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We present coarse-grained simulations of the self-assembly of 3-armed ABC star polyphiles. In systems of star polyphiles with

two arms of equal length the simulations corroborate and expand previous findings from related miktoarm star terpolymer systems

on the formation of patterns containing columnar domains whose sections are 2D planar tilings. However, the systematic variation

of face topologies as the length of the third (unequal) arm is varied differs from earlier findings regarding the compositional

dependence. We explore 2D 3-colored foams to establish the optimal patterns based on interfacial energy alone. A generic

construction algorithm is described that accounts for all observed 2D tiling patterns and suggests other patterns likely to be found

beyond the range of the simulations reported here. Patterns resulting from this algorithm are relaxed using Surface Evolver

calculations to form 2D foams with minimal interfacial length as a function of composition. This allows us to estimate the

interfacial enthalpic contributions to the free energy of related star molecular assemblies assuming strong segregation. We

compare the resulting phase sequence with a number of theoretical results from particle-based simulations and field theory,

allowing us to tease out relative enthalpic and entropic contributions as a function of the chain lengths making up the star

molecules. Our results indicate that a richer polymorphism is to be expected in systems not dominated by chain entropy. Further,

analysis of corresponding planar tiling patterns suggests that related two-periodic columnar structures are unlikely hypothetical

phases in 4-arm star polyphile melts in the absence of sufficient arm configurational freedom for minor domains to form lens-

shaped di-gons, which require higher molecular weight polymeric arms. Finally, we discuss the possibility of forming a complex

tiling pattern that is a quasi-crystalline approximant for 3-arm star polyphiles with unequal arm lengths.

1 Introduction

Considerable attention has recently been devoted to the ex-

ploration of micro-phase separated structures in melts of star-

shaped ABC miktoarm copolymers with a number of re-

ports of synthesis, experiments and theory1–24. So far fo-

cus has been principally directed towards segregated cylin-

drical mesostructural self-assemblies, whose orthogonal sec-

tions are two-dimensional (2D) 3-colored tiling patterns of

the plane. More recently an exploration of the self-assembly

of lower molecular weight analogues of ABC miktoarm

copolymers, termed ’star polyphiles’, has been initiated25–28.

Star polyphiles are oligomers rather than polymers, cur-

rent examples contain hydrophilic, oleophilic and fluorophilic

oligomeric chains attached to a common central junction.

These molecules resemble amphiphiles, in that they can self-

assemble in solution, with an additional fluorocarbon moiety

that is designed to be immiscible with the other two moieties.

† Electronic Supplementary Information (ESI) available: [Additional simula-

tion details, example Surface Evolver batch script, barycentric embeddings of

tiling patterns]. See DOI: 10.1039/b000000x/
a Niels Bohr Institute, University of Copenhagen, Denmark; E-mail:

jjkk@nbi.dk
b Applied Mathematics, Research School of Physical Sciences, Australian Na-

tional University, Canberra, Australia

As with miktoarm star terpolymers, this extra arm induces

novel topological constraints on the hydrophilic, oleophilic

and fluorophilic micro-domains. Scattering experiments and

polarised optical microscopy confirm the possibility of self-

assembly of three-arm star polyphiles into a number of dis-

tinct liquid crystalline mesophases. A relevant example in

this context is the formation of a [12.6.4] tiling pattern27, so

far the only experimental report on liquid crystalline struc-

ture formation in these novel molecular systems. However,

star polyphiles could very likely mimic the behavior of mik-

toarm copolymers in the same way that amphiphiles and di-

block copolymers display a number of common mesophases

despite differences in size and underlying segregation mecha-

nisms. The simulations presented below indicates that this is

indeed the case.

Previous simulations by Dotera and colleagues have estab-

lished the possibility of a number of mesostructures whose

cross-sections are various planar tilings, including several pat-

terns already observed in actual miktoarm copolymer sys-

tems. These include most Archimedean tilings13,14,29 as well

as quasi-crystalline patterns30. Their investigations used a lat-

tice Monte Carlo (MC) approach. Huang et al. and Kirkens-

gaard have implemented dissipative particle dynamics (DPD)

simulations to explore miktoarm copolymer self-assembly as
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This potential has attractive depth ε and an interaction range

set by the distance scale parameter wc. As described previ-

ously values of wc around 1.2 - 1.6 σ is found to be optimal

for these simulations25. All simulations presented were run

with equivalent attractive interactions between all like beads

and σ = 1, ε = 1. They were performed as constant volume

(NVT ensemble) simulations using a Langevin thermostat at

temperature kBT = 1.5ε and with time steps δ t = 0.01τ and a

friction constant Γ = τ−1 (in units of Lennard-Jones time τ).

A cubic box of side length L with period boundary conditions

constrained the ensemble. All simulations were started from

a random gas configuration and run until an equilibrium state

was reached, which is usually easily determined visually.

Additional details of the different simulations are given in the

Supplementary Information. Simulation snapsnots were all

made with the VMD package38.

