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Active matter, whose motion is driven, and glasses, whose dynamics are arrested, seem to lie at opposite ends of the spectrum in

nonequilibrium systems. In spite of this, both classes of systems exhibit a multitude of stable states that are dynamically isolated

from one another. While this defining characteristic is held in common, its origin is different in each case: for active systems, the

irreversible driving forces can produce dynamically frozen states, while glassy systems vitrify when they get kinetically trapped

on a rugged free energy landscape. In a mixture of active and glassy particles, the interplay between these two tendencies leads

to novel phenomenology. We demonstrate this with a spin glass model that we generalize to include an active component. In the

absence of a ferromagnetic bias, we find that the spin glass transition temperature depresses with the active fraction, consistent

with what has been observed for fully active glassy systems. When a bias does exist, however, a new type of transition becomes

possible: the system can be cooled out of the glassy phase. This unusual phenomenon, known as reentrance, has been observed

before in a limited number of colloidal and micellar systems, but it has not yet been observed in active glass mixtures. Using low

order perturbation theory, we study the origin of this reentrance and, based on the physical picture that results, suggest how our

predictions might be measured experimentally.

1 Introduction

Active systems, those whose particles exhibit externally

driven or self-propelled motion, challenge standard descrip-

tions of matter. While a growing amount of evidence from

both simulations and experiments suggests that the dynami-

cal structural transitions observed in active systems bear more

than just a superficial resemblance to the thermodynamic

phase transitions of systems at equilibrium,1–9 the microscop-

ically irreversible dynamics that drive these transitions can

lead to a state space comprised of many similar steady-state

configurations that are dynamically estranged from one an-

other. This sort of configurational landscape is also observed

in glasses, though there it is achieved through a different

mechanism: kinetic trapping on a corrugated free energy sur-

face.

In this paper we study a mixture of active and glassy par-

ticles to probe what transpires when these disparate mecha-

nisms compete and interact. Fig. 1 illustrates how such a

mixture can differ from a glassy system in which all the par-

ticles are active. In a fully active system, every particle will

have its average energy increased by the external driving, mak-

ing it possible, in some cases, to map the active system onto

its passive counterpart through an effective temperature (Fig.

1(a)).10–13 This suggests that so long as the driving is not too

excessive, the same thermodynamic phases will be observed,

only at lower temperatures (or higher densities), a conclusion
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that has been borne out in a number of studies.13–19

When only a fraction of the system is active, however, the

uneven distribution of energy will stabilize some configura-

tions of the system while destabilizing others (Fig. 1(b)). This

has the potential to radically alter the system’s phase diagram

and lead to new physical phenomena. Consistent with this ex-

pectation, fully active systems in which a fraction of the parti-

cles have a higher motility have been observed to exhibit novel

patterns of phase separation.20,21

The glass forming system we study in this paper is a gen-

eralization of the mean field Ising spin glass, also known as

the Sherrington-Kirkpatrick (SK) model. In the appropriate

limits, fractional activation can be approximated as fractional

annealing, and we show how this annealing modifies quan-

tities like the free energy and the magnetization. After ex-

amining how these modifications alter the familiar SK phase

diagram, we demonstrate that while some phase boundaries

on the diagram merely shift or elongate, others change more

drastically and allow transition pathways between phases that

were not possible in the fully quenched model. Most notable

among these is a reentrant spin glass transition.22 By decreas-

ing the temperature at fixed ferromagnetic bias, the spin glass

can be cooled out of the glassy phase and into a ferromag-

net before it enters another glassy phase. This behavior is

similar in character to what has been observed in some col-

loid and micellar systems23–26 as well as numerous simulated

systems,27–31 including a fully active glass-forming colloid.32

A perturbation theory argument reveals the physical origin of

this phenomenon, and we show, to leading order, that the ef-
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fect of the fractional activation on the free energy landscape is

