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We study the pattern formation dynamics related to the displacement of a viscous wetting fluid by a less viscous nonwetting fluid
in a lifting Hele-Shaw cell. A perturbative weakly nonlinear analysis of the problem is presented. We focus on examining how
wetting effects influence the morphology of the emerging interfacial patterns at the early nonlinear regime. Our analytical results
indicate that wettability has a significant impact on the resulting nonlinear patterns. It restrains finger length variability while
inducing the development of structures presenting short, blunt penetrating fingers of the nonwetting fluid, alternated by short,
sharp fingers of the wetting fluid. The basic mode-coupling mechanisms leading to such behaviors are discussed.

1 Introduction

It is known that wetting effects are of relevance in the devel-
opment of pattern formation structures that arise as a result of
hydrodynamic instabilities1–4. In particular, this is true for the
Saffman-Taylor instability5, that occurs when a less viscous
fluid displaces a more viscous one in the confined geometry
of a Hele-Shaw cell6–8. The fact is that, depending on the na-
ture of the fluids involved they can wet the walls of the Hele-
Shaw cell plates, leaving behind a film of finite thickness. In
a seminal paper9 Park and Homsy have shown that the con-
sideration of such wetting effects leads to nonnegligible cor-
rections in the pressure difference at the fluid-fluid interface.
A number of subsequent theoretical and experimental inves-
tigations in rectangular Hele-Shaw cells10–14 have indicated
that the inclusion of wetting effects helps to provide a bet-
ter match between theory and experiments. This has also been
the case for injection-driven flows in the radial Hele-Shaw cell
setup15–17. Recently, it has also been proposed that the tradi-
tional “fanlike” patterns obtained in radial flows18–22 which
present fingers that bifurcate and compete, would be substi-
tuted by stubby fingers of similar lengths, when wetting ef-
fects are of significance23.

Actually, there is another Hele-Shaw cell-type problem in
which the influence of wetting is quite important. It is referred
to as the rotating Hele-Shaw setup24. In this situation, the in-
terface instability is not driven by the viscosity contrast be-
tween the fluids, but rather by the difference in their densities.
In this version of the problem the inner fluid has a larger den-
sity, and the Hele-Shaw cell is allowed to rotate about an axis
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perpendicular to the plates. Within this context, an interplay
between surface tension and centrifugal forces leads to the for-
mation of a variety of pattern morphologies25–29 that are very
different from the ones detected in viscosity-driven flows. A
particularly nice study has been performed in Ref.30, which
considered the relevance of wetting in fingering patterns pro-
duced in a rotating Hele-Shaw cell. Their fully nonlinear nu-
merical simulations and experiments have demonstrated that
wetting effects have a strong impact on the resulting interfa-
cial morphologies. An interface stabilization due to dynamic
wetting has also been disclosed.

A third system involving a variant of the usual injection-
driven Saffman-Taylor instability that has been extensively
studied over the past fifteen years or so is the lifting Hele-
Shaw cell problem31. In contrast to the injection-driven and
centrifugally-induced circumstances discussed above, in this
modified arrangement the upper cell plate can be lifted, in such
a way the cell gap-width is time-dependent. As the plates sep-
arate, the pressure becomes lower in the inner more viscous
fluid, and the outer fluid moves in. Then, the fluid-fluid inter-
face rapidly deforms, and peculiar treelike patterns arise32–38.
Here the most prominent pattern-forming mechanism is finger
competition among the fingers of the invading less viscous
fluid. Moreover, these invading fingers are typically wider
than the outward pointing fingers of the more viscous fluid.

In spite of the relatively large number of investigations
of the lifting Hele-Shaw problem (see31–38 and references
therein), the influence of wetting films on the dynamics of fin-
ger competition, and also on the shape of both inward and out-
ward pointing fingers has been overlooked. Just a few groups
investigated the role of fluid wettability on the lifting Hele-
Shaw problem36,39,40: the early linear dynamic stage prob-
lem has been theoretically investigated in Refs.36,39, while
Ref.40 concentrated on analyzing experimentally the inter-
play of wetting and other substrate properties at advance time
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stages of pattern formation. The linear stability analyses per-
formed in36,39 focused on showing that wetting effects are im-
portant to allow better theoretical predictions about the num-
ber of fingers at the onset of the instability. Therefore, the
role played by wetting film effects on intrinsically nonlinear
phenomena related to finger competition events, and on the
morphology of individual fingers could not be assessed. Mo-
tivated by this fact, in this work we carry out a perturbative
weakly nonlinear analysis of the lifting Hele-Shaw problem
which offers useful analytical insights into the influence of the
wetting film on the emerging fingering structures.