3 Self-assembly of 1 : 1 : x polyphiles

We analyzed first the effect of varying the length of one

(green) arm while fixing the other (red and blue) arm lengths

to be equal. We quantify the composition by the parameter x

defined as the ratio of C to A beads, eg. x = 2 means that the

green C arm is twice as long as the red A and blue B arms.

Various bead numbers were used in the coarse-graining, to

allow variation of the relative lengths. A number of distinct

mesophases were detected, depending on x. These are sum-

marized visually in Figure 2.

Lamellar phase

When one of the arms is significantly shorter than the other

two (i.e. x is small) the system self-assembles to a lamellar

phase. This is not surprising, since in the limit of vanishing x,

the star polyphile reverts to a conventional amphiphile, with

equivalent hydrophobic and hydrophilic domain volumes. We

find that the minority component is distributed uniformly over

the whole interface, consistent with the copolymer simula-

tions15; however we do not find spherical domains, as reported

elsewhere13. This polyphile mesostructure is that expected

from self-consistent field theory (SCFT)17 as also remarked

by others15. However, while this result is attributed to the

segregation level (strong vs. weak) in the case of copolymeric

molecules, our smaller molecules aggregate to give a uniform

distribution of the extremely short green chains for entropic

reasons alone.

Bicontinuous Double Diamond phase

For slightly longer green chains, the system adopts a novel

multicontinuous morphology, previously unreported. The two

larger red and blue components form a pair of equivalent in-

terwoven labyrinths whose channels lie on diamond networks.

The minority component and junction region form a sponge-

like pattern closely resembling the triply-periodic D minimal

surface, separating the two labyrinths. The resulting pattern is

a cubic mesophase with space group symmetry Fd3m.

For still larger green arms, a variety of columnar phases

result, discussed below. The star polyphiles thus effect a tran-

sition from a lamellar phase to columnar phases via a bicon-

tinuous phase, as expected from geometric considerations of

amphiphilic systems if the amphiphile has an effective taper

in cross-sectional area from the hydrophobic-hydrophilic in-

terface to the free hydrophobic chain ends39. For our 3-arm

star polyphiles, the reasonably small green arms (x ∼ 0.2), ef-

fectively mix with both the red and blue domains, forming

swollen regions between the red and blue domains, thereby

mimicking the molecular shape of a tapered amphiphilic bi-

layer (with red and blue monolayers, glued by the green inter-

mediate domain).

Harlequin pattern

Still further green arm growth leads to a novel intermediate

mesophase, where the green minority component uniformly

lines the red-blue interfaces forming flat walls, as well as

forming small cylindrical domains. The intermediate cylindri-

cal phase resembles a ’harlequin’ pattern, of alternating blue

and red columns whose sections are distorted octagons. Ad-

jacent like-coloured red and blue domains are separated by

quadrilateral prismatic green domains, adjacent domains of

distinct colours by green walls. This harlequin phase is only

found for x = 0.25 but is stable over long simulation times. It

has not been reported previously.

Tiling patterns

For x > 0.33 the smaller green component forms distinct pris-

matic domains, rather than walls between the two bulkier red

and blue domains detected at lower x. Assemblies of the 3-

arm star polyphiles thus segregate into 3 distinct phases, that

meet along three-phase ”triple-lines”. For still larger green

arms, a suite of columnar mesophases are formed, whose 2D

sections are planar tiling patterns. We describe these patterns

by a 2D Schläfli symbol [k1.k2.k3], describing the polygons

(of size k1,k2 and k3) common to each vertex (see caption to

Figure 2).

When the relative volume fraction of the green arms, x ∼

0.33− 0.5, a rectangular [8.8.4] pattern is formed. The bal-

anced case, for which all three arms are roughly equal in size,
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Fig. 2 Phase diagram of model star polyphiles when varying the length of one arm while keeping the others fixed at equal (unit) length. The

parameter x is the fractional length of the green domain in all snapshots. The different tiling patterns are named by their Schläfli symbol13 that

assigns a polygonal tiling pattern a set of numbers [k1.k2.....kl ] indicating that a vertex in the tiling is surrounded by a k1-gon, a k2-gon, . . . in

cyclic order. Tilings with more than one topologically distinct vertex are denoted [k1.k2.k3;k4.k5.k6]. The black dots along the x-axis indicates

the precise location of the discrete bead number variation. See Table S1 for details.

