechanical pressure control (blue line) and osmotic pressure control (red line).

After the enthalpy barrier has been overcome, mechanically pressurized shells can lower their enthalpy on and on by reducing the volume, but

osmotically pressurized shells will end up in the enthalpy minimum at finite ∆V . b) Effect of a second dimple in the shape (dashed line): The

enthalpy function is raised, with the effect that the minimum of the function, where the stationary shape resides, is also lifted to higher enthalpy.

c) Numerical demonstration (for the same parameters as in fig. 3) that the branch with two dimples is energetically less favorable than the branch

with one dimple. We plot the enthalpy difference to the spherical branch in order to better resolve the differences in the branches.

all other solution branches that can be obtained from the shape

equations.16 Numerical solution of the shape equations in ref.

16 have shown that all other solution branches are less fa-

vorable for volume control and mechanical pressure control.

Here we present an analytical argument, which confirms these

findings and also covers osmotic pressure control. The most

promising candidates that could become energetically favor-

able for osmotic buckling are shapes with multiple dimples.

We can consider symmetric shapes with two dimples within

the Pogorelov model and within the axisymmetric shape equa-

tions to show that their free enthalpy is larger than for one

dimple. The volume reduction ∆V of the shell is divided be-

tween the two dimples which have ∆V/2 each. According to

the Pogorelov model, the elastic energy of a double buckled

shell is thus UPog 2(∆V ) = 2UPog(∆V/2) = 21/4 ·UPog(∆V ),
where the last equation holds because UPog ∼ ∆V 3/4. Thus,

for given volume difference it is energetically unfavorable to

create multiple dimples.16,32

Now we have to clarify how this translates to the free en-

thalpy G(pex) for osmotic pressure control where a change

of variables from ∆V to pex is necessary. The branch with a

single dimple has a free enthalpy

G(pex) = min
∆V

[UPog(∆V )− pex∆V − kBTNin ln(V0 −∆V )]

≡ min
∆V

[f(∆V, pex)] (19)

for osmosis. To obtain the enthalpy of the symmetrically buck-

led branch we just change UPog to UPog 2 in this expression,

which results in

G2(pex) = min
∆V

[

f(∆V, pex) + (21/4 − 1)UPog(∆V )
]

(20)

The additional term (21/4−1)UPog(∆V ) is positive for all ∆V .

The volume-dependent enthalpy function whose minimum we

are searching is thus shifted to higher values, see fig. 4 b). As a

consequence, the stationary shape that resides in the minimum

is shifted to a higher enthalpy when there are two dimples

on the shell instead of one; and also the transition states at

the enthalpy maximum lie at higher enthalpy. This result is

confirmed by the enthalpy diagram fig. 4 c) that was generated

from the shape equations.

5 Applications: shape control, shape analysis

and osmotic pressure sensing

In osmotic buckling, both the external part pex = kBTNex/Vex

of the osmotic pressure, which is given by the external concen-

tration of osmotically active particles, and the internal particle

number Nin, which is enclosed in the capsule during synthesis,

are relevant experimental control parameters. The external

pressure pex allows to control the final buckled shape experi-

mentally, and the internal particle number Nin allows to control

the final buckled shape and the buckling threshold pex,cb itself.

Both of these controls provide interesting applications, which

can be analyzed using the energy landscape (18).

We can determine the energy minimum analytically and

quantify the concentration of osmotically active particles,

which is needed inside and outside the shell in order to stabi-

lize buckled shapes of a desired volume reduction. Particularly

interesting is the buckled shape that is obtained at the buckling

threshold (15), pex = pex,cb, where the shell can buckle sponta-

neously. The condition for an extremum of the free enthalpy

is

0 = G′(∆V ) = U ′

Pog(∆V )− pex,cb +
kBTNin

V0 −∆V
. (21)

This equation can be solved for the internal osmolyte concen-

tration Nin/V0 and simplifies considerably if only the leading
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order in ẼB is retained. The value of kBTNin also determines

the external pressure pex,cb needed to induce buckling, see eq.

