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A large nucleated crystalline cluster in a glass of hard spheres at packing fraction 0.61 induced by 10% 
active hard spheres inside.  
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Crystallization and vitrification are two different routes to form a solid. Normally these two
processes suppress each other, with the glass transition preventing crystallization at high density (or
low temperature). This is even true for systems of colloidal hard spheres, which are commonly used
as building blocks for novel functional materials with potential applications, e.g. photonic crystals.
By performing Brownian dynamics simulations of glassy systems consisting of mixtures of active and
passive hard spheres, we show that the crystallization of such hard-sphere glasses can be dramatically
promoted by doping the system with small amounts of active particles. Surprisingly, even hard-
sphere glasses of packing fraction up to φ = 0.635 crystallize, which is around 0.5% below the random
close packing at φ ≃ 0.64. Our results suggest a novel way of fabricating crystalline materials from
(colloidal) glasses. This is particularly important for materials that get easily kinetically trapped in
glassy states, and crystal nucleation hardly occurs.

PACS numbers: 64.70.pv,64.75.Xc,87.15.nt

The huge number of important applications associated
with crystalline materials have made crystal fabrication
a major research theme in the materials science com-
munity. The most common route toward a crystal is
to supersaturate the corresponding fluid by increasing
the density or lowering the temperature, after which the
crystal may nucleate. With increasing supersaturation,
the driving force for nucleation increases, which lowers
the nucleation barrier [1]. Simultaneously, however, the
dynamics of the system also slows down, and at very
high supersaturations the metastable fluid phase vitrifies
into a glass before crystallization can occur [2]. While
there are some kinetically arrested glasses that can crys-
tallize slowly via a sequence of stochastic micronucleation
events [3], the glass transition generally remains a major
obstacle for crystallization of highly supersaturated flu-
ids.

We discuss here a way to circumvent the kinetic ar-
rest, namely by using active matter. Active matter can
be defined as a system of objects capable of continuously
converting stored biological or chemical energy into mo-
tion. The interest in the dynamics of active matter stems
from the wish to understand intriguing self-organization
phenomena in nature as featured by bird flocks, bacte-
rial colonies, tissue repair, and the cell cytoskeleton [4].
The topic is also growing in chemistry: recent break-
throughs in particle synthesis have enabled the fabri-
cation of artificial colloidal microswimmers that show a
high potential for applications in biosensing, drug deliv-
ery, etc [5]. A number of different active colloidal systems
have been realized in experiments, such as colloids with
magnetic beads that act as artificial flagella [6], catalytic

∗Electronic address: rannimail@gmail.com

Janus particles [7–10], laser-heated metal-capped parti-
cles [11], light-activated catalytic colloidal surfers [12],
and platinum-loaded stomatocytes [13]. In contrast to
passive colloidal particles that only undergo Brownian
motion due to random thermal fluctuations of the sol-
vent, active self-propelled colloids experience an addi-
tional force due to internal energy conversion. Recent
theoretical [14] and numerical [15, 16] work has shown
that in systems of active hard spheres the glass transi-
tion is shifted to densities close to random close packing
(RCP), which suggests that the role of activity is to de-
vitrify glasses. In this work, we demonstrate that doping
colloidal glasses with small amounts of active particles
can significantly enhance the mobility of the passive par-
ticles, and speed up the crystallization dynamics. Upon
increasing the fraction of active particles, the crystalliza-
tion pathway switches from spinodal decomposition to
nucleation and growth, until too many active particles
cause the system to adopt a non-equilibrium fluid state.
Therefore, there is an optimal fraction of active particles
for which the rate of crystallization is maximal.

We performed event driven Brownian dynamics simu-
lations of a colloidal glass system modeled byN monodis-
perse hard-sphere particles with a diameter σ. The hard-
sphere system is a simple model for colloidal systems
forming glasses [17]. Here, we focus on packing fractions
above the glass transition, φg ≃ 0.58 [2, 17]. To pre-
pare the initial configuration, we use the Lubachevsky-
Stillinger algorithm [18] to grow the particles in the sim-
ulation box to the packing fraction of interest. The total
number of particles in the system is fixed at N = 10, 000.
We change the fraction of active particles α by randomly
selecting Nα particles which are made active by apply-
ing an self-propelling force f on these particles in the
simulations. Even though a number of particles in the
system are driven and energy is continuously injected to
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the system, we assume the solvent to be at an equilibrium
temperature T . The motion of particle i with position ri

and orientation ûi can be described via the overdamped
Langevin equation given by

ṙi(t) =
D0

kBT
[−∇iU(t) + ξi(t) + f ûi(t)] , (1)

where the potential energy U =
∑

i<j UHS(rij) is the
sum of excluded-volume interactions between all hard
spheres with diameter σ, and D0 is the short-time self
diffusion coefficient. A stochastic force with zero mean,
ξi(t), describes the collisions with the solvent molecules,
and satisfies 〈ξi(t)ξ