(x ∼ 1) gives the Platonic hexagonal honeycomb, whose sec-

tion is the [6.6.6] tiling, resulting in a hexagonal columnar

mesophase. If the green arms occupies slightly more vol-

ume than the equal red and blue arms, i.e. x ∼ 1.75 a colum-

nar phase with square, hexagonal and octagonal columns was

found. The associated 2D tiling has topology [8.6.4;8.6.6],

with two topologically distinct vertices. For x∼ 2−3, the sim-

ulations are generally more difficult to equilibrate, in agree-

ment with Dotera et al. However, a columnar phase whose 2D

section is the [8.6.4;10.6.4] tiling has been observed. As the

relative volume of the green arm grows larger still, four fur-

ther columnar phases are found. We describe these patterns

by their 2D sections: the [10.6.4;10.6.6] tiling, the [12.6.4]

Archimedean tiling, the [14.6.4;14.4.4] tiling and a cylindrical

phase denoted [CYL]. There are elements of 16- and 18-gons

in the three [CYL] patterns but no conclusive results have been

produced, partly because the equilibration of these rather large

molecules is computationally very demanding in the present

setup. However, as discussed below we have good reason to

believe that [16.6.4;16.4.4] and/or [18.6.4;18.4.4] tilings could

be found in these systems. Among the observed tiling pat-

terns, those containing [8.6.4;10.6.4] and [14.6.4;14.4.4] pla-

nar sections are novel compared to the polymer simulations

mentioned above13,15,21.

Hierarchical lamellae

Lastly, at x = 6 a hierarchical lamellar phase forms in prefer-

ence to a columnar topology. Here the green majority compo-

nent forms a lamellar phase, separated by red and blue do-

mains which themselves build distinct lamellar phases, or-

thogonal to the green lamellae. (In our simulation the neigh-

boring red-blue domains on either side of the green domain

is rotated 45 degrees relative to each other which is why the

central red-blue region looks disordered in the figure.) A sim-

ilar structure was found previously13, both with and without

relative rotations of the minority domains.

4 Generation of potential patterns consistent

with the 3-arm star molecular architecture

The formation of prismatic patterns based on a limited sub-

set of possible two-dimensional tilings of the plane in 1 : 1 : x

ABC star systems can be understood by taking note of the fol-

lowing requirements imposed by these star molecules. First,

all tilings must contain only vertices of degree-three, consis-

tent with the molecules’ three-arm topology. Second, in order

to allow a 3-coloured pattern, all tiles must be bounded by

polygons with an even number of sides13. To see why, con-

sider the dual 2D graph, whose vertices, edges and faces are

4 | 1–15
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formed by the faces, edges and vertices respectively of the

original 2D tiling. We require each vertex to be coloured red,

green or blue, and all vertices sharing an edge to be coloured

differently. Consider the wheel of vertices, all connected to

a central (green, say) vertex by spoke-like edges (fig. 3); ev-

idently, these wheel vertices must be alternately coloured red

and blue. To avoid like-coloured adjacent vertices, the wheel

must contain an even number of vertices, so the number of

spokes radiating from the (arbitrary) vertex (equal to the de-

gree of the vertex) must be even. Since the vertex degree of

the dual is equal to the polygonal size of the original graph,

all relevant 2D tilings must contain even-sided polygons only.

Third, since the molecules have composition red:blue:green

Fig. 3 Wheel construction (bold black lines and coloured vertices)

of dual graph to 3-coloured tiling (faint coloured tiling in

background). All the vertices of the dual graph linked to a common

central (green) hub vertex must alternate between red and blue,

hence the number of spokes radiating from the hub must be even.

= 1:1:x, the areas of two of the three polygons (gauged by

their in-circle or out-circle radii) around each vertex should be

roughly equal.

For simplicity, assume for now that all vertices are topolog-

ically equivalent, so the tiling has Schläfli symbol [nR.nG.nB].
Euler’s relation for degree-3 tilings constrains the polygons

nR, nG and nB about each vertex as follows:

V −E +F = 2 (5)

For each vertex then, the tiling contains 3
2

edges (since it is

of degree-three), and 1
ni

faces for each of the three (ni-sided)

polygons incident to that vertex. i.e.:

1−
E

V
+

F

V
= 1−

3

2
+

1

nR

+
1

nG

+
1

nB

=
2

V
= 0, (6)

since the number of vertices is unbounded (V =∞). Therefore,

nRnGnB = 2(nGnB +nRnB +nGnR) (7)

Suppose first that the smallest (e.g. green) polygons are di-

gons – lenses. In that case, no planar tessellations are possible

under the constraint of eq. 7 since it has no pair of positive

integer solutions for nR and nB when nG = 2. However, we

can form an infinite variety of topologically admissible pat-

terns containing green digons, red polygons of arbitrary size

and multiply-connected blue domains as follows. First, form

’necklaces’ of di-gons, then scatter these in the plane so that

they do not intersect, e.g. fig. 4. The resulting 3D patterns are

disordered arrays of red cylinders, decorated by smaller green

cylinders, embedded in a continuum of blue.

Fig. 4 Hypothetical pattern for 3-arm star molecule assemblies

containing green di-gonal ’lenses’.

