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One of main differences of ordered structures constrained on curved surfaces is the nature of topological 

defects. We here explore the defect structures and ordering behaviours of both lamellar and cylindrical 

phases of block copolymers confined on spherical substrates by the Landau-Brazovskii theory, which is 

numerically solved by the highly accurate spectral method with a spherical harmonic basis. For the 

cylindrical phase, the isolated disclinations and scars are generated on the spherical substrates. The 

number of excess dislocations in a scar depends linearly on the sphere radius. The defect fraction 

characterizing the ordering dynamics decays exponentially. The scars are formed from the isolated 

disclinations via the mini-scars. For the lamellar phase, three types of defect structures (hedgehog, spiral 

and quasi-baseball) are identified. The disclination annihilation is the primary ordering mechanism of 

lamellar phase. 

1 Introduction     

As a result of a large number of theoretical and experimental 

studies, the bulk phase behaviours for linear diblock 

copolymers have been well mapped out1, 2. However, newer 

technological applications of copolymers for nanolithography, 

nanoszie bioreactors and drug delivery vehicles necessitate 

tailoring their morphologies 3 , 4 , 5 , 6 . Confining the block 

copolymers on substrates introduces geometric frustration to 

the systems, and allows materials to self-assemble into new 

nanostructures that are very different from the bulk 

morphologies. The simple case of block copolymers under 

confinement is the one-dimensional (1D) confined system, in 

which the block copolymers are placed between two flat 

parallel walls. One can observe structures, such as perforated 

lamellae, parallel or perpendicular lamellae and cylinders7,8,9. 

The two-dimensional (2D) and three-dimensional (3D) 

confinements are realized by putting copolymers into 

cylindrical nanopores and spherical cavities, respectively. A 

rich and nontrivial variety of nanostructures including helix and 

toroid are observed or predicted10,11,12,13,14,15,16,17. 

One of the main differences of nanostructures of block 

copolymers confined on the planar (1D) and curved (2D or 3D) 
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substrates is the nature of topological defects18,19. The curvature 

of the substrates imposes a topological requirement on the 

equilibrium structures with defects. For instance, when the 

lamellar phase of block copolymers is confined on the spherical 

substrates, requirement of topological constraints should satisfy 

the Poincaré-Hopf theorem  	∑ �� = ��� , where mi is the charge 

of i-th defect and χE=2 is the Euler characteristic of spherical 

surfaces. One can deduce the minimum number of defects from 

the equation. The configurations of lamellar phase confined on 

the spherical surfaces have at least four +1/2 disclination 

defects or two +1 disclination defects. New experimental 

techniques to create such a 3D confinement are being rapidly 

developed20,21,22,23,24,25,26,27. Higuchi et al. succeed in preparing 

various types of complex structures from the diblock 

copolymers confined in a spherical cavity by a solvent 

evaporation method22. 3D structural analysis reveals that such 

+1/2 and +1 disclination defects are formed in the surface 

regions of spherical cavity. However, it is much more difficult 

to experimentally grasp universal principles of defect structures 

due to the fact that precisely controlling the size and shape of 

the confining environment is not easily realized by far.  

Significant theoretical efforts have been made to understand 

the defect structures of block copolymers on the flat 

substrates28,29,30. Nevertheless, theoretical researches regarding 

the defect structures and ordering kinetics of block copolymers 

on the curved substrates are very challenging, because they 

require an accurate representation of substrates and the non-

linearity is inherent in the continuum model of this system. 
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Currently, theoretical and simulation investigations about the 

defect structures of block copolymers in the curved space are 

very limited31,32,33,34,35,36. More recently, Chantawansri and co-

workers used a self-consistent field (SCF) theory of 

inhomogeneous polymers to explore microstructures of block 

copolymers confined on a sphere33. Three types of defects of 

lamellar phase are observed for symmetric diblock copolymers. 

Isolated disclinations are obtained for the cylindrical phase. 

Nevertheless, the simulations of SCF theory are limited to the 

cases of small sphere, and cannot capture the defect 

annihilation of block copolymers confined on the spherical 

substrates. There remains need for considerable advancements 

in terms of studying the defect motion of block copolymer 

nanostructures in the large time scale and thoroughly examining 

the defect structures.  