Before we proceed, it should be noted that while in Ref.23

we have investigated the influence of wetting thin films on the
patterns generated for injection-driven flows in constant-gap
Hele-Shaw cells, here we focus on examining the role of wet-
tability on the patterned structures which arise during lifting
flows in a variable-gap Hele-Shaw setup. It is well known
that the resulting nonlinear pattern morphologies in the usual
injection-driven Hele-Shaw case are very different from the
ones obtained in the lifting Hele-Shaw problem. For instance,
phenomena like finger tip-splitting are very frequent in the
injection-driven problem, but are completely absent in the lift-
ing case32–38. Moreover, in contrast to the injection-driven
case (where pressure is Laplacian) the pressure field in the
lifting flow situation is non-Laplacian31. In addition, the own
nonlinear nature of both problems does not allow one the make
a priori predictions about possible similarities in the response
of both systems to wetting film effects. Finally, to the best
of our knowledge, a study about the role of wetting in lifting
Hele-Shaw systems is still lacking. All these facts motivated
us to perform our current study.

The rest of this paper is organized as follows. In Sec. 2
we use a perturbative weakly nonlinear approach originally
proposed in Refs.20,41 to obtain a mode-coupling differential
equation that describes the time evolution of the interfacial
perturbation amplitudes up to second-order. We concentrate
our attention on the incorporation of wetting film effects into
the lifting Hele-Shaw problem, and examine how wettabil-
ity influences the intrinsically nonlinear mechanisms of the
pattern-forming dynamics. Contrary to purely linear stability
analyses, which mainly provide information about the stabil-
ity on the fluid-fluid interface, our weakly nonlinear approach
permits analytical assess to the morphology of the patterns
at the early nonlinear regime. The role played by the wet-
ting thin film in regulating these important nonlinear aspects
is discussed in Sec. 3. Finally, Sec. 4 presents our concluding
remarks.

η
θ1

z

σ

η2

R(t)

R0

b(t)

ζ

Fig. 1 Representative sketch of the lifting flow in a radial
Hele-Shaw cell.

2 Governing equations and weakly nonlinear
calculation

We consider a Hele-Shaw cell of a time-dependent gap width
b(t) containing a more viscous fluid of viscosity η1, sur-
rounded by a less viscous fluid of viscosity η2 [Fig. 1]. The
fluids are Newtonian and immiscible, and the surface tension
between them is denoted by σ . The upper cell plate can be
lifted along the direction perpendicular to the plates (z-axis),
and the lower plate is held fixed. The initial fluid-fluid inter-
face is circular, having radius R0 = R(t = 0) and initial gap
thickness b0 = b(t = 0). By using volume conservation the
time dependent radius of the unperturbed interface is given by

R(t) = R0

√
b0

b(t)
. (1)

As in Refs.9–17 our weakly nonlinear theory is developed with
the assumption that fluid 1 wets the walls of the Hele-Shaw
cell, leaving behind a thin wetting film. Fluid 2 is nonwetting.

Since during the lifting process a less viscous fluid pushes
a more viscous one, the Saffman-Taylor instability takes
place, and the fluid-fluid interface deforms. The perturbed
fluid-fluid interface is described as R(θ , t) = R(t)+ ζ (θ , t),
where θ represents the azimuthal angle. Here, ζ (θ , t) =
∑+∞

n=−∞ ζn(t)exp(inθ) is the net interface perturbation with
Fourier amplitudes ζn(t), and discrete wave numbers n. Our
perturbative approach keeps terms up to the second-order in
ζ . In the Fourier expansion of ζ we include the n = 0
mode to maintain the area of the perturbed shape indepen-
dent of the perturbation ζ . Mass conservation imposes that
the zeroth mode is written in terms of the other modes as
ζ0 =−(1/2R) ∑

n ̸=0
|ζn(t)|2.