While topologically acceptable, these disordered patterns

are unlikely to be found in ABC star systems containing

monodisperse molecules, since the latter prefer roughly equiv-

alent domains for each arm in all molecules. Further, these

patterns have very different red and blue domains; a situation

that is inconsistent with the equal red and blue arms. How-

ever, both domains can be made equivalent if the necklaces are

opened to form infinite strings, giving 3D patterns of red and

blue lamellae, decorated by green cylinders. Further, ordered

placement of the green digons leads to equivalent red and blue

domain shapes (fig. 6(a)). Since the green domains are very

different to the red and blue, these patterns would be expected

to form only for small x values in a 1 : 1 : x star molecule.

Our MD simulations have produced ’smeared’ lamellar pat-

terns, with the green domains mixed uniformly with the red

and blue domains, rather than these demixed patterns. That

result is likely to depend only on the relative strength of at-

tractive interactions within the green beads, compared with

repulsive interactions between green and other bead colours.

Further, our coarse-grained simulations assign only one or two

beads to the green arms, so arm folding to allow di-gon for-

mation is unlikely. Indeed, this ’decorated lamellar’ pattern

has been reported in miktoarm copolymer Monte Carlo simu-

lations13.

Consider next the possibility of 4-sided green domains. A

number of planar tessellations are possible, corresponding to

positive (and even) integer solutions to eq. 7. If we demand

that nR = nB, the [8.8.4] tiling results, observed in our sim-

ulations for x = 1
2
. If the green domains are hexagons, both

red and blue domains are also hexagonal (the [6.6.6] tiling),

also observed for x = 1. If the green domains are polygons

whose order exceeds 6, corresponding to x ≥ 1, eq. 7 demands

that the blue and red domains can only be combinations of 2-

, 4- and 6-gons, since the average polygonal size must be 6.

In contrast to larger miktoarm copolymers (discussed above),

2-gons are less likely to form in polyphiles than larger poly-

gons. We therefore consider mixtures of 4- and 6-gons only. A
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large number of tilings are possible, which we construct with

a generic algorithm, that yields – among others – all of the

relevant tilings found in the simulations.

5 Spoke algorithm

To generate suitable tiling topologies, we decorate 2D hexag-

onal arrays of discs with spokes along the three equivalent

directions between closest neighbors. The simplest patterns

have equivalent decorations, denoted [s1,s2,s3], for example

the [1,1,1] case gives the [6.6.6] tiling, shown in Fig. 5 along

with two other examples. Also, in Fig. 6 two lamellar pat-

terns are shown corresponding to the [1,0,0] and [2,0,0] deco-

rations. We use this spoke algorithm to generate tiling topolo-

gies that obey the constraints for possible tilings of three-arm

star assemblies deduced above.

Fig. 5 A hexagonal array of discs, with nearest neighbours along

three distinct axes (dashed lines). Generic 2D patterns are formed by

linking discs along these three axes with single-, double-, . . . spokes

(top row), leading to different three-colored tilings (bottom row).

Full list of patterns generated are shown in Table 1.

An additional suite of topologically inhomogeneous pat-

terns are generated if we relax the requirement that all discs

be equally decorated by spokes. Thus, for example, two

distinct spoke decoration in alternating columns of discs –

that we denote by the symbol [2,2,1;2,1,1] – results in the

[8.6.4;10.6.4] tiling, observed in one simulation and illus-

trated in Figure 8(n)).

(a) (b)

Fig. 6 Lamellar patterns formed by decorating the discs of fig. 5

with spoke arrangements, cf. Table 1. The patterns correspond to

(left) decorated lamellae ([1,0,0]), (right) alternating lamellae

pattern ([2,0,0]).

6 Relative energies of various patterns

The spoke algorithm can be used to generate an unlimited

number of tilings. In order to decide the patterns likely to ap-

pear in condensed materials made up of star molecules, some

ranking of the relative energies of various patterns is there-

fore needed. A simple working hypothesis that we test here

is that the 2D tiling patterns found in simulations are those

with smaller interfacial (suitably normalised) lengths between

distinct polygonal domains. That length is proportional to the

surface tension acting to miminise the area of domain walls in

the columnar domains formed by extruding the tilings along a

third perpendicular axis26.

We therefore compare the relative stability of distinct

topologies patterns subject only to an interfacial energy con-

tribution for each pattern, that scales with λuc
Auc

, where λuc is

the total length of the edges in a given pattern per unit cell and

Auc is the unit cell area. We can reduce the interfacial energy

(dependent on the area of the domain walls) to an energy per

length of the 2D cross-section of the prismatic patterns by not-

ing that the area scales as λb, where b is the thickness of a slice

of the pattern, equal to the molecule centre-to-centre spac-

ing between adjacent molecules lining the three-fold branch

lines (normal to the 2D tiling patterns, located at the vertices

of the tilings). Each star-polyphile molecule of composition

1 : 1 : x occupies a volume (2+x)b and there are N molecules

per unit cell, where N denotes the number of vertices of the

tiling within a unit cell. The energy per molecule is then

Emol ∼
λucb

N

and λuc is the total edge-length of the tiling within a unit

cell, scaled to contain red and blue domains of unit volume.