To address above challenges, we apply the Landau-

Brazovskii (LB) theory to study the self-assembly behaviors of 

block copolymers confined on the spherical substrates. The LB 

theory of block copolymers can be derived from the many-

chain Edwards Hamiltonian following the method of Leibler 

and Ohta and Kawasaki in the weak segregation limit37,38,39. It 

has been well established that the LB theory is a convenient 

way for studying the kinetics of microphase separation of block 

copolymer systems in the flat space40,41,42. Nevertheless, it has 

not been implemented in the curved spaces. The primary 

difficulty in extending the LB theory to the spherical geometry 

is the numerical solution of non-linear partial differential 

equations. Here, we develop a spectral collocation algorithm 

with a spherical harmonic basis, which offers high numerical 

accuracy and efficiency for solving the equations. The spectral 

method for the spherical geometry is an extension of the 

spectral method already used in the fluid dynamics43. 

Beyond developing an improved numerical method for 

solving the LB theory in the curved spaces, we report here on 

detailed numerical simulations of defect structures and ordering 

behaviours of both lamellar and cylindrical phases of block 

copolymers confined on the spherical substrates. This new 

method is able to produce the defect structures identified by the 

Delaunay triangulation, and obtain the relationship between the 

excess dislocations and the sphere radius which, as far as we 

know, was not predicted by previous simulations on the self-

assembly of block copolymers on the spherical surface. The 

simulations also directly display the defect annihilation, which 

cannot be observed by the static SCF simulations. 

Subsequently, we further investigate the defect structures and 

ordering behaviours of lamellar phase. We expect that the 

present study may offer a rational understanding about the 

ordering behaviours of nanostructures on the curved surfaces 

and some useful information for the design of novel materials 

of block copolymers. 

2 Theoretical model and numerical method 

This section introduces the LB theory and our numerical 

algorithm for solving it. We consider a thin film of AB diblock 

copolymers confined on the surface of sphere with radius R. 

Here, we assume the thickness h of thin film satisfying ℎ ≪ 
. 

The position- and time-dependent order parameter φ(r,t)≡ 

φA(r,t)-fA is the deviation of the A segment density φA(r,t) from 

its average value fA. The scaled LB free energy functional of 

such system on the spherical surface S2 is given by41,44 

��
��� = � �� ��� ��1 + ∇�

� ���� + �

��� −  
!!�! + �

#!�#$�
  (1) 

where dσ is the infinitesimal element of the area and ∇�

�  

corresponds to the spherical Laplacian operator. The parameter 

ε is a temperature-like variable, which is related to the Flory-

Huggins interaction parameter. The variable s is related to 

composition asymmetry of copolymers, and vanishes at fA =0.5. 

The specific relationships of the above parameters to the 

composition, polymerization degree and Flory-Huggins 

interaction parameter are given in References 41 and 45. The 

phase diagram obtained from the one-mode or two-mode 

approximation is sketched in Reference 44. Since the order 

parameter φ is a conserved variable, its dynamics satisfies the 

following Cahn-Hilliard equation, which is also known as 

Model B in condensed matter physics46 

%&
%' = ∇�


� ()�

(& + *     (2) 

where +��
 +�⁄  denotes the functional derivative of free energy 

functional with respect to φ, and ζ stands for a conserved noise 

satisfied the fluctuation-dissipation theorem. 

Next, the numerical approach to solve the non-linear partial 

differential equation in the curved space is stated. Rather than 

using the finite element or finite volume methods, we extend 

the highly accurate spectral method to solve the Eq. (2). In the 

flat Euclidian space, an attractive way to solve the non-linear 

partial differential equations with the periodic boundary 

conditions is the Fourier spectral method43. Similarly, in the 

case of the spherical geometry with fixed radius R, the basis of 

spherical harmonics is chosen, which involves the back and 

forth transformations between the real- and spectral-space 

representations. In the real space, the order parameter field φ(r) 

is represented by the spherical-polar coordinate u(., 0), where 

. ∈ �0,25) denotes the longitude and 0 ∈ �−5/2, 5/2� denotes 

the latitude. The spherical harmonic expansion is defined by47 

�(r) ≡ �(u) = ∑ ∑ �89:;9:(u):<9:<=9>9<?    (3) 

where ;9:(u)  denotes the spherical harmonic of degree l for      

-l≤m≤l and �89:  are the components of �(u) in the  spherical-

harmonic space. Since the spherical harmonics are the 

eigenfunctions of the spherical Laplacian operator, one can 

calculate the Laplacian of	�(u)	via application of the operator 

termwise in the expansion of Eq. (3), which is given by 

∇�

� �(u) = ∑ ∑ −@(@AB)