In the lifting Hele-Shaw cell setup the flow is governed by
two equations: a gap-averaged Darcy-law5–8

v j =−b2(t)
12η j

∇p j, (2)
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and the gap-averaged incompressibility condition31

∇ ·v j =− ḃ(t)
b(t)

. (3)

In Eq. (2) v j = v j(r,θ) and p j = p j(r,θ) denote the veloc-
ity and pressure in fluids j = 1,2, respectively. Moreover, in
Eq. (3) ḃ(t) = db(t)/dt is the upper plate velocity along the
z-axis. As in most experimental and theoretical studies in lift-
ing Hele-Shaw flows32–38 we consider a constant lifting speed
ḃ(t) = ḃ =V , so that b(t) = b = b0 +Vt.

At this point we briefly comment on the validity of the gap-
averaged Darcy’s law description for the lifting Hele-Shaw
problem. Despite the intrinsic three-dimensional nature of
the problem, one should consider that the upper plate is not
being lifted fast enough to provoke any inertial effects, nor
lifted high enough to alter the system being of large aspect
ratio31,39. The gap width b(t) is always far smaller than the
radius of the unperturbed fluid-fluid interface R(t), so that
R(t)/b(t) ≫ 1. As a matter of fact, this is precisely the
flow regime investigated by laboratory experiments in lift-
ing Hele-Shaw cells32–38. The reliability of the gap-averaged
effectively-two-dimensional approach is further substantiated
by the similarity between the numerical simulations employ-
ing Darcy’s law equations with the corresponding interfacial
patterns obtained experimentally31,37,38. In these studies it has
been found that the Darcy’s law model satisfactorily accounts
for the initial, intermediate, and fully nonlinear evolution of
the observed fingering patterns.

From the irrotational nature of the flow (∇×v j = 0) one can
define a velocity potential ϕ j (v j = −∇ϕ j). It can be readily
verified that ϕ j obeys the Poisson equation ∇2ϕ j = ḃ/b, having
the solution

ϕ j(r,θ) =
ḃr2

4b
+ ∑

n̸=0
ϕ jn(t)

( r
R

)(−1)( j+1)|n|
einθ . (4)

To find a relation between ϕ jn(t) and ζn(t), we apply the kine-
matic boundary condition

∂R

∂ t
=

(
1
r2

∂R

∂θ
∂ϕ j

∂θ

)
−
(

∂ϕ j

∂ r

)
, (5)

which states that the normal components of each fluid’s veloc-
ity are continuous at the interface6–8,18.

The contributions coming from surface tension and wetting
effects are included in a generalized Young-Laplace pressure
boundary condition, which expresses the pressure jump across
the fluid-fluid interface9–17,23,30

p1 − p2 =
π
4

σκ +
2σ
b

[
cosθc − J

(η1vn

σ

)γ
]
. (6)

The first term on the right-hand side (RHS) of Eq. (6) rep-
resents the contribution related to surface tension and the in-
terfacial curvature κ in the plane of the Hele-Shaw cell. The

factor π/4 is purely a capillary static effect, coming from the
z-average of the mean interfacial curvature. The second term
on the RHS of Eq. (6) accounts for the contribution of the con-
stant curvature associated with the interface profile in the di-
rection perpendicular to the Hele-Shaw cell plates, set by the
static contact angle θc measured between the plates and the
curved meniscus. Recall that we consider a nonwetting fluid
(fluid 2) displacing a wetting one (fluid 1), so that θc = π .
Finally, the third term on the RHS of (6) considers the ef-
fect of a thin wetting film trailing behind the displaced fluid,
where vn is the normal component of the interface velocity,
J = 3.8, and γ = 2/3. This third term is crucial to this pa-
per, and it has been originally proposed by a prior theoretical
work by Park and Homsy9. They were the first to conduct
such a theoretical analysis by combining Bretherton’s lubri-
cation approximation42 with the Saffman-Taylor equations6,
via double asymptotic expansion of the ratio of film thick-
ness to transverse characteristic length and capillary number
raised to 1/3. Following Park and Homsy’s analysis existing
experimental and theoretical results were reconciled, thereby
elucidating the important role of wetting film in the nonlinear
finger formation process.

It should be noticed that in the lifting Hele-Shaw flow all
parts of the fluid-fluid front recede. This fact is clearly il-
lustrated in Fig. 4 of Ref.38, and in Figs. 2, 3, and 8 in
Ref.37. This situation is very different to what happens in ro-
tating Hele-Shaw flows30, where some parts of the front re-
cede while others advance. In this last case the advancing por-
tions explore dry regions of the plates, and the contact angle
should be treated as a dynamic variable.