(15). For both values, the simplified results are

kBT
Nin

V0

≈ 4

(

V0

∆V
− 1

)

E2D

R0

√

ẼB

and pex,cb ≈ 4
V0

∆V

E2D

R0

√

ẼB .

(22)

Both results can be directly translated into concentrations of

osmotically active particles inside and outside the shell. The

classical buckling pressure pcb = −4
√

ẼBE2D/R0 occurs

as the relevant scale in eq. (22). In order to obtain buckled

shapes with ∆V = V0/2, for example, one should adjust the

internal osmolyte concentration to Nin/V0 = −pcb/kBT and

the external osmolyte concentration to Nex/Vex = −2pcb/kBT .

These are exactly the values used in fig. 3, and the inset in

the V (pex) diagram confirms that the buckling at the classical

threshold indeed results in a shape close to V = V0/2.

Because the external osmotic pressure determines the vol-

ume of the buckled capsule, we can also use the shape or

volume of osmotically buckled capsules as an indicator for the

applied osmotic pressure. Solving the equation G′(∆V ) = 0,

for pex we find the relation between capsule volume and exter-

nal osmotic pressure

pex = pin,0

(

1− ∆V

V0

)

−1

+
3

2
61/4Jmin

E2DẼ
3/4
B

R0(1− ν2)1/4

(

∆V

V0

)

−1/4

(23)

with the internal osmotic pressure in the undeformed refer-

ence state, pin,0 = kBTNin/V0. This relation has a simple

interpretation: The first term in eq. (23) would be the rela-

tion between external osmotic pressure and capsule volume

if the capsule exactly assumed its osmotically preferred vol-

ume V = pin,0V0/pex. The second term captures the additional

influence of shell elasticity on this relation.

The relation (23) matches the numerical results with a strik-

ing accuracy as can be seen in the bifurcation diagram fig.

3 (gray line). Because the free enthalpy landscape is based

on the approximate Pogorelov model, which is inaccurate for

large dimples, we would expect our analytic estimate also to

become inaccurate for large ∆V . Surprisingly, this is not the

case. For large ∆V , the position of the free enthalpy mini-

mum is primarily determined by the competition of the osmotic

terms −pex∆V and −kBTNin ln(V0 − ∆V ) in eq. (18); the

elastic energy UPog plays a subordinate role. Indeed, the purely

osmotic approximation pex = kBTNin/(V0 − ∆V ), where

the elastic contribution is completely neglected, is in good

agreement with the numerical pressure-volume-relation for

∆V & 0.5. Neglecting the elastic contribution in eq. (23)

is justified for small ẼB (and not too small ∆V ) because

kBTNin = O(pcb) ∼ Ẽ
1/2
B and the elastic term is ∼ Ẽ

3/4
B .

Equation (23) provides the basis for measurements of the

external osmotic pressure by using elastic capsules as pressure

sensors. The capsules must be “calibrated” in the sense that

their elastic properties, size and internal osmolyte concentration

are known. When they are embedded in a bath with a larger,

unknown osmolyte concentration and buckle consequently,

their volume difference can be measured and inserted into

eq. (23) to obtain pex or the external osmolyte concentration

Nex/Vex = pex/kBT . The volume measurement could be

achieved through a microscopy image analysis, in the simplest

version by measuring the shell depth d and original radius R0

(see fig. 5) and using the geometrical relation for shapes whose

dimple is an exact mirror-reflection of a spherical cap31 to

obtain ∆V/V0 = (1 − d/2R0)
2(2 + d/2R0)/2. While the

relation (23) for pex(∆V ) is very precise, this relation ∆V (d)
acquires some errors, but fig. 5 a) shows that these errors are

only significant for d . R0/2.