C
 �89:;9:(u):<9:<=9>9<? . With this, the 

evolution equation Eq. (2) of order parameter field can be re-

expressed in the spherical-harmonic space 

%&8 @D
%' = − 9(9E�)

F
 GH�1 − @(@AB)
C
 �� + IJ�89: +KLM 9:N  (4) 

Here, KLM 9: are the components of nolinear term −O P
(Q)
� ERS(Q)

S!   

in the spherical-harmonic space. The conserved noise term of 
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Eq. (2) is neglected in the spectral method for the sake of 

numerical simplification. The above equations for the order 

parameter field �89: are numerically solved by a semi-implicit 

scheme in the equally space grid 48 . The back and forth 

transformations between the real space and spherical-harmonic 

space are performed by using the SPHEREPACK 3.2 software 

package49. 

In our simulations, the initial configurations are the 

disordered states, in which uniform random numbers between      

-0.1 and 0.1 are assigned to the order parameter field at the 

lattice sites of spherical surface. To ensure that the observed 

defect structures are not accidental, we repeat the simulations 

for 10 times using different initial random configurations. 

Usually, the initial configurations quickly evolve into the 

ordered structures. However, for a quenching system with large 

sphere radius, the configurations still contain lots of defects 

even after a long-time run due to a kinetically slow process of 

defect annihilation. To promote the escape of metastable 

configurations, an annealing process is subsequently performed. 

Specifically, the initial configurations of annealing process are 

the final states of quenching simulations. The parameter ε is 

linearly increased with the simulation step, but kept below the 

critical value of disorder-to-order transition, and then linearly 

decreased to the initial setting value ε0. The above procedure is 

cycled 6~10 times until the total energy of system with ε0 at 

different cycles does not change. The annealing process used in 

our simulations may correspond to the multi-cycle annealing 

process in the experiments, which has been applied to prepare 

highly-aligned patterns of block copolymers in the Harrison et 

al. study 28.  

3 Results and discussion  

In contrast to the microphase separation of block copolymers in 

the flat space, the nanostructures of block copolymers confined 

on the spherical substrates depend not only on the parameters ε0 

and s, but also on the curvature of sphere. The topology of the 

sphere enforces a requirement of defect structures in the 

equilibrium configurations. In what following, we investigate 

the defects and ordering processes of both cylindrical and 

lamellar phases of diblock copolymers confined on the surfaces 

of spheres with different radii. 

3.1 Defect structures and ordering behaviours of cylindrical 

phase 

In this subsection, we choose the parameters ε0=-0.13 and s=0.3, 

which correspond to the case of asymmetric block copolymers. 

The cylindrical phase is stability44. In order to determine the 

defect structures of cylindrical phase on the spherical surfaces, 

two main steps are performed during the standard data post-

processing. In the first step, the cores or vertexes of cylinder 

domains are determined through the local maxima of order 

parameter field. In the second step, the algorithm of Delaunay 

triangulation with these vertexes in the curved space is 

conducted 50 . It is useful to visualize the defect structures 

through diagrams shown in Figures 1(b) and 2(b), which are 

constructed by lines connecting a vertex (represented by a small 

sphere) with all of its neighbours. The number of lines of a 

vertex is used to identify the defect types. The five-fold and 

seven-fold coordinated vertexes can be respectively 

characterized by the disclination charges +1 and -1, which are 

the departure of the coordination number from the flat space 

value of 6. A tightly bound pair of +1 and -1disclinations forms 

a dislocation. 

 
Fig. 1 (a) Profile of order parameter field for 60 cylinder domains on the surface 

of a sphere with radius R≈2.0a (a is the mean distance of cylinder pairs). White 

and gray colors refer to large and small values of order parameter field, 

respectively. (b) Associated diagram of Delaunay triangulation for the cylinders 

or vertexes on the spherical surface. The vertexes symbolled by the small spheres 

denote the centres of cylinder domains. Five-fold, six-fold and seven-fold 

coordinated vertexes are colored by blue, green and red, respectively. The solid 

lines represent the connections of a vertex with its neighbours. 

 
Fig. 2 (a) Profile of order parameter field for 1052 cylinder domains on the 

surface of a sphere with radius R≈8.20a. (b) Associated diagram of Delaunay 

triangulation for the cylinders or vertexes on the spherical surface. The 

representations of colors, symbols and lines are the same as Figure 1. The small 

spheres with red color denote the vertexes with seven-fold coordinated sites. 