Following canonical steps performed in previous weakly
nonlinear studies for Hele-Shaw flows20,41, first we define
Fourier expansions for the velocity potentials. Then, we ex-
press ϕ j in terms of the perturbation amplitudes ζn by consid-
ering condition (5). Substituting these relations, and the pres-
sure jump condition Eq. (6) into Darcy’s law Eq. (2), always
keeping terms up to second-order in ζ , and Fourier transform-
ing, we find (after some algebra) the equation of motion for
the perturbation amplitudes (for n ̸= 0)

ζ̇n = λ (n)ζn

+ ∑
n′ ̸=0

{
F(n,n′)ζn′ζn−n′ +G(n,n′)ζ̇n′ζn−n′

+ H(n)

[
ζ̇n′ ζ̇n−n′ +

ḃ
2b

ζn′ ζ̇n−n′

]}
, (7)

1–9 | 3

Page 3 of 9 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



where

λ (n) =
1

1+w(n)

[
− ḃ

2b
(1+A|n|)

− πσb2(1−A)
96η1R3 |n|(n2 −1)

]
, (8)

is the linear growth rate, A = (η2 −η1)/(η2 +η1) is the vis-
cosity contrast, and

w(n) = γ|n|J (1−A)
12

b
R

(
2bσ
ḃη1R

)1−γ
(9)

is related to the wetting film contribution.
The second-order mode-coupling terms are given by

F(n,n′) =
1

1+w(n)

{
|n|
R

[
Aḃ
2b

[
1
2
− sgn(nn′)

]

− πb2σ(1−A)
96η1R3

[
1− n′

2
(3n′+n)

]
− ḃ

2b
1
|n|

]
,

+
ḃ
2b

w(n)
2R

n′(n−n′)

}
, (10)

G(n,n′) =
1

1+w(n)

{
1
R

[
A|n|[1− sgn(nn′)]−1

]
− w(n)(γ −1)

2R

}
, (11)

and

H(n) =
w(n)

1+w(n)
b

ḃR
(γ −1), (12)

where the sgn function equals ±1 according to the sign of its
argument.

The expressions (7)-(12) represent the mode-coupling equa-
tions of the viscous fingering problem in a lifting Hele-Shaw
cell, taking into consideration the contributions from wetting
film effects. As commented in Sec. 1, this set of coupled non-
linear equations opens up the possibility of investigating ana-
lytically how the morphology of the evolving fluid-fluid inter-
face responds to the action of thin film wettability. It should be
noted that the linear growth rate [Eqs. (8) and (9)] was origi-
nally obtained in Ref.39. Note that the situation in which wet-
ting effects are neglected can be readily obtained by setting
γ = 0. In this case we do recover the linear growth rate de-
rived in the literature in the absence of wetting effects31,36.

3 Wetting film effects - Weakly nonlinear be-
havior

This section demonstrates the usefulness of our weakly non-
linear analysis in elucidating key aspects related to finger
shape behavior and finger competition under the action of wet-
ting film effects. We use our mode-coupling approach to in-
vestigate the interface evolution at second-order. At this point,
it is convenient to rewrite the net perturbation ζ in terms of co-
sine and sine modes

ζ (θ , t) = ζ0 +
∞

∑
n=1

[an(t)cos(nθ)+bn(t)sin(nθ)] , (13)

where an = ζn + ζ−n and bn = i(ζn −ζ−n) are real-valued.
Without loss of generality we may choose the phase of the
fundamental mode so that an > 0 and bn = 0.

In order to maintain our theoretical analysis as close as pos-
sible to real life lifting Hele-Shaw experimental studies, we
emphasize that the values we take for our parameters through-
out the rest of this work are consistent with typical physical
quantities used in such experiments31–38. For an exhaustive
listing of all typical values of the relevant physical quantities
we refer the reader to table I presented in Ref.38. There one
can verify that the lifting Hele-Shaw experiments use highly
viscous fluids [with viscosities as high as 101.7 Pa s], and very
small initial gap spacings [as small as 1µm]. Here we consider
the growth of fingers in the most unstable situation (A →−1),
as air [η2 ≈ 0] displaces a very viscous silicone oil [η1 ≈ 100
Pa s]. The initial thickness of the cell b0= 50 µm and the sur-
face tension between the fluids σ= 0.02 N/m. Moreover, the
lifting velocity V =2.5 µm. The initial radius R0 = 3.0×10−3

m and the evolution of the interfaces we consider run up to
time t = 19 s.