The volume of the unit cell is (2+ x)Nb, giving a 2D cross-

sectional area of

Auc = N(2+ x),
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equal to the area of the unit cell of the 2D tiling pattern. The

tiling edge length depends on the unit cell area Auc, and varies

as

λuc = λ0(
Auc

A0
)

1/2

where λ0 and A0 are units of length and area respectively.

Therefore

λuc ∼ λ0
(N(2+ x))1/2

A
1/2

0

giving

Emol ∼
λ0(2+ x)1/2b

(NA0)1/2
, (8)

or, per unit volume,

Ev ∼
λ0

(NA0(2+ x))1/2
, (9)

We have argued in a related analysis26 that the relative inter-

facial energies of tricontinuous patterns for ’balanced’ 3-arm

star polyphiles (with composition 1 : 1 : 1) scale as:

Es ∼ ε−1/2 (10)

where the parameter ε := V Λ

Σ2 is a dimensionless measure of

the interfacial geometry and V , Λ and Σ denote the volume,

triple-line length and interfacial area per unit cell. That scaling

can be expressed in terms of the structural parameters for the

prismatic patterns that result from 2D tilings considered here

as follows. The triple-line length, Λ = Nb, the cell volume

V = Ab and the area Σ = λb, so that

ε =
AN

λ 2
(11)

and eq. 9 can be rewritten:

Ev ∼ ((2+ x)ε)−1/2 (12)

reconciling eqs. 9,10.

Equation 12 can be used to estimate the relative interfacial

energies per molecule for the suite of 2D tilings listed in Ta-

ble 1, via the geometric parameters ε and x. If we assume

that the free energy of these star molecular assemblies depends

only on the surface tension, we can deduce optimal geometries

for each tiling pattern as a function of x by relaxing the various

pattern topologies to minimize the value of λ . It is well known

- though only recently proven40 - that the relaxed geometry

for the [6.6.6] pattern and x = 1 is the hexagonal honeycomb,

the stable configuration of a two-dimensional froth with equal

bubbles. This pattern is identical to the barycentric embedding

of [6.6.6] (drawn in Fig. S2). This ”balanced” case (x = 1)

is, to the best of our knowledge, the only one for which the

optimal pattern, with minimal scaled edge length separating

bubbles (our ε) is known. Extensions of that to three-coloured

patterns with composition 1 : 1 : x is a simple generalization of

the problem to unequal cells. As famously recognized by Lord

Kelvin, when exploring the three-dimensional analogue of our

x = 1 problem, ”the problem is solved in foam”41, due to the

surface tension of soap films. Our simpler problem, whose so-

lutions are prisms, are solved in dry two-dimensional bubble

rafts, where the bubble areas are tuned to 1 : 1 : x fractions

about each vertex.

A convenient realization of various topologies realized by

the spoke algorithm are the barycentric embeddings, (where

each vertex lies at the barycenter of its neighbouring vertices,

see Figure S2). We can build those embeddings using the Sys-

tre software of Delgado Friedrichs42,43. These embeddings

realize without exception the most symmetric possible geom-

etry for a given topology43, whose symmetry is characterised

by the 2D orbifold, notated using Conway’s notation44. Force

balance between edges of 2D dry foams demands that edges

coincident to a vertex invariably subtend angles of 2π
3

with

each other at equilibrium. Among the patterns generated by

our spoke algorithm, only the [6.6.6] case fulfils this condi-

tion without some geometric distortion of the straight-edge

barycentric embeddings. Generic patterns adopt this optimal

geometry by curving edges to achieve the required angles.

7 Surface Evolver calculations

Given the complexity of Hales’ proof of the honeycomb con-

jecture, we have resorted to numerical software to determine

relaxed geometries with minimal edge lengths for the spoke

patterns as a function of the composition x. We use the freely

available Surface Evolver software45, which is ideally suited

to estimate optimal, relaxed geometries for films (and in our

case one-dimensional ”threads”) under surface tension.

First, we build tiling patterns whose topologies are those

formed by our spoke algorithm. As shown in Figure 7 each

pattern is optimized starting from an arbitrary initial state ful-

filling the relevant topological requirement, given by the com-

plement of vertices and edges per translational unit cell in their

barycentric counterparts. This allows us to relax the patterns

using the string-model implemented in Surface Evolver (ver-

sion 2.70a). In particular, all patterns are relaxed in a (flat)

torus, enforcing translational symmetry via periodic boundary

conditions. The dimensions of the torus, and the related 2D

unit cell are varied to determine the global minima of edge

lengths for a given tiling pattern and x. Two parameters deter-

mine those dimensions: the ratio between the two lattice vec-

tors of the unit cell, χ , and the angle between those vectors, θ .

By thoroughly sweeping ranges of θ and χ values and min-

imizing the emerging patterns, we can estimate the optimal

unit cell for a given x as well as the associated interfacial en-
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and from equation 15, one can obtain that:

lim
x→∞

Ev,[(12z+6).6.4;(12z+6).4.4] =
2.5

x
(18)

Eq. 21 and 22 are the upper bounds for the high x limit de-

rived from the unrelaxed barycentric patterns, see Figure 10.