DEFECT STRUCTURES OF CYLINDRICAL PHASE Figure 1(a) 

shows the profile of order parameter field on the surface of a 

sphere with radius R≈2.0a, where a is the average distance of 

the cylinder pairs. The order parameter field on the closed 

surface is represented as a gray-white field, where the gray and 

white colors correspond to the small and large values of order 

parameter field, respectively. This configuration contains 60 

cylinders arranged on the spherical substrate. The associated 

diagram of Delaunay triangulation is illustrated in Figure 1(b). 

The vertexes correspond to the local maxima of order 

parameter. 12 isolated +1 disclinations (five-fold coordinated 

sites) are observed in the Delaunay diagram. In the flat space, 

the isolated +1 disclinations are not usually found because they 

produce large distortions in the configuration. On the contrary, 

on the curved substrates, the disclinations help to screen out the 

geometric frustration to reduce the distortions19. In the multi-

cycle annealing process, the isolated +1 disclinations cannot be 
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removed away. This phenomenon manifests the fact that the 

isolated +1 disclinations are an intrinsic part of the 

configurations on the spherical substrates. 

As the total number of cylinder domains or sphere radius 

increases, the dislocations are introduced into the system to 

further reduce the distortions of isolated +1 disclinations. For 

instance, the system with sphere radius R≈8.20a is quenched 

from the random initial configuration, and the annealing 

process is subsequently performed. As shown in Figure 2(a), 

the cylinders are arranged on the spherical surface, and the final 

configuration of order parameter field consists of 1052 

cylinders. Figure 2(b) is the associated diagram of Delaunay 

triangulation, which contains 51 five-fold, 962 six-fold and 39 

seven-fold coordinated sites. The isolated +1 or -1 disclinations 

are not observed in the final configuration. One can observe 

that pairs of +1 and -1 disclinations produce chains of 

dislocations. Note that a chain of 5-7 pair dislocations arranged 

around an unpaired +1 disclination, i.e., 5-7-5-7-5-7-5, is 

illustrated in Figure 2(b). The defect structures are called scars, 

which are experimentally observed in the spherical crystals51. 

Here, the number of excess dislocations in a scar has a value of 

3. It should be mentioned that the scars cannot be further 

annihilated in the annealing simulations, suggesting that the 

scar structures are an intrinsic part of configurations on the 

spherical surfaces. 

To quantify the behaviours of the scars, we determine the 

mean number of excess dislocations in a scar from the diagram 

of Delaunay triangulation, and plot the result as a function of 

the relative sphere radius R/a, which is displayed in Figure 3. 

Each data point is collected from ten independent runs. Below 

the critical value of the relative sphere radius (R/a)c≈5.0, only 

12 isolated +1 disclinations are observed, and the dislocations 

cannot be produced in this system. As the sphere radius 

increases, the isolated disclinations become much more 

energetically cost, while the formation of dislocation chains 

may reduce the energy. Above the critical value of (R/a)c, the 

mean number of excess dislocations in a scar increases with the 

relative sphere radius. In the range of large sphere radius, the 

number of excess dislocations in a scar grows proportional to 

the relative sphere radius, and the obtained best-fit slope is 

0.435. Since the different initial states result in the metastable 

configurations with different amount of excess dislocations in a 

scar, non-integer number of dislocation appears in Figure 3 due 

to the averaging of several runs. 

ORDERING BEHAVIOURS OF CYLINDRICAL PHASE Upon 

quenching the system below the critical value of disorder-to-

order transition, the initial configurations with small random 

fluctuations evolve into the ordered patterns. To characterize 

order degree of cylinder nanostructures, we calculate defect 

fraction to monitor the ordering dynamics. The defect fraction 

at time t is defined as DF(t)=(N-V6)/N×100%52,53, where V6 and 

N are the number of six-fold coordinated vertexes and the total 

number of vertexes in the diagram of Delaunay triangulation, 

respectively. Here, we do not distinguish the defects with five-

fold (+1), seven-fold (-1), or other coordinated sites, and only 

the total defects are collected from the diagram of Delaunay 

triangulation. The typical temporal evolution of the defect 

fraction is shown in Figure 4. From the double-logarithmic plot, 

one can see that there are two stages in the ordering process of 

cylindrical phase on the spherical surfaces. The defect fraction 

as a function of time t obeys a power law DF(t)∝t-1/3 for the 

time from 0 to 102τ, and DF(t)∝t-1/5 for the time from 102τ to 

103τ. Here, τ is the time unit in simulations. At the early stage 

of ordering process, the spherical substrate cannot affect the 

kinetic behaviour, which obeys the evaporation-condensation 

mechanism derived by Lifshitz and Slyozov in the flat space54. 