T
j (t

′)〉 = 2(kBT )
2
1δijδ(t−t′)/D0 with

1 the identity matrix. In addition, the self-propulsion of
particle i is described by a constant force f in the direc-
tion ûi(t) at time t. Note that free swimming speed of
the self-propelled particles in dilute suspensions is given
by fD0/kBT . In order to identify the crystalline clus-
ters in the fluid phase, we employ the local bond-order
parameter analysis [19–21].
Figure 1a shows the time evolution of the crystalline

fraction in hard-sphere glasses for 0.58 ≤ φ ≤ 0.635, ini-
tiated in the disordered state. For packing fractions just
above the hard-sphere glass transition φ ≃ 0.58, crystal-
lization to a face-center-cubic (fcc) structure occurs al-
most immediately via spinodal-decomposition, which is
indicated by the immediate increase in crystalline parti-
cles without any waiting time. With increasing packing
fraction, the crystallization of the hard-sphere glass slows
down dramatically due to the emerging glassy dynamics.
When φ ≥ 0.61, the crystallization is severely suppressed
by the slow dynamics. Typical snapshots in Fig. 1b ex-
emplify the slow growth of crystalline clusters in a dense
hard-sphere glass at φ = 0.61, in agreement with previ-
ous simulation [3] and experimental results [22].
Next, we activate a randomly selected small amount

of particles in the hard-sphere glass by equipping them
with a self-propelling force f . This force is applied on
the center-of-mass of the particle in the direction û. The
magnitude of the self-propelling force f is constant, while
the orientation û undergoes a free Brownian rotation
with a rotational diffusion coefficient Dr = 3D0/σ

2 ac-
cording to the Stokes-Einstein relationship. Figure 2a
shows the time evolution of the crystalline fraction in a
hard-sphere glass of packing fraction φ = 0.61 contain-
ing various number fractions of active hard spheres, i.e.
0 ≤ α ≤ 0.15, with fσ/kBT = 80. Clearly, by doping
the glass with only 1% of active hard spheres, the crys-
tallization dynamics speeds up significantly. Similar to
the passive hard-sphere glass, crystallization of the hard-
sphere glass with α = 0.01 occurs immediately without
any waiting time via spinodal decomposition as shown
in Fig. 2a, which can be seen from the coupling between
the increase of the largest cluster nmax and the decrease
of the number of clusters Nclust. In addition, as shown
in Fig. 2b, the mean square displacement of passive hard
spheres increases faster in systems with more active par-
ticles, which is in agreement with Ref. [16]. This suggests
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FIG. 1: (a) The fraction of crystalline particles Xf as a func-
tion of time tD0/σ

2 in systems of passive Brownian hard-
sphere glasses with various packing fractions 0.58 ≤ φ ≤
0.635. D0 is the short-time translational self diffusion coeffi-
cient. (b) Three snapshots from a typical crystallization tra-
jectory of a passive Brownian hard-sphere glass with φ = 0.61
at tD0/σ

2 = 2, 20 and 40 (from left to right), respectively,
where only the particles in crystalline clusters are shown and
different colors denote different crystalline clusters. The fluid-
like particles are shown as small spheres.

that the existence of active particles in the glass enhances
the mobility of the passive particles, which assists the
coalescence of the clusters and speeds up the crystalliza-
tion dynamics. We define a “crystallization time” τX
as the time to reach a fraction of crystalline particles
Xf = 0.2 as in Ref. [23]. Figure 2e shows that with
increasing fraction of active particles α the crystalliza-
tion time τX decreases to a minimum at α = 0.02, after
which τX increases again with α. This increase is due to
the fact that the presence of active particles lowers the
stability of the resulting crystal phase, thus decreasing
the driving force of the phase transition [24]. Therefore,
the nucleation rate, i.e. the number of critical nuclei per
unit volume and time, decreases. Indeed, at α = 0.1, as
shown in Fig. 2a, the hard-sphere glass first melts into
a non-equilibrium fluid phase, which is indicated by the
large diffusivity of the particles without any crystalline
clusters (Fig. 2a,b). Then the system stays in the non-
equilibrium fluid state for a time t∗D0/σ

2 ≃ 20, followed
by nucleation and growth of a single critical cluster (see a
typical sequence of snapshots in Fig. 2d). It is surprising
that the nucleation and growth of a single nucleus can
occur in such a dense hard-sphere glass. This finding al-
lows us to further study the role of active particles in the
crystal nucleation. In Fig. 2c, we map the configurations
onto the nmax − xα plane, in which nmax and xα are the
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FIG. 2: (a) The largest crystalline cluster size nmax, the number of crystalline clusters Nclust, and the fraction of crystalline
particles Xf as a function of time tD0/σ