consistent with the physical picture in Fig. 1(b). The funda-

mental mechanisms uncovered by this analysis extend beyond

the specific magnetic interactions studied here, and we con-

clude with a discussion of how our results can be generalized

to more complex systems and how such a system might be

studied experimentally.
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Fig. 1 Full versus fractional activation. (a) A schematic

representation of the free energy landscape for a glassy system. The

black dot denotes a reference low energy configuration of the

system, and the black dashed lines delineate the amount of thermal

energy (kBT ) available to the system before activation and the larger

amount of effective thermal energy (kBTe f f ) available afterwards

due to the driving of the system. Prior to activation, the system is

kinetically trapped in the indicated minimum, but activation

postpones this trapping to lower temperatures. (b) The same free

energy landscape before (solid black curve) and after (dashed red

curve) fractional activation of the system. The uneven distribution of

energy in the system stabilizes some states while destabilizing

others.

2 The Model

We start with the standard Sherrington-Kirkpatrick model,

which consists of N Ising spins interacting according to the

following Hamiltonian.

H =−∑
(i j)

Ji jSiS j −h∑
i

Si (1)

In the above, the Ising spin variables Si can only take values

of +1 or −1, h is an external magnetic field, and the first sum

is over all N(N − 1)/2 distinct pairs of spins. The coupling

constants Ji j are chosen from a Gaussian distribution.

P(Ji j) =

(

N

2πJ2

)1/2

exp

[−N(Ji j − J0/N)2

2J2

]

(2)

The usual motivation for these random couplings is that the

strength and sign of the exchange interaction, Ji j, varies as

a function of the distance between each pair of spins. In a

disordered material, these distances will be stochastic, so, for

a sufficiently large system, one can approximately select the

coupling constants for these interactions from the distribution

in equation (2). For a given sample, the Ji j do not change and

thus are considered “quenched” interactions, but when the free

energy of the whole system is computed, it must be averaged

over all realizations of the coupling constants.

We generalize this model to allow for a fixed fraction, µ , of

the spins to become active. We imagine there is an external

driving force coupled to these spins, as well as a frictive force

that keeps the system in a steady state. The nature of this

steady state should not depend upon the microscopic details

of the driving, so we shall only account for its average effect

of partially annealing the quenched interactions of the active

spins. In the limit of strong activation, the exchange couplings

of these spins will fluctuate on time scales that are short com-

pared to the spin relaxation times of the passive spins, so we

may assume in this case that the annealing is complete and ap-

proximate the nonequilibrium steady state of this fractionally

active system by the thermal equilibrium of a fractionally an-

nealed system. We term the resulting model the “fractionally

annealed Sherrington-Kirkpatrick” (FASK) model. A picto-

rial representation of this model is shown in Fig. 2(a). Fig.

2(b) emphasizes the basic similarities between our model and

a more realistic fractionally active glass former, discussed at

the end of the paper.

To construct the partition function for this system, we first

divide the pairs of spins into two non-intersecting sets: a set

with annealed interactions A ≡ {(i j) | i = 1, ...,µN, j > i}
and a set with quenched interactions Q ≡ {(i j) | i = µN +
1, ...,N, j > i}, where we have numbered the active spins with

labels 1 through µN, and the passive spins with labels µN +1

through N. This division allows us to rewrite the first sum on

the right of equation (1) as

∑
(i j)

Ji jSiS j = ∑
(i j)∈A

Ji jSiS j + ∑
(i j)∈Q

Ji jSiS j

Note that the first sum on the right, from the definition of the

set A , includes not only the interactions of the active spins

with each other but also their interactions with the passive

spins. A similar factorization of the product over (i j) allows
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(a)

(b)

Fig. 2 Depiction of the model. (a) A simple pictorial representation

of the FASK model, with the quenched, inactive spins drawn as blue

circles and the active spins drawn as red circles. The arrows inside

each circle indicate the particle’s spin state, and the motion of the

active spins is depicted as motion blur. (b) A pictorial representation

of a potential experimental system that would behave as a

fractionally active glass former. The blue spheres represent silica

beads, the half red, half white spheres represent silica beads that are

half coated in platinum, and the light blue background represents

hydrogen peroxide solvent. Arrows indicate the direction of

self-propulsion for the active colloid particles.

us to write down the desired partition function.