As time proceeds, the decay of defect fraction is slower than 

that of early stage, and the defect annihilation is strongly 

affected by the geometrical characteristics of the substrates. It 

should be mentioned that the sphere radius can affect the 

transition time of scaling law in the quenching simulations.  

 
Fig. 3 Mean number of excess dislocations in a scar as a function of relative 

sphere radius R/a. All the data points represent the average value of ten samples. 

The solid line is the best-fit curve in the range of large spherical radius, and the 

obtained slope is 0.435. 

  
Fig. 4 Typical time evolution of defect fraction of cylindrical phase on the 

spherical surface during the quenching simulation. The defect fraction at time t is 

defined as DF(t)=(N-V6)/N×100%, where V6 and N are the number of six-fold 

coordinated vertexes and the total number of vertexes in the diagram of Delaunay 

triangulation, respectively. Each data point is collected from ten independent runs. 

The error bars are successively skipped one point for the sake of clarity. Two 

solid lines represent the best-fit power laws in the ranges of early and intermediate 

stages of ordering process. 
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Fig. 5 Typical formation process of a scar within the highlight area. Time: (a) 

∆t/τ=0, (b) ∆t/τ=35, (c) ∆t/τ=90, and (d) ∆t/τ=155. Here, τ is time unit in 

simulations. Snapshot (a) displays the initial configuration from the quenching 

simulation, while snapshot (d) displays the configuration where a scar is formed 

within the highlight area. For the sake of clarity, only one portion of diagram of 

Delaunay triangulation is drawn in snapshots (b) and (c). The representations of 

colors, symbols and lines are the same as Figure 1. The arrows indicate the 

motion directions of vertexes.  

At the late stage of simulations, the total number of cylinder 

domains does not further change, but the scars are generated by 

the local motion of disclinations and dislocations. Figure 5 

shows the formation of a scar on the spherical surface at the late 

stage of quenching simulation. Snapshots (a) and (d) are the 

initial and final configurations of scar formation within the 

highlight area, respectively. For the sake of clarity, snapshots 

(b) and (c) display a portion of configurations. In the bottom of 

highlight area, there is a high-angle grain boundary, as shown 

in Figure 5(a). The near +1 disclinations are unstable, and start 

to locally re-arrange. A new 5-7 pair dislocation is generated 

(Figure 5(b)). Subsequently, the new dislocation glides towards 

the nearest isolated +1 disclination, and quickly forms a mini-

scar (5-7-5 grain boundary), which is illustrated in Figure 5(c). 

Eventually, the mini-scar further joins the nearest 5-7 pair 

dislocation to generate a 5-7-5-7-5 scar (Figure 5(d)). 

The formation of scars on the spherical surfaces is similar 

to the experimental and theoretical works of Bowick et al.55,56 

In their works, one colloid is added to or subtracted from initial 

structures of spherical crystals. The curvature of sphere drives 

formation of dislocations. The individual dislocation then glides 

towards the nearest isolated disclination. The dislocation 

binding with the disclination forms 5-7-5 mini-scar. As shown 

in Figures 5(b) to 5(d), the formation of scars from isolated +1 

disclinations via mini-scars is observed. The process of scar 

formation is in generally agreement with the findings of 

Bowick et al. 

 
Fig. 6 Defect structures of lamellar phase confined on the spherical substrates. (a) 

System size 2πR/d≈10.0, quasi-baseball defect structure; (b) System size 

2πR/d≈11.0, spiral defect structure; and (c) System size 2πR/d≈12.0, hedgehog 

defect structure. White (gray) color refers to large (small) value of order 

parameter field. Left column is the profiles of order parameter field on the 

spherical surfaces. The curve on the spherical surface denotes the longitude . = 0 

and the range of latitude 0 ∈ �−5/2, 5/2�. Right column is the modified Mercator 

projections of the order parameter field. The horizontal and vertical axes 

respectively refer to the T = 
.  and U = V
WF	XYZ[\YH

]
WE


V^J_ ,where . ∈ �0,25) 

denotes the longitude and 0 ∈ �−5/2, 5/2� denotes the latitude. The red circles 

and squares represent the cores of +1/2 and +1 disclinations, respectively. The 

curve in the projection represents a great circle passed through the defect cores. 