In a popular review article, Homsy6–8 has identified the
main growth mechanisms of the viscous fingering process
in injection-driven Hele-Shaw flows as being spreading,
splitting, and competition. Some time ago Miranda and
Widom20,41 have shown that these basic mechanisms could
be consistently mimicked by considering the weakly nonlinear
coupling of just a few participating modes: finger competition
events (or, finger length variability) could be described by the
interaction of a fundamental mode n and its sub-harmonic n/2,
while the shape of the fingers (finger widening and narrowing)
could be given by the interplay between the fundamental mode
n, and its first-harmonic 2n. Here we use this simple picture in
order to get some insight into the morphology and early non-
linear features of the patterns generated in a lifting Hele-Shaw
cell, when wetting effects are neglected (γ = 0, see Fig. 2), and
when wetting effects are of relevance (γ = 2/3, see Fig. 3).

Figures 2 and 3 are plotted by considering the simultaneous
coupling of the Fourier modes n = 20, n/2 = 10, and 2n = 40.
We take the initial amplitudes as an(0) = R0/1000, an/2(0) =
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Fig. 2 (a) Snapshots of the evolving interface, plotted at equal time intervals for the interaction of the fundamental mode n, its sub-harmonic
n/2, and its first-harmonic 2n, when wetting effects are not present (γ = 0). Darker colors mean later times. The dashed curves are added to
better guide the eye regarding finger competition events. The arrows indicate the radial position of inward pointing fingers. (b) Close-up view
(angular sector 0 ≤ θ ≤ π/2) of the resulting interface.

bn/2(0) = R0/3000, and a2n(0) = 0. In (a), the interfaces are
plotted for 0 ≤ t ≤ 19 s, at equal time intervals ∆t = 3.8 s.
In (b) close-up sections of the interfaces (angular sector 0 ≤
θ ≤ π/2) at the final time t = 19 s are shown. This is done
to facilitate visualization and offer more details about the final
interfacial shapes. The only difference between these figures
is that Fig. 2 neglects wetting effects (by setting γ = 0), while
Fig. 3 takes these effects under consideration by taking γ =
2/3.

It is worth pointing out that the values for the initial per-
turbation amplitudes used to plot Figs. 2 and 3 are selected
in such a way that the amplitudes for the sub-harmonics an/2
and bn/2 (responsible for inducing finger competition), and
first harmonic a2n (responsible for setting the finger shape as
wide or narrow) are considerably smaller than the amplitude of
the fundamental mode an, so that an(0) > an/2(0) = bn/2(0),
and an(0) > a2n(0) = 0. The initial amplitudes for the sub-
harmonic sine and cosine modes are set to be equal to avoid
any preferential growth of these modes, while the first har-
monic cosine mode is initially set to zero, to let the dynamics
dictate its growth and phase as time progresses (as we will
see in Sec. 3.2 the first harmonic sine mode does not present
nonlinear couplings). Note that the fundamental mode mostly
sets the initial n-fold symmetry for the pattern. This is done to
avoid artificial growth of modes an/2, bn/2, and a2n imposed
solely by the initial conditions. This way, the phenomenon of
finger competition and finger-broadening we study are spon-

taneously induced by the weakly nonlinear dynamics, and not
by artificially imposing large initial amplitudes for an/2, bn/2
and a2n. Moreover, we stress that other combinations for
the initial amplitudes (that obey the requirements mentioned
above) do result in similar nonlinear features.

Unfortunately, we are not able to perform direct quanti-
tative comparisons between our predicted theoretical weakly
nonlinear shapes (as the ones depicted in Figs. 2 and 3) with
equivalent interfacial patterns exhibited by real experiments
and simulations. The reason for this impediment is that exist-
ing laboratory experiments and numerical simulations mostly
focus on the fully nonlinear stages of pattern evolution, were
the finger sizes are very large, and the finger shapes are con-
siderably complex. For a typical illustration of this fact, see
Fig. 3 of a recent lifting Hele-Shaw experiment38 where at
t ′ = 25 an already nonlinear shape is depicted, while at t ′ = 10
ones has a quite unperturbed, initial time, linear morphology
(where linear stability analysis applies). In this context, a le-
gitimate weakly morphology could be found for the time in-
terval 10 < t ′ < 25, but it is not shown. These remarks are
also applied for numerical simulations of the problem (see,
for instance, Fig. 3 of Ref.37). Our perturbative weakly non-
linear analysis holds at the onset of nonlinearities, where the
interfacial disturbances ζ must be significantly smaller than
the corresponding unperturbed interfacial radius R(t). Despite
its limitations, the weakly nonlinear approach20 is still use-
ful, in the sense that it can predict analytically the most im-