Zµ = trS

{

∫

∏
(i j)∈A

(

N1/2dJi j

(2πJ2)1/2

)

exp

[

∑
(i j)∈A

(

βJi jSiS j −
N(Ji j − J0/N)2

2J2

)

]

×exp

[

∑
(i j)∈Q

βJi jSiS j +βh∑
i

Si

]}

The trace in this expression is over the 2N distinct spin con-

figurations of the system. After performing the Gaussian inte-

grals over the annealed interactions, this partition function can

be reduced to the following form.

Zµ = exp

[

(

βJ

2

)2

µ(2−µ)N

]

× trS exp

[

β ∑
(i j)∈Q

(Ji j − J0/N)SiS j

+ β (J0/N)∑
(i j)

SiS j +βh∑
i

Si

]

It is important to note that although we are treating this active

system as if it were at thermal equilibrium, for µ > 0 we are

still driving it far from the equilibrium of the fully quenched

model.

The Helmholtz free energy per spin, f , in the FASK model,

averaged over the quenched interactions, can be computed us-

ing the usual replica trick.33,34 Since we will primarily be con-

cerned with phase boundaries, it is sufficient to evaluate the

free energy within the assumption of replica symmetry. The

derivation proceeds similarly to that of the standard SK model

free energy,34,35 so only the final result will be shown here.

−β f =

(

βJ

2

)2
[

(1−qµ)
2 +2µqµ

]

− βJ0

2
M2

+
1−µ

(2π)1/2

∫ ∞

−∞
dze−

1
2 z2

ln [2coshη(z)]

+µ ln [2coshβ (J0M+h)] (3)

In the above, η(z) = β
(

Jq
1/2
µ z+ J0M+h

)

and the order pa-

rameters qµ and M are defined through the following self-

consistency relations.

qµ =
1−µ

(2π)1/2

∫ ∞

−∞
dze−

1
2 z2

tanh2 η(z)

M =
1−µ

(2π)1/2

∫ ∞

−∞
dze−

1
2 z2

tanhη(z)

+µ tanhβ (J0M+h) (4)

In the extreme cases of µ = 0 and µ = 1, equation (3) reduces,

as required, to the familiar results of the fully quenched SK

model and the fully annealed mean field Ising model, respec-

tively.

Differentiating equation (4) with respect to the field h and

taking the limit h → 0 leads to an expression for the zero field

magnetic susceptibility.

χM =
1−q

kBT − J0(1−q)
(5)
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This expression is identical to that obtained for the usual SK

model, except that now the overlap order parameter q is de-

fined as follows.

q = qµ +µ tanh2 β (J0M)

These results are all for the replica symmetric solution of

the free energy. The validity of this solution is determined by

the following stability condition, which is analogous to that

found by de Almeida and Thouless36 for the SK model.

(βJ)2(1−µ)

(2π)1/2

∫ ∞

−∞
dze−

1
2 z2

sech4 η(z)< 1 (6)

A detailed derivation of equations (3)–(6) may be found else-

where.37

3 Results

For convenience, we will use reduced units for the remainder

of the paper where temperature is scaled by kB/J and all ener-

gies are given in units of J.

In the T -h plane, there is a single phase transition occurring

at h = 0 between a paramagnetic phase (q = 0, M = 0) and

a spin glass phase (q 6= 0, M = 0). The spin glass transition

temperature, Tf , can be computed as a function of the active

fraction µ by finding the temperature at which equation (6)

becomes an equality for qµ , J0, and h all set to zero. The

result is plotted in Fig. 3(a).