We wish to emphasize that, although the LB theory of 

block copolymers can predict the scar structures and scar 

formation, three exits a significant difference between the block 

copolymers and colloids confined on the spherical surfaces. In 

system of colloids, the shape and size of colloids are not 

perturbed by the strain field of defects, and the number of 

colloids is fixed in the particle motion. However, the polymer 

chains can stretch to change the shape of the cylinder domains 

due to the strain field introduced by the disclinations, and the 

coalescence of cylinder domains may take place in the 

evolution. These result in the fact that the number of cylinder 

domains is not a conserved variable. Therefore, for the system 

of colloids, the kinetic behaviors of defect structures may 

experience some degree of variations.  

3.2 Defect structures and ordering behaviours of lamellar phase 

In this subsection, we turn to investigate the lamellar phase of 

symmetric block copolymers confined on the spherical 

substrates. The parameters are set as ε0=-0.2 and s=0.044. The 

system size is characterized by the ratio 2πR/d, where R is the 

sphere radius and d is the averaging repeat spacing of lamellae. 

In the present work, because of the difficulty in the automated 

recognition algorithm of defect structures of lamellar 

configuration in the curved space, we only concentrate on the 

defect structures and ordering process of lamellar phase on the 

spherical surfaces.  
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DEFECT STRUCTURES OF LAMELLAR PHASE The lamellar phase 

is analogous to the smectic-A liquid crystals. Here, we use the 

type of defects of liquid crystals to characterize the defect 

structures of lamellar phase. The +1/2 and +1 disclinations are 

illustrated in Figure 6. More details about the defects of liquid 

crystals can be found in the monograph of de Gennes and 

Prost57. 

Figure 6 summarizes the obtained defect structures of 

lamellar phase on the surface of a sphere with small radius in 

the multi-cycle annealing simulations. Left column in Figure 6 

displays the profiles of order parameter field on the spherical 

surfaces. To gain a better view of the corresponding 

configuration on the spherical surface, we also plot the 

modified Mercator projections, which are illustrated in the right 

column of Figure 6. The horizontal and vertical axes 

respectively refer to the T = 
. and U = V
WF	XYZ[\YH

]
WE


V^J_,where 

. ∈ �0,25) denotes the longitude and 0 ∈ �−5/2, 5/2� denotes 

the latitude. Here, the defect structures of lamellar phase on the 

spherical substrates could be empirically classified into three 

categories33. The first class is the quasi-baseball defect 

structure, as shown in Figure 6(a). Four +1/2 disclinations 

denoted by the red circle symbols are equally spaced at 90o 

intervals on a great circle. The quasi-baseball structure contains 

more than two stripes. The strip termination can appear at the 

core of each disclinations. The second class, as illustrated in 

Figure 6(b), is called the spiral defect structure. The structure 

has the same number of disclinations as the quasi-baseball 

structure. However, the four +1/2 disclinations are not evenly 

spaced. The spiral structure contains only two continuous 

stripes. The stripes are spirals around the cores of disclinations, 

and terminate at the centre of other disclinations. The third 

class is called the hedgehog defect structure, as observed in 

Figure 6(c). All stripes are circularly arranged on the spherical 

surface, and there are two +1 disclinations at the two opposite 

positions of the sphere.  It should be noted that Chantawansri et 

al. developed a self-consistent field theory in the spherical 

geometry to investigate the defect structures of lamellar phase 

of block copolymers33. The defect structures including 

hedgehog, quasi-baseball and spiral are predicted in their 

calculations. Furthermore, by quantitatively analysing the free 

energy density of the structures, they found that the quasi-

baseball defect structure is metastable, and its energy is close to 

that of spiral defect structure. 

It is difficult at this time to make a comprehensive 

comparison between the theoretical predictions and 

experimental observations due to limited experimental studies 

on self-assembly behaviours of block copolymers confined on 

the spherical substrates. However, we can still compare the 

calculation results with some existing studies. For example, 

Higuchi et al. reported microphase-separated structures of 

polystyrene-block-polyisoprene (PS-b-PI) by 3D confinement22. 