We can sharpen the bound in Eq. 16 by relaxing the lamellar

patterns in Surface Evolver and then calculating the energies

per volume. The results are also plotted in Figure 11, and fit

the function:

lim
x→∞

Ev,[LAM2],Relaxed =
2.76

x
(19)

Since the resulting values for the relaxed lamellar patterns

are higher than the upper bound for the [(12z+6).6.4;(12z+
6).4.4] patterns, we conclude that the lamellar pattern is dis-

favoured compared with prismatic morphologies based on

[(12z+ 6).6.4;(12z+ 6).4.4] tilings of the type on the basis

of interfacial energy alone. As stated above, the same argu-

ments apply to the [12z+ 6.6.4;12z+ 6.4.4] sequence which

has the same limiting behavior.

Clearly, additional contributions to the free energy of these

assemblies are relevant to molecular simulations. We explore

differences between patterns expected on the basis of interfa-

cial energy alone and those found in various simulations in

more detail next.

8 Comparison of 2D foams with simulated

morphologies

It is fruitful to collate phase sequences found from simulations

of 1 : 1 : x 3-arm star assemblies in addition to those reported in

this paper, and to compare all of those data with the expected

phase sequence determined on the basis of interfacial energy

alone, reported above. We collect those results in Figure 12,

where distinct studies occupy separate rows in the diagram;

the studies are (from bottom to top): Surface Evolver calcu-

lations reported here, MD simulations from the present work,

Monte Carlo simulations13, DPD simulations15,21 and SCFT

calculations18–20. The SCFT results occupy two rows, corre-

sponding to two distinct segregation levels: with χN = 60 and

χN = 30 data19,20 in the lower and upper rows respectively.

Comparison of the phase sequence displayed in the bot-

tom row with those in higher rows reveals the importance

of interfacial energy and related three-coloured foam-like pat-

terns in explaining most – though not all – tiling patterns re-

ported to date. [8.8.4], [6.6.6], [8.6.4;8.6.6], [10.6.4;10.6.6]

and [12.6.4] patterns are realized in various simulations, in the

same sequence of x values as that found from Surface Evolver

calculations. However, their absolute location on the compo-

sition (x) axis is at increasingly lesser x values than predicted

on the basis of interfacial energy alone as one progresses from

lower to higher rows. We view this as an effect of chain con-

figurational entropy as discussed in the following.

Note first that the relative contributions of chain configura-

tional entropy to the free energy of the assemblies likely in-

creases monotonically from bottom to top in the figure. The

bottom row, deduced on the basis of interfacial energy alone,

ignores all entropic effects. The row immediately above en-

codes patterns inferred from the MD simulations reported

here, that involve short chains, subject to relatively hard po-

tentials. The next higher row describes DPD and MC data

resulting from simulated terpolymer assemblies with longer

chains, interacting via softer potential. The topmost two rows

describe simulated phase sequences for the SCFT calculations

that model polymers as infinitely long chains. In broad terms

then, the lower sequences are relevant to small molecules,

such as three-arm star polyphiles while upper sequences are

germane to high molecular weight miktoarm copolymers. Dif-

ferences in those sequences therefore reflect the increasing

contributions of chain configurational entropy.

The effect of chain entropy on the stability of various

morphologies is difficult to quantify, however entropically-

favourable patterns are likely to be qualitatively coupled to

their geometry as follows. The presence of more than one

distinct domain geometry for a single A, B or C moiety of

the ABC molecules – found for example in locally inhomo-

geneous tilings with more than one distinct vertex – is likely

disfavoured on entropic grounds. Thus, a very simple measure

of the configurational entropy is the degree of packing homo-

geneity, given by the number of symmetrically distinct ver-

tices (N) in the barycentric embedding of the coloured tiling,

since that is also the number of different domain shapes the

ABC molecules must adopt to form the tiling. A single do-

main shape results only when s1 = s2 = s3, which form trigo-

nal or hexagonal patterns. The number of distinct vertices is

listed in Table 1.

While this measure is appealing in its simplicity, it can not

be the full story. Indeed, some of the tiling patterns con-

tain few topologically distinct vertices, but nevertheless dis-

play large differences in polygon types for a single colour,

also likely to be disfavoured on entropic grounds. For ex-

ample, among all the patterns considered here, [8.6.4;8.8.6]
and [8.4.4;8.8.8] exhibit the largest inhomogeneities in red

and blue domain shapes (and area fractions, corresponding to

local compositions), due to the presence of both squares and

octagons for these colors. In contrast, the [6.6.6] pattern has no

such inhomogeneities. (For this reason we have not analysed

in detail related patterns resulting from the spoke algorithm.