Tf =
√

1−µ

In their treatment of a fully active spin glass system, Berthier

and Kurchan13 found a roughly linear relationship between

the magnitude of their driving force and the depression of

their glass transition temperature, and though our result be-

comes highly nonlinear as µ approaches unity, for µ less than

roughly 0.5, the data is linear (see Fig. 3(a)). For small to

moderate amounts of activation, the shift of the paramagnetic

to spin glass transition temperature is qualitatively similar re-

gardless of whether the whole system gets partially annealed

or one fraction of it gets fully annealed.

We can go further and use the stability condition of equation

(6) to plot the entire Almeida-Thouless (AT) stability line for

different values of µ . The results are shown in Fig. 3(b).

While the entire curve is shifted to lower temperatures with

increasing active fraction, the amount each point gets shifted

decreases with increasing field due to all the curves converging

towards infinite field as T → 0. If one scales the temperature

by a factor of one over Tf , it is clear that each of these curves

will cross the temperature axis at T = 1, but, interestingly, if

the external field is also scaled by that same factor, the curves

for different µ all collapse onto the fully quenched curve (see

the inset of Fig. 3(b)).
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Fig. 3 Phase diagram in the T −h plane. (a) The spin glass

transition temperature Tf plotted versus the active fraction µ . The

black line represents a best fit for the curve up to µ = 0.5. The slope

of this line is roughly 0.58, a little larger than what one would get

from a linear Taylor expansion about µ = 0. (b) The

Almeida-Thouless stability line in the T -h plane, plotted for active

fractions µ = 0 (red), µ = 0.25 (green), µ = 0.50 (blue), and

µ = 0.75 (purple). The inset shows that these curves all collapse

onto the µ = 0 master curve when the temperature and field are both

scaled by a factor of (1−µ)−1/2.

The FASK model phase diagram is much richer in the J0-

T plane, because in addition to a paramagnetic phase and a

spin glass phase with M = 0, there is also a ferromagnetic

phase and a spin glass phase with M 6= 0, often referred to as a

mixed phase.38 The boundary between the region of the phase

diagram with M = 0 and that with M 6= 0 can be determined by

finding where the susceptibility diverges. Using equation (5),

one finds that the Curie temperature Tc is given as a function

of J0 by the following relation.

Tc = J0(1−qµ(Tc))

Note that when qµ = 0 (in the paramagnetic phase), the above

simplifies to Tc = J0. The remaining phase boundaries can

be found by using the stability condition of equation (6). An

example of the phase diagram that results from these consid-

erations is shown in Fig. 4(a), for µ = 0.50. The replica sym-

metric phase diagram of the fully quenched model is plotted

in light gray for comparison. The phase diagram for the fully

annealed model is not shown in the figure, but it is just the line

T = J0, for all J0, dividing parameter space into paramagnetic

and ferromagnetic regions. The lack of a spin glass phase in

this case is a consequence of our assumption of strong driving.

A non-zero active fraction causes the paramagnetic/spin

glass transition line to shift to a lower temperature T =
√

1−µ
and terminate at a lower value of J0, also equal to

√
1−µ . The

paramagnetic/ferromagnetic transition line is still the curve

T = J0, but now it terminates at the point (
√

1−µ,
√

1−µ)
instead of (1,1). The paramagnetic phase consequently occu-

pies a trapezoidal region of the phase diagram for all µ < 1,

whose area grows linearly with µ . Specifically, for an increase

in active fraction equal to ∆µ , this area changes by (1/2)∆µ .
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(a)

(b)

PM

FM

FSG

SG

Reentrant

Fig. 4 Phase diagram in the J0-T plane. (a) The FASK model phase

diagram plotted in the J0-T plane for µ = 0.5. The dashed gray lines

are the phase curves for the fully quenched SK model (µ = 0). The

labels PM, FM, SG, and FSG refer to the paramagnetic,

ferromagnetic, spin glass, and ferromagnetic spin glass phases

respectively. The shaded red region gives the range of J0 for which

reentrance is possible. (b) Plots of the FASK model phase diagram

for µ = 0.25 (green), µ = 0.50 (blue), and µ = 0.75 (purple). In

each phase diagram, the horizontal line is given by Tf =
√

1−µ

(see Fig. 3(a)). As µ approaches one, the curve separating the two

spin glass phases approaches the line T = J0, and the region where

reentrance can occur increases in size.