A 3D reconstructed technique is use to identify the 

nanostructures of block copolymers. They found that the 

complex structures are only formed in the surface region of 

sphere cavity. Ring structures of PS phase and PI phase are 

arranged at the spherical surface. Another type of morphologies 

is the “helix” structures, where the PS phase twists around the 

PI phase. According to the simulation results, when the 

symmetric block copolymers are confined on the spherical 

surfaces, the lamellae are circularly arranged on the spherical 

surface (Figure 6(c)), which corresponds to the ring structure in 

experiment. As shown in Figure 6(b), two continuous lamellae 

mutually twist. This structure is very similar to the “helix” 

structure in experiment. 

 
Fig. 7 Snapshots of ordering process of lamellar phase in the quenching 

simulation. Time: (a) t/τ=300, (b) t/τ=5000, (c) t/τ=28000, and (d) t/τ=50000. Left 

column is the profiles of order parameter field on the surface of a sphere with 

2πR/d≈51.0. Right column is the modified Mercator projections of the order 

parameter field. The representations are the same as Figure 6. In panel (d), the red 

circle and square denote respectively the cores of disclination and dislocation, and 

the dashed box encloses the grain boundary.  

ORDERING BEHAVIOURS OF LAMELLAR PHASE Figure 7 shows 

the evolution of lamellar phase confined on the surface of a 

sphere with large radius after a quenching from the 

homogenous state. Due to the disordered initial configuration, 

randomly distributed lamellae are observed at the early time 

(Figure 7(a)). The poor orientation lamellae locally re-arrange 

to form the highly-aligned lamellae, and the dislocations and 

multi-poles of disclinations are annihilated by the motion of 

defects. The facts result in an increase of order degree of 

lamellar configuration at the intermediate stage (Figures 7(b) 

and 7(c)). In the quenching simulation of system with large 

sphere radius, the resulting configuration is usually 

“polycrystalline” state with randomly oriented lamellae. Figure 

7(d) illustrates the final configuration of lamellae on the surface 

of a sphere with radius 2πR/d≈51.0. The characteristic of such 
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configuration is the presence of large amount of defects, such 

as grain boundaries, dislocations and disclinations, which are 

also highlighted in Figure 7(d). Comparison between the 

configurations of different times t=2.8×104τ (Figures 7(c)) and  

t=5.0×104τ (Figure 7(d)) indicates that the evolution of order 

parameter field cannot further annihilate the defects, and the 

configuration remains practically constant beyond t=5.0×104τ in 

the quenching simulation. 

 
Fig. 8 Snapshots of defect annihilation. (a) ∆t/τ=0, the spacing between the 

disclination dipole and the grain boundary is widely separated. (b) ∆t/τ=4600, the 

dipole of disclinations evolves into a grain boundary. (c) ∆t/τ=5900, the spacing 

between the defects decreases. (d) ∆t/τ=6200, the number of defects is decreased, 

but a dislocation still exists in the bottom right. The panels are only a portion of 

the lamellar phase on the spherical surface. The cores of +1/2 disclinations, -1/2 

disclinations and dislocation are indicated by the red circles, blue circles and red 

square, respectively. The grain boundaries are enclosed by the dashed boxes. 

 
Fig. 9 Snapshots of ordering process in the annealing process. The initial state is 

the configuration of Figure 7(d). (a) Configuration after 6 cycles of annealing 

process and (b) configuration after 10 cycles of annealing process. 

A typical example of defect annihilation on the spherical 

substrate is illustrated in Figure 8. A portion of the lamellar 

configuration is extracted from the profile of order parameter 

field on the spherical surface. Panel (a) shows a disclination 

dipole with the +1/2 and -1/2 disclination cores, and a grain 

boundary evolving from a disclination dipole. The spacing 

between them is widely separated. The high strain energy of the 

disclination dipole causes the defects to evolve. The fact gives 

rise to production of a grain boundary, as observed in the left of 

panel (b). Subsequently, this defect structure climbs normal to 

the boundary, and the defect motion reduces the separation 

distance of defect pairs, which is illustrated in panel (c). The 

disclination dipole in the bottom right of panel (c) is the result 

of defect motion, which is out of the portion of the lamellar 

configuration. Finally in panel (d), the disclination dipole and 

grain boundary are annihilated by the local motion of defects to 

reduce the strain energy, and only a dislocation remains in the 

panel. 

The type of defect annihilation described above is the main 

mechanism of ordering process of lamellar phase on the 

spherical surfaces for the set of parameters chosen in this study. 