Vice versa, eq. (23) or the resulting relation for pex as a func-

tion of d/R0, see fig. 5, can be used to determine the capsule’s

material parameters by fitting experimental data for d/R0 at dif-

ferent external osmotic pressures pex. Specifically, eq. (23) can

be used to determine the parameter combination E2DẼ
3/4
B /R0

and the internal osmotic pressure pin,0. In combination with

an analysis of the maximal edge curvature of buckled shapes

as proposed in ref. 16 and experimentally realized in ref. 17,

which allows to determine the reduced bending modulus ẼB ,

both elastic moduli and the internal osmotic pressure can be

obtained from relatively simple shape analyses of osmotically

pressurized shells. To this end, accurate measurements of the

external osmotic pressure and images of cross-sections along

the axis of symmetry of the shells must be provided.

We tested such an analysis using the data published in ref.

9 for polyelectrolyte capsules with radius R0 = 2 · 10−6 m
and wall thickness H0 = 2 · 10−8 m. The polyelectrolyte

capsules were then deflated osmotically, by adding poly(styrene

sulfonate, sodium salt) (PSS) to the exterior solution. The

osmotically active particles are the counter-ions surrounding

the PSS molecules, and they exert an external osmotic pressure

pex on the capsules. In the experiments, the values of pex were

measured with a Vapor Pressure Osmometer. In view of the few

available data points, which can be obtained from the confocal

microscopy capsule images in ref. 9, we use the value for the

shear modulus of the shell material G = 500MPa given in ref.

9, which corresponds to a Young modulus of E = 1500MPa if

ν = 0.5. Using also the measured values for capsule radius and

thickness this leads to E2D = 30N/m and ẼB = 1.11 · 10−5.

Inside the capsule we also expect a certain concentration of

ions, because the capsule was fabricated from polyelectrolytes.

This gives rise to a nonzero but unknown internal osmotic

pressure pin,0 = kBTNin/V0 (in the undeformed state) which
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Fig. 5 Using a buckled shell as an osmotic pressure sensor: From a measurement of the depth d and original shell radius R0, the external

osmotic pressure pex can be determined. a) The data points are generated from the data set already used in figs. 1 and 3, with ẼB = 10
−4,

ν = 1/3 and kBTNin = −pcbV0, and the solid line represents the analytic approximation based on eq. (23). b) Analysis of experimental results

published in ref. 9. The data points from the experiments are fitted using eq. (23) with the internal osmotic pressure as fitting parameter. The

open points were excluded from the fit because the experimental images looked conspicious that they may not represent centered cross-sections.

serves as the only fitting parameter in the following in order to

explain the observed shapes after osmotic buckling.

The value for G obtained in ref. 9 might be questionable

because its determination relied on a measurement of the buck-

ling pressure using the classical buckling pressure |pcb|, see eq.

(10). This determination assumes a vanishing internal pressure,

i.e., pin ≈ 0 in eq. (15) and, moreover, the classical buckling

pressure (15) only represents an upper bound for the buckling

pressure. Real imperfect shells buckle already at considerably

weaker pressures,21,39 between the classical osmotic buckling

pressure pex,cb, where the spherical shape becomes unstable

and the much smaller critical osmotic pressure pex,c, where

buckling becomes energetically favorable as discussed above.

As already pointed out, values for E2D and ẼB could also be

obtained from a shape analysis, in principle, if shape images

for more external osmotic pressures pex were available.

From five confocal microscopy images, figs. 2 (b) and (c)

in ref. 9, we measured the ratio d/R0. An uncertainty arises

because we are not sure if the cross-sections imaged by the

confocal microscopy cut through the center of the capsules

and if they are oriented along the axis of symmetry of the

capsules. For each image, the external osmotic pressure was

given in ref. 9. The resulting data points are plotted in fig. 5

b), together with the fit using eq. (23). For the fit parameter

we obtained kBTNin = 5.4 · 10−12 J, which corresponds to an

internal osmotic pressure (in the undeformed state) of pin,0 =
kBTNin/V0 = 1.6·105 Pa and to a concentration of Nin/V0 =
65mol/m3. Equation (23) describes the experimental results

with reasonable accuracy.