The impact of a non-zero active fraction on the low tem-

perature region of the phase diagram is more dramatic. For

µ > 0, the spin glass/ferromagnetic spin glass phase bound-

ary bends in the opposite direction, connecting the points

(
√

1−µ,
√

1−µ) and (0,0). This means that at sufficiently

low temperatures, the system will become partially ordered

for all J0 > 0. Though the replica symmetric solution is not

valid in this region of the phase diagram, the phase boundary

it predicts does approach the line T = J0 as µ → 1, as physi-

cally required, so it is likely to be at least qualitatively correct.

The AT line separating the ferromagnetic and ferromagnetic

spin glass phases also changes shape for µ > 0, bending in on

itself to create a reentrant region where it is possible, just by

lowering the temperature, for the system to transition from a

spin glass to a ferromagnet back to a spin glass.

In most systems with a reentrant glass transition, repul-

sive interactions dominate the higher temperature glass phase

while attractive interactions dominate in the lower tempera-

ture glass.23–26 If, as in a lattice gas,39 one views antiferro-

magnetism and ferromagnetism as repulsion and attraction,

respectively, then the same basic phenomenology holds in the

FASK model. The initial spin glass formation is driven by an-

tiferromagnetic interactions that compete with the ferromag-

netic bias to cause frustration, while the reentrant spin glass is

characterized by some degree of ferromagnetic order, a result

of the more prevalent interactions winning out at low temper-

ature. The range of J0 over which reentrance can occur is

shown as a shaded region in Fig. 4(a), and, in Fig. 4(b), a

side-by-side plot of the FASK model phase diagram for sev-

eral values of µ reveals that this range grows with increasing

active fraction.

We can better understand the origin of reentrance in this

model by performing a perturbative analysis of the magne-

tization, similar to that used to derive the Born approxima-

tion in quantum mechanics. Equation (4) can be rewritten as

M = (1− µ)Mq + µMa, where Mq is the expression for the

magnetization of a fully quenched system (µ = 0) and Ma

is the corresponding expression for a fully annealed system

(µ = 1). The mobile and immobile spins both contribute to

the total magnetization proportionally to their fractional com-

position of the system, though these contributions are coupled

by their mutual dependence on the same total magnetization

M. If we were to ignore this coupling, a zeroth order approxi-

mation to the total magnetization would be

M(J0,T )≈ (1−µ)M∗
q(J0,T )+µM∗

a(J0,T ), (7)

where M∗
q and M∗

a are the magnetizations that a pure quenched

and pure annealed system would have, respectively, at the

given values of J0 and T .

Inserting the zeroth order solution back into the right hand

side of equation (4) for h = 0, one obtains the following result.

M ≈ 1−µ

(2π)1/2

∫ ∞

−∞
dze−

1
2 z2

tanh

[

q
1/2
µ z+ J0M∗

q +µhe f f

T

]

+µ tanh

[

J0M∗
a − (1−µ)he f f

T

]

(8)

In the above, we have defined an effective magnetic field as

follows.

he f f ≡ J0(M
∗
a −M∗

q) (9)

The interpretation of this result is as follows. Reentrance is

only observed when J0 < 1 and T < J0, in which case M∗
q = 0

and M∗
a 6= 0. The inactive component of the system thus feels,

to leading order, an effective magnetic field from the active

component that can cause it to align out of the spin glass phase

into a ferromagnet. The fact that he f f is proportional to µ
in the first term on the right hand side of equation (8) also

explains why increasing the active fraction broadens the range

of J0 over which reentrance occurs.
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If the system is fully annealed, we can recast the Hamilto-

nian using the Weiss form of mean field theory.40

H =−J0

N

∑
i=1

M∗
a Si

In the above, we have neglected the term that comes from in-

tegrating over the annealed degrees of freedom, since at fixed

T and µ it is just a constant. Expanding about this solution by

replacing M∗
a with the zeroth order approximation in equation

(7), we get the following approximate result.