It is very similar to the defect annihilation identified by 

Harrison et al. on the flat substrates. Harrison et al. studied the 

ordering dynamics of the lamellar phase of block copolymers in 

a thin film28. The results reveal that the annihilation of 

quadrupole consisting of two disclination pairs is the dominant 

mechanism of ordering process. Like the Harrsion’s study, the 

process of defect annihilation in our simulations involves the 

disclinations and grain boundaries. As shown in Figure 8, the 

grain boundary evolves from the disclination dipole, and re-

organizes into a disclination dipole due to the defect motion. 

Thus, the ordering mechanism in our simulations is very similar 

to the experimental findings by Harrison et al. It should be 

mentioned that the annihilation of dislocations is not frequently 

observed due to the small size of system in our simulations. 

Unlike the intrinsic defects on the spherical surfaces (Figure 

6), the defects of lamellar phase on the surface of a large sphere 

can be further annihilated by the annealing simulation. Figure 9 

shows the ordering process of lamellar phase in the subsequent 

annealing process. The initial state is the configuration with 

defects of grain boundaries, dislocations and disclinations 

(Figure 7(d)). After several cycles of annealing process, the 

defects of lamellar configuration are gradually annihilated, and 

the lamellar patterns with highly-aligned order on the spherical 

surface are observed in Figure 9(a). After sufficient cycles of 

annealing process, the well-aligned lamellae dominate the 

spherical surface (Figure 9(b)). However, the four +1/2 

disclinations located on a great circle still exist on the spherical 

surface. The nearest cores of disclinations are separated by 

about 4 stripes. According to the classification of defects, the 

defect structure of this lamellar configuration is spiral.  

Although the LB model and spectral method presented here 

provide a powerful methodology for studying the defect 

structures and ordering behaviours of block copolymers on the 

spherical substrates, there are still some drawbacks for the cases 

of tackling the complex systems or geometries. Here, a few 

comments on the model and numerical method are in order. 

First of all, for the complex systems containing the block 

copolymers, there are certainly some opportunities to improve 

the model. For instance, the free energy functional used in the 

model is a simplification form of density functional theories in 

the weak segregation limit, and does not explicitly take into 

account the conformational entropy of polymer chains. To 

solve this problem, one can replace Eq. (1) with a free energy 

form of coarse-grained microscopic model, e.g., self-consistent 

mean-field theory of inhomogeneous polymers, which accounts 

for the chain connectivity and provides a unified treatment of 

polymer systems from the weak to strong segregation regions58. 

With these improvements, one can accurately calculate the free 

energy of different structures, and distinguish the metastable 

configurations of spiral and quasi-baseball defects on the 

spherical substrates. 
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Secondly, the surface topology in our present study is the 

spherical geometry, and a spherical harmonic basis is adopted 

to numerically solve the model equations. It is difficult to 

extend the numerical method used in our simulations to more 

complex geometries ranging from ellipsoids to cylinders and 

spheres with a bump. To overcome the drawback, Marenduzzo 

et al. recently proposed a modified finite element algorithm to 

discrete the Laplace-Beltrami operator and non-linear terms of 

free energy59. They applied the algorithm to tackle the problems 

of phase separation dynamics on the non-spherical surfaces. It 

is possible to extend the finite element scheme to solve the 

equations of LB model or self-consistent field theory of 

polymers, and to investigate the defect structures and dynamics 

behaviours of block copolymers on the complex geometries, 

such as the negative-curvature surfaces. 

4 Conclusions 

In summary, the LB model of block copolymers, which is 

numerically solved by the spectral method with a spherical 

harmonic basis, is used to investigate the defect structures and 

ordering dynamics of both cylindrical and lamellar phases on 

the spherical substrates. For the cylindrical phase, the isolated 

disclinations emerge in the system with small sphere radius. 

The scars are formed on the surface of a sphere with large 

radius, and the number of excess dislocations in a scar is 

linearly proportional to the sphere radius. The defect fraction of 

cylindrical phase exponentially decays, and the formation of 

scars from isolated disclinations via mini-scars was observed. 

For the lamellar phase, the defect structures of the hedgehog, 

spiral and quasi-baseball are produced on the spherical 

substrates, and the disclination annihilation is the dominant 

ordering mechanism of lamellar phase. 
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The Landau-Brazovskii theory is employed to explore defect structures and ordering 

behaviors of block copolymers confined on spherical substrates. The isolated 

disclinations and scars are formed in the cylindrical phase. The defect structures of 

hedgehog, spiral and quasi-baseball are produced in the lamellar phase. 
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