1–9 | 5

Page 5 of 9 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 3 (a) Snapshots of the evolving interface, plotted at equal time intervals for the interaction of the fundamental , n, its sub-harmonic n/2,
and its first-harmonic 2n, when wetting effects are of relevance (γ = 2/3). Darker colors mean later times. The dashed curves are added to
better guide the eye regarding finger competition events. The arrows indicate the radial position of inward pointing fingers. (b) Close-up view
(angular sector 0 ≤ θ ≤ π/2) of the resulting interface.

portant nonlinear behaviors that will eventually be revealed at
advanced time stages of the Hele-Shaw dynamics27,29.

Having all this in mind, we begin our discussion by exam-
ining Fig. 2(a) which considers that γ = 0: one can see that
the inward pointing fingers of the outer fluid present different
lengths, indicating the presence of finger competition among
them. The dashed circular curves are added to allow a better
visualization of the finger competition events: note that some
inward pointing fingers of the penetrating fluid touch the inner
dashed line, while other inward pointing fingers do not. On the
other hand, the fingers of the inner fluid pointing outward have
nearly similar sizes (all touch the outer dashed circular curve),
indicating that competition among these fingers is repressed.
So, the fact is that when wetting effects are neglected, one
observes a finger competition phenomenon (presence of fin-
gers of different lengths) among inward pointing fingers (this
is clearly indicated by the arrows shown in Fig. 2(a)).

The resulting patterned shape illustrated in Fig. 2(a) shows
a quite unstable starburstlike structure where inward moving
fingers clearly compete. Moreover, by inspecting the close-
up Fig. 2(b) one can actually verify that the inward pointing
fingers of the less viscous fluid are just a bit wider than the
outward pointing fingers of the more viscous fluid. These
two main nonlinear features revealed by Fig. 2 (strong com-
petition among inward pointing fingers, and the fact that they
are slightly wider) are in qualitative agreement with the ones
detected at more advanced time regimes by experiments and

simulations in lifting Hele-Shaw cells31–38. However, even
though these laboratory and numerical experiments show a
clear finger length variability, the observed inward pointing
fingers are notably wider than the outward pointing ones.

Now we turn to Fig. 3 which plots (a) the time evolution,
and (b) the close-up view of part of the final pattern obtained in
the case where the wetting effects are of importance (γ = 2/3).
Recall that all physical quantities (except γ) and initial con-
ditions used to get Fig. 3 are identical to the ones utilized to
produce Fig. 2. Inspection of Fig. 3(a) shows that the time evo-
lution under the presence of wetting is considerably different
from the equivalent situation that neglected wetting (Fig. 2(a)).
One first noteworthy feature is indicated by the arrows, reveal-
ing that the finger length variability among inward pointing
fingers is reduced as compared to the situation that neglects
wetting. This is also true for the outward pointing fingers (all
of them touch the external dashed circular curve). We see that
even though finger competition of inward pointing fingers is
still present in Fig. 3, it is restrained relative to the situation
shown in Fig. 2 through the action of wetting effects. It is true
that both morphological features (competition and wideness
of inward pointing fingers) as shown by Figs. 2 and 3 are still
quite small. This is not really surprising since our perturba-
tive mode-coupling theory is only able to access the onset of
nonlinear effects.

In addition, the final patterned shape depicted in Fig. 3(b)
is clearly different from the starburstlike structure obtained
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in Fig. 2(b). Now we observe a more stable pattern formed
by shorter fingers, in which wide inward pointing fingers of
the penetrating fluid, are alternated by sharp, outward point-
ing fingers of the inner fluid. Furthermore, the fact that the
inward pointing fingers are evidently wider is in better quali-
tative agreement with the findings of Refs.31–38 than the case
without wetting. When wetting effects are taken into account
we end up with patterned structures which present some (but
small) competition among inward pointing fingers, that are ac-
tually wider than the outward pointing ones. From the analysis
of Figs. 2 and 3 we can say that the pattern formation dynam-
ics is evidently sensitive to the wetting condition in the lifting
Hele-Shaw problem, and leads to different pattern morpholo-
gies.