For example, the [8.6.4;8.8.4;12.6.4;12.8.4] tiling considered

previously18 (spoke pattern [2,2,2;0,2,2]) but later dismissed

as an equilibrium structure, even when lifting the 1 : 1 : x con-

straint20, is unlikely to be an entropically favoured structure).
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Fig. 12 Comparison of phase diagrams derived from Surface Evolver calculations and MD simulations (this work) and previous calculations

using SCFT 19,20, MC13 and DPD 15,21. The SCFT results are divided into two parts at high x representing different segregation levels,

χN = 30 in upper half, χN = 60 in lower half, see text for details. In general the importance of chain entropy increases from bottom to top.

The observation that the [8.6.4;8.6.6] tiling pattern is ob-

served in preference to the [6.6.6] pattern in an increasing x-

range as we move upwards in Figure 12 is also consistent with

the notion of increasing importance of chain packing entropy

from bottom to top. Here an additional effect of chain en-

tropy is likely at work: the entropic cost of anisotropic domain

shapes (which can only be realised at the cost of reduced chain

entropy). Though the [6.6.6] tiling is topologically homoge-

nous, with a single vertex type, it is less favoured in terms of

chain packing frustration46, particularly for the majority do-

main as x > 1. Allowing the majority domain to relax into

a octagonal shape (more round) becomes increasingly impor-

tant for longer chains, favouring the [8.6.4;8.6.6] tiling pat-

tern over the [6.6.6] pattern; a very different situation from

that found for ’2-coloured’ interfacial energies, such as soap

froths in air, where the hexagonal honeycomb is the most sta-

ble form.

Figure 12 reveals an increasing compositional range for the

striped lamellae from bottom to top. Recall that in the limit

of large x, this hierarchical lamellar morphology [L+C] is

never favoured on the basis of interfacial energy alone, since

higher order tiling patterns have less interfacial area per vol-

ume. Clearly, the appearance of this pattern is a result of

entropic stabilization, as discussed briefly by others19. The

ever-broadening compositional window for the [L+C] pattern,

appearing at lower and lower x as we move up rows in Fig-

ure 12 is therefore very likely to be due to the increasing im-

portance of chain stretching entropy. This phase is the most

striking violation of the phase sequence expected on the basis

of interfacial energy alone. For smaller values of x, differ-

ences between the sequence predicted from foam-like energy

alone, and simulated patterns are less dramatic, pointing to

the importance of interfacial energy for these molecular com-

positions. Nevertheless, some discrepancies between the foam

model and observed phase sequences are seen.

We note that among the tilings formed in our MD simula-

tions, two are not formed in the presence of interfacial energy

alone, namely the [8.6.4;8.6.6] and [8.6.4;10.6.4] patterns.

However, as shown in the inset of Figure 9(top), the inter-

facial energies per volume for these patterns are very close to

the most favoured patterns, viz. the [6.6.6] and [10.6.4;10.6.6]

patterns, at x = 1.22, in contrast to all the other patterns. It is

therefore reasonable to infer that precisely the occurrence of

these two tiling patterns in the simulations is due in large part

(though not in toto) to their low interfacial energies. Alter-

natively, additional mesophases which are entropically disfa-

vored, but favored on interfacial energetic grounds, are likely

to be further stabilized by, for example, adding (monomer)

solvent to pure polyphile mixtures, so that the solvent is pref-

erentially partitioned to entropically inaccessible locations for

the polyphile chains. In fact, our results here indicates that

a richer polymorphic behavior is expected in polyphilic star

self-assemblies compared to miktoarm melts, since the chain

stretching entropy clearly destabilizes several candidate struc-

tures which are optimal in terms of interfacial energy.

9 Self-assembly of 1 : x : y polyphiles: a

[3.3.4.3.4] tiling

Similar simulations on more general 3-arm polyphile compo-

sitions reveal a wide spectrum of chain compositions beyond

those with 1 : 1 : x fractions. We can increase the complex-

ity of the tiling patterns further by allowing all of the 3 arms

to have different lengths, so that the polyphile has schematic

composition 1 : x : y. Evidently, the resulting phase space is far

larger than that of the 1 : 1 : x family discussed above, and our

findings remain scattered. We mention here just one result,
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that has interesting implications discussed below.

In Figure 13 we see the result from simulating a star with

2,4 and 6 beads respectively, i.e. an arm length ratio of 1:2:3.

The resulting pattern contains 4-, 6- and 8-gons containing the

lesser arms and has symbol [10.6.4;10.8.4]. Alternatively, it

can be described by a superimposed [3.3.4.3.4] tiling, where

vertices describe centres of the 10-gons only. The same pat-

tern was found to be stable with the same composition ra-

tio in SCFT20. This tiling is commonly known as the σ

phase in the Frank-Kasper complex crystalline alloy family,

and is a crystalline approximant to the 2D dodecagonal quasi-

crystal47. The presence of this crystalline approximant lends

some weight to the possibility that these 1 : x : y polyphiles

may also form quasi-crystals, by e.g. a slight modification

of the x,y values. Indeed, 2D decagonal quasi-crystals have

been detected in miktoarm copolymeric systems, with the ad-

dition of homopolymer to the miktoarm copolymer blend47.