6 Discussion and Conclusion

We have shown that the stability of buckled spherical shells

(with respect to axisymmetric deformation modes) depends

on the specific system that generates the pressure difference

between the inside and outside. If a simple mechanical pressure

difference is prescribed, the enclosed volume will not affect

the applied mechanical pressure, and the shell will collapse

completely after the buckling has set in. This is known as

snap-through buckling in the shell theory literature. On the

other hand, when the system is constructed so that the shell

must have a given volume, the first stable shapes after buckling

have a small, but finite dimple.

In most experiments, there will be a feedback between the

deformation and the pressure difference exerted on the shell,

for example, for osmotic buckling or if the shell encloses a gas.

The feedback by an internal medium will stop the snap-through

buckling at a finite volume, thus stabilizing buckled shapes

with medium volume. Our findings explain why these are the

shapes that are usually observed in experiments, although they

are unstable from the simple viewpoint of pressure control.

The stabilizing effect of an internal medium is quite generic

as long as the force density exerted on the shell is still a

normal pressure that is spatially constant. We checked that

the same qualitative results could be obtained by including a

compressible fluid in the shell, with an energy contribution

F ∝ (V − V0)
2. The reason for this generic behavior is that

the enthalpy landscape, see fig. 4, is qualitatively identical, no

matter how exactly the energies that penalize large volume

differences look like.

Within this paper we specifically discussed buckling under

(i) volume control, (ii) mechanical pressure control and (iii)

osmotic pressure control. Yet, even more experimental situa-

tions are conceivable, which give rise to a feedback between
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volume and pressure difference: (iv) As already mentioned, the

shell can be filled with a compressible fluid. (v) The elastic

properties of the shell could depend on the concentration of an

enclosed substance, e.g., if the substance chemically reacts with

the shell material. This will give rise to capsule volume depen-

dent elastic properties. (vi) One frequently used mechanism in

volume controled experiments is to slowly dissolve the interior

liquid of the capsule by the external liquid, thus reducing the

internal volume.12,13,26 This procedure will involve feedback

as soon as the exterior volume is no longer much larger than

the internal capsule volume. If reducing the capsule volume

increases the internal pressure or stiffens the capsule material,

such feedback mechanisms will stabilize non-collapsed buck-

led shapes. If a reduced capsule volume increases the external

pressure or softens the capsule material, complete collapse

upon buckling will be the generic behavior.

For osmotic pressure control, the capsule tends to assume a

preferred volume which is prescribed by the osmolyte concen-

trations. Therefore, the observed shape bifurcation behavior

for osmotic pressure control becomes typically qualititatively

similar to buckling under volume control, see figs. 1 and 3. In

particular, snap-through buckling is suppressed. This requires,

however, that the initial osmolyte concentration in the capsule

interior is sufficiently large. We presented a quantitative the-

ory which also captures the influence of shell elasticity on the

resulting relation (23) between external osmotic pressure and

capsule volume. Buckling under osmotic pressure is indeed

intermediate between buckling under volume control and buck-

ling under mechanical pressure: In the limit of a small number

Nin of osmotically active molecules in the capsule interior,

buckling under mechanical pressure control is recovered; for

increasing Nin, the behavior effectively approaches buckling

under volume control.

We have shown that these findings can be relevant for the

control of buckled shapes in applications by controling the os-

molyte concentration. Conversely, we can use elastic capsules

as osmotic pressure sensors, and an accurate analytic formula

is derived that allows to deduce the osmotic pressure from the

observed volume of buckled capsules using eq. (23). This re-

lation can also be used to obtain elastic moduli of the capsule

and its internal osmotic pressure from shape changes of the

capsule if the external osmotic pressure is experimentally con-

troled. We applied this procedure to published experimental

data from Gao et al.9 on polyelectrolyte capsules. Our findings

are also relevant for stabilizing buckled shapes of a desired vol-

ume in applications by choosing the osmolyte concentrations

according to eq. (22) to realize a desired ∆V .
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Textual abstract: Sentence, max 20 words

Buckling by osmotic pressure prevents the full collapse (snap-through) of a

spherical shell and gives rise to finite dimples. 
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