Although one should not expect to get a quantitative match
between the pattern shown in Fig. 3 (that just contains 3
Fourier modes, and is just weakly nonlinear) and the actual
fully nonlinear patterns obtained in31–38, it is reassuring to see
that our simple mode-coupling method is able to capture the
most salient features of the fully nonlinear dynamics, namely,
some competition and clear wideness of inward pointing fin-
gers. In the next two sub-sections we will discuss in a more
quantitative way the basic mode-coupling mechanisms lead-
ing to the nonlinear morphological behaviors illustrated in
Figs. 2 and 3.

3.1 Finger competition behavior

Fig. 4 Time evolution of the finger competition function C(n, t)
when wetting effects are neglected (γ = 0, dashed curve), and when
they are taken into consideration (γ = 2/3, solid curve).

First, we focus on the effects of the wetting film on fin-
ger competition events. We follow Ref.20 and consider finger

length variability as a measure of the competition among fin-
gers. Within our approach the finger competition mechanism
can be described by the influence of a fundamental mode n,
assuming n is even, on the growth of its sub-harmonic mode
n/2. By using Eqs. (7)-(12) the equations of motion for the
sub-harmonic mode can be written as

ȧn/2 = {λ (n/2)+C(n, t)} an/2, (14)

ḃn/2 = {λ (n/2)−C(n, t)} bn/2, (15)

where

C(n, t) =

{
1
2

[
F
(
−n

2
,

n
2

)
+λ (n/2) G

(n
2
,−n

2

)]
+

1
2

[
F
(n

2
,n
)
+λ (n) G

(n
2
,n
)]

+
1
2

λ (n)H(n/2)
[

λ (n/2)+
ḃ

2b

]
+

1
2

λ (n/2)H(n/2)
[

λ (n)+
ḃ

2b

]}
an. (16)

Observing Eqs. (14) and (15), and recalling that an > 0, we
verify that C(n, t) > 0 increases the growth of the cosine
sub-harmonic an/2, while inhibiting growth of its sine sub-
harmonic bn/2. The result is an increased variability among
the lengths of fingers of fluid 1 pushing the less viscous fluid
2. This effect describes enhanced competition of the out-
ward pointing fingers of fluid 1. Sine modes bn/2 would vary
the lengths of fingers of fluid 2 penetrating into fluid 1, but
it is clear from Eq. (15) that their growth is suppressed if
C(n, t)> 0.

Reversing the sign of C(n, t) would exactly reverse these
conclusions, such that modes bn/2 would be favored over
modes an/2. Therefore, C(n, t) < 0 would indicate increased
competition among the inward moving fingers of fluid 2. Re-
gardless of its sign, the magnitude of the function C(n, t) as
given by Eq. (16) measures the strength of the competition:
increasingly larger values of C(n, t) lead to enhanced finger
competition. The validity and correctness of this simple finger
competition mechanism during advanced time stages in Hele-
Shaw flows has been extensively tested by numerical simula-
tions27,29.

To examine the influence of wetting effects on the finger
competition behavior at second-order, in Fig. 4 we plot C(n, t)
as a function of time, considering the absence (γ = 0) and pres-
ence (γ = 2/3) of a thin wetting film. The parameters used to
plot this figure are exactly the ones utilized in Figs. 2 and 3.
We consider the coupling between two Fourier modes (n = 20
and n/2 = 10).

From Fig. 4 we notice that either in the absence or in the
presence of wetting, the finger competition function C(n, t)
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assumes only negative values for t > 0. From our discussion
above this would indicate favored finger competition among
the inward pointing fingers of the less viscous, penetrating
fluid. Moreover, it is also evident that this finger competition
should be less intense (but not absent) when wetting effects
are of importance (dashed curve is far below the solid one for
longer times). In other words, we can say that by neglecting
wetting effects one would be overestimating finger competi-
tion among inward moving fingers. As expected, the predic-
tions of Fig. 4 are in full agreement with the finger competition
behavior observed in Figs. 2 and 3, reinforcing the validity of
our finger competition mechanism.