H ≈−∑
(i j)

Ji jSiS j −µhe f f

N

∑
i=1

Si (10)

In the above, he f f is the same as in equation (9), and all cou-

pling constants are quenched. Equation (10) suggests that for

µ close to unity, the system looks, to leading order, like a

fully quenched system in the presence of an effective mag-

netic field. This field selectively stabilizes configurations of

the system that have a net alignment with it and destabilizes

those that align against it, consistent with the physical picture

depicted in Fig. 1(b). The difference M∗
a −M∗

q is largest for

T < J0 and J0 < 1, which is precisely where the phase dia-

gram of the FASK model differs most strikingly from that of

the fully quenched system.

4 Discussion

In the mean field Ising spin glass, activating a fraction of the

system gives rise to new physical phenomena–most notably

a reentrant transition from the spin glass phase to the ferro-

magnetic phase. This behavior has its origin in the fact that

the active component of the system will start to magnetize at

low temperatures, generating a local magnetic field that can,

for a certain range of J0, overpower the frustrated interactions

of the passive spins and induce a net magnetization in the en-

tire system. A study of a random-bond Ising model with only

nearest neighbor interactions has found qualitatively similar

behavior,31 suggesting that the reentrant ferromagnetism ob-

served in our model is not just an anomalous result of a mean

field treatment.

A reentrant glass transition may also be a feature of non-

magnetic active glass mixtures. For example, one can imagine

that in a fractionally active glass-forming liquid or colloid, in-

terparticle collisions could play the role of the effective field

in our model, with density replacing J0 on the abscissa of the

phase diagram. The active particles in such a system would be

harder to vitrify than the passive particles, and this would lead

to a glass phase with pockets of active particles in a liquid-

like state. For a limited range of densities, these pockets could

potentially transfer enough of their driven energy to the sur-

rounding passive particles to break them out of their cages and

cause reentrance to the liquid phase. This effect would be en-

hanced if an aligning mechanism were present, in which case

the active particles would tend to exhibit cooperative motion.

Recent simulations of a hard sphere active glass mixture,

performed by Ni et al.,41 corroborate this interpretation. They

found that for very small active fractions, the collisions of the

active particles were capable of triggering the structural rear-

rangements necessary for crystallization. This driven crystal-

lization ceases for active fractions greater than 0.15, at which

point the system becomes a nonequilibrium fluid near the crit-

ical packing fraction of the fully passive system. Simulations

at higher packing fractions would thus be necessary to look

for reentrance, but these findings at least demonstrate that col-

lisions between active and passive particles can lead to novel

phase behavior.

While it is easy enough in theoretical treatments to leave

the task of selectively activating a fraction of the system to

some Maxwellian mephisto, designing a practical experimen-

tal method for accomplishing this task is more difficult. Re-

cent experimental work has shown that silica particles, a well-

known colloidal glass former,42,43 half coated in platinum un-

dergo self-propelled motion in hydrogen peroxide.44 A dense

colloidal suspension of silica particles in which only a frac-

tion were so coated might therefore be viable as a fractionally

active glass forming system (see Fig. 2(b)).

Simple spin glass models have led to many insights into

the nature of the glassy state, and these concepts and tools

have had applications in fields as distinct as protein folding

and neurosicence. In the nascent field of active glass formers,

spin glass models will likely continue to play a key role.
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Adding a driven, active component to a model spin glass system leads to
dramatic shifts in the phase diagram and the emergence of a reentrant glass
transition.
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