The possibility of forming a polyphilic quasicrystal in experi-

mental systems is therefore real, and may be achieved by grad-

ual tuning of the x,y parameters. This can be done in actual

polyphilic solutions by selective solvent swelling.

Fig. 13 A [10.6.4;10.8.4] tiling with symmetry 4∗2 from a

simulation of a 1:2:3 arm length ratio star ((2,4,6) beads). The tiling

can also be described by a [3.3.4.3.4] tiling pattern superimposed.

10 Generalising to four-arm polyphile pris-

matic patterns

The topological analysis above admits extension to star-

shaped polyphilic assemblies with four mutually immiscible

arms. In that case, degree-four tilings are required and the 4-

colouring requirement constrains the polygons to contain an

even number of sides, as for the 3-coloured patterns. Euler’s

relation for degree-4 tilings implies that the average polygo-

nal size must be equal to four; indeed, the simplest pattern,

accessible to a 4-arm polyphile with composition 1 : 1 : 1 : 1

is the [4.4.4.4] (square) planar tessellation. However, in three

dimensions the equilibrium morphology is actually a cellular

packing, conjectured to be the Kelvin foam48. Nevertheless,

since the average polygonal size is 4, prismatic patterns whose

sections are 2D planar tessellations with larger polygons than

4-gons necessarily also contain 2-gons. Our simulations of

3-arm star polyphiles suggest that the presence of these lens-

shaped di-gonal domains is unlikely for reasons discussed

above. We may therefore conclude that 4-arm polyphilic sys-

tems do not display the wealth of 2D tiling patterns found in

the 3-arm case; at least for the interaction parameters (and

coarse-grained approximations) invoked to date. It is possi-

ble, however, that tuning of the simulation details may allow

the formation of lens-shaped domains. In those cases, a wealth

of 2D patterns again appear, that are formed from the 3-arm

2D tilings by insertion of di-gons as follows. We replace the

spoke decorations used to form the 2D tilings in the 3-arm

system by curved ’twinned’ spokes, as illustrated in fig. 14.

Fig. 14 A decorated [1,1,1] pattern, with pairs of curved ’twin’

spokes along each direction, that meet at either hub, forming 2-sided

lens-shaped regions. The discs contain 6 degree-four vertices, and

the resulting pattern has topology [6.6.6.2].

Every 3-arm tiling formed via the algorithm described

above can be morphed into a pattern that is consistent with

a 4-arm star polyphile assembly by this twinning operation,

forming lenses of the 4th arm in place of edges of the origi-

nal 3-arm tiling. A simple example is the degree-4 [8.2.8.4]
pattern shown in fig. 15.

11 Conclusions

This paper has been motivated in part by the question of dif-

ferences in phase behavior between longer chain terpolymers,

and short-chained 3-arm star polyphiles. Our simulations –

most apposite to shorter-chained star molecules, such as star

polyphiles, suggest a rich polymorphism is possible beyond

the single [12.6.4] hexagonal mesophase already found exper-

imentally27. In principle, additional mesophases are likely

to form by adding solvents that selectively dissolve in just

one of the three chain moieties. We have detected a num-

ber of novel 2D and 3D crystalline mesophases, one of which

hints at the presence of quasi-crystallinity in these systems,

a phenomenon that has already been observed in miktoarm

copolymeric melts. Most strikingly, we find that the range

of mesophases is richer in 3-arm star molecular assemblies

whose free energy is not dominated by chain entropy, such

1–15 | 13

Page 14 of 52Soft Matter



Fig. 15 A planar [8.2.8.4] tessellation with symmetry ∗2222 that is

consistent with the molecular architecture of 4-arm star polyphiles.

The pattern is formed from the [8.8.4] pattern of fig. 6(b) by

insertion of (yellow) lenses (di-gons) in place of the spokes used to

create the (3-arm) [8.8.4] pattern. All planar tessellations that are

possible sections of 4-arm star polyphile assemblies contain these

lenses, apart from the [4.4.4.4] tiling, which is the 4-arm analogue of

the [6.6.6] tiling found in 3-arm polyphiles with composition

1 : 1 : 1.

as oligomeric star polyphiles. This finding is in line with the

analogous situation for 2-arm systems, where amphiphilic as-

semblies often display more than the single bicontinuous mor-

phology typically found in diblock copolymer melts, namely

the Gyroid. In amphiphiles it is not uncommon to find both the

P, D and G in a single system as a function of water content49.

In broad terms, we conclude that the complex prismatic phases

related to 2D tiling patterns of the plane form in response to

the interfacial energy of star assemblies, regardless of their

molecular weights. Detailed exploration of the relative inter-

facial energies of a variety of patterns generated by a spoke

algorithm introduced here offers a useful route to topologi-

cally feasible patterns for 3- and 4-arm star polyphiles, as well

as higher molecular weight analogues, such as miktoarm star

copolymers.
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