3.2 The shape of the fingers

Here we study a mechanism that controls the finger shape be-
havior at the weakly nonlinear level. Once again we describe
this particular nonlinear feature by considering the coupling
of a small number of modes20. It turns out that finger tip-
narrowing and tip-broadening phenomena can be described
by considering the influence of a fundamental mode n on the
growth of its harmonic 2n. Under these circumstances, the
equations of motion for the cosine and sine modes of the har-
monic are

ȧ2n = λ (2n) a2n +
1
2

T (n, t) a2
n, (17)

ḃ2n = λ (2n) b2n, (18)

where

T (n, t) =

{
F(2n,n)+λ (n) G(2n,n)

+ H(2n)λ (n)
[

λ (n)+
ḃ

2b

]}
, (19)

is the finger tip function. From Eq. (18) we can see that the
growth of the sine mode b2n is uninfluenced by an, and does
not present second-order couplings, so we focus on the growth
of the cosine mode. The interesting point about the function
T (n, t) is that it controls the finger shape behavior. The sign
of T (n, t) dictates whether finger tip-widening or finger tip-
narrowing is favored by the dynamics. From Eq. (17) we see
that if T (n, t) > 0, the result is a driving term of order a2

n
forcing growth of a2n > 0, the sign that is required to cause
inward-pointing fingers to become wide, favoring finger tip-
broadening. In contrast, if T (n, t)< 0 growth of a2n < 0 would
be favored, leading to inward-pointing finger tip-narrowing.

To analyze the influence of wetting on the shapes of both
inward and outward pointing fingers at second-order, in Fig. 5
(on the top) we plot the behavior of T (n, t) as a function of
time, for the coupling between two Fourier modes (n = 20 and

Fig. 5 Variation of the finger tip function T (n, t) with time t. The
dashed (solid) curves are plotted for γ = 0 (γ = 2/3).

2n= 40). This is done for the situations in which wetting is ne-
glected (γ = 0, dashed curve) and taken into account (γ = 2/3,
solid curve). Once again, the parameters used to plot this fig-
ure are exactly the ones utilized in Figs. 2 and 3. We readily
verify that the finger tip function T (n, t) is always positive re-
gardless the value of γ . From our previous discussion about
the role of T (n, t) this would indicate that the inward point-
ing fingers should be wider than the outward pointing fingers.
However, we see that the T (n, t) curve in the presence of wet-
ting (solid curve) lies considerably above the corresponding
curve (dashed curve) when wetting is absent. This means that
in the presence of wetting the inward pointing fingers would
be significantly wider than those formed in the absence of wet-
ting.

As a matter of fact, this is exactly the behavior previously
shown in the closed-up sections of the interfaces depicted in
Figs. 2(b) and 3(b). By examining these figures it is evident
that when γ = 2/3 the inward pointing fingers are much wider
than the outward pointing fingers. In addition, the resulting
fingering structures arising when γ = 2/3 are shorter than the
ones produced when γ = 0. All these findings support the idea
that wetting effects have an important effect on the shape of
both inward and outward pointing fingers.

4 Conclusions

Existing theoretical and experimental studies have shown that
wetting effects can be of importance to the understanding
of the pattern formation dynamics in injection-driven10–17,23

and centrifugally-induced30 flows in Hele-Shaw cells. In this
work, we add to this list of investigations, by examining the

8 | 1–9

Page 8 of 9Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



role of wettability in determining the morphology of emerg-
ing pattern-forming structures under lifting Hele-Shaw flow
circumstances. In this scenario, we consider the flow of a vis-
cous wetting fluid surrounded by a less viscous nonwetting
one in a Hele-Shaw cell for which the upper plate can be lifted,
so that its gap-width is time-dependent.

We tackled the problem by performing a perturbative
weakly nonlinear analysis of the system up to second-order.
This method permits exploration of relevant nonlinear features
of the sucked fluid-fluid interface analytically. Our theoreti-
cal results indicate that wetting effects can be of great impact
on the resulting pattern morphologies. More specifically, we
predicted the formation of patterns in which fingers compete,
leading to the formation of interfacial shapes where short,
blunt fingers of the nonwetting outer fluid are alternated by
short sharp fingers of the wetting inner fluid. We have shown
that the basic pattern forming mechanisms connected to such
peculiar nonlinear aspects of the interface can be revealed and
qualitatively interpreted through the coupling of a few partici-
pating interfacial Fourier modes. These theoretical predictions
do capture the most salient morphological features detected in
lifting Hele-Shaw flow experiments32–38. If wetting effects
are neglected, the final patterned structures would present an
overestimated competition, while the inward pointing fingers
would be just slightly wider than the outward pointing ones.

Confirmation of our predictions and access to additional in-
formation about the suggestive nonlinear aspects identified in
this analytic work should be possible from new laboratory ex-
periments as well as fully nonlinear numerical simulations of
the lifting problem that focus on circumstances in which wet-
ting effects are of relevance.
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