2 in systems of hard-sphere glasses at packing fraction φ = 0.61 doped by various number
fractions of active hard spheres α with self-propulsion fσ/kBT = 80. (b) The mean square displacement 〈∆r2(t)〉/σ2 for the
passive particles in the system. The filled diamonds denote the 〈∆r2(t)〉/σ2 at t = τX . (c) Projection of configurations on nmax

and xα plane for systems of hard-sphere glasses at packing fraction φ = 0.61 doped by α = 0.1 active hard spheres with self-
propulsion fσ/kBT = 80. The horizontal dashed line denotes the composition of active particles α = 0.1 in the whole system.
(d) Snapshots from a typical trajectory of the nucleation of a single cluster at φ = 0.61 with α = 0.1 and fσ/kBT = 80. From left
to right, the time and the corresponding largest cluster size in the system are (tD0/σ

2, nmax) = (17.4, 83), (20, 168), (22.8, 1008)
and (24.2, 1844), respectively. The red arrows on the spheres denote the direction of self-propelling force on the active particles.
(e) Crystallization time τXD0/σ

2 as a function of the composition of active particles α in hard-sphere glasses of various packing
fractions. (f) Theoretical prediction of the crystallization time τXD0/σ

2 as a function α for different self-propluions f at
φ = 0.61. (g) Crystallization time τXD0/σ

2 as a function fασ/kBT , where the legends of the symbols are the same as in (e).

size of the largest cluster and the fraction of active par-
ticles in this cluster, respectively. For small clusters, the
fraction of active particles fluctuates strongly between 0
and 0.4, but when it increases to around the critical size,
i.e. 100 < n∗

max < 200, the fraction of active particles
in the nuclei remains below α, suggesting that the crit-
ical nucleus comprises mainly of passive hard spheres.
Therefore, the active particles in the system mainly act
as “stirrers” or “mixers”, speeding up the mobility of the

passive particles without actually initiating the crystal
nucleation.

After further increasing the active particle fraction to
α > 0.1 the system stays in the non-equilibrium fluid
phase, and nucleation remains a rare event. In fact,
it may even be hampered completely, since the large
amount of active particles can also melt the crystal into
a fluid phase [24]. Hence, the enhanced crystallization of
hard-sphere glasses by doping with active particles is the
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result of a competition between mobilizing (stirring) the
glass and destabilizing the resulting crystals, yielding a
maximal crystallization speed at around α∗ ≃ 0.02 with
fσ/kBT = 80 at φ = 0.61.
The influence of self-propulsion on the crystallization

time is summarized in Fig. 2e. Increasing the fraction
of active particles in hard-sphere glasses from α = 0 al-
ways decreases the crystallization time τX , reaching a
minimum at some optimal doping fraction, after which
τX increases again with α. The open symbols in Fig. 2e
show that the optimal composition of active particles de-
creases with increasing magnitude f of the self-propulsion
force of active particles, i.e. to induce coalescence of
the crystalline clusters in the glass requires a decreas-
ing amount of stronger active particles. Similarly, as
shown by the solid symbols in Fig. 2e, for fσ/kBT = 80
the optimal composition of active particles increases with
packing fraction because a larger amount of stirring by
active particles is required to crystallize denser glasses.
Strikingly, by doping with only 10% active particles with
fσ/kBT = 80, we have succeeded in crystallizing a hard-
sphere glass at φ = 0.635, a packing fraction for which
crystallization has never been observed before [2, 3]. The
measured crystallization time is also shown in Fig. 2e.
We can rationalize the above behaviour by adapting

classical nucleation theory (CNT) to our system. While
CNT is clearly derived for quasi-equilibrium systems, we
assume that nucleation in a non-equilibrium system is
still governed by the same fundamental physics. The two
main factors in CNT, the nucleation barrier and the ki-
netic prefactor, will be influenced by the presence of ac-
tive particles. The kinetic prefactor will increase, because
of the active particles, and it is likely that the nucleation
barrier will increase, as the driving force for crystalliza-
tion will be lower due to the active particles. A more
quantitative analysis can be put forward as follows. Ac-
cording to CNT, the crystallization rate as a function of
α and f has the form

k(α, f) = D(α, f)e−∆G(α,f)/kBT ≃ 1/τX , (2)

with D(α, f) a kinetic prefactor proportional to the dif-
fusion and

∆G(α, f) =
16πγ3

3ρ2∆µ(α, f)2
(3)

is the nucleation barrier height, with γ the surface ten-
sion, ρ the density, and ∆µ(α, f) = µsol−µliq the driving
force [25]. The dependence on α and f is probably very
complicated, but as a first approximation we can take
a simple linear function [26], D(α, f) = D∗ + c1fα and
∆µ(α, f) = ∆µ0 − c2fα, with D∗ the passive kinetic
prefactor, and ∆µ0 the passive driving force for crystal-
lization. For our system φ = 0.61, the diffusivity D∗ ≃ 0,
γ = 0.7kBT/σ

2 and ∆µ0 = 14.58kBT (from the Carna-
han Starling and Hall equation of state [27]). Setting
parameters c1 = 0.1 and c2 = 1.5 the predicted crys-
tallization rates are plotted in Fig. 2f as a function of

α, for different fσ/kBT = 20, 40, 80. Clearly the quali-
tative behaviour of our simulations are reproduced: we
find first an increase in crystallization rate (1/τX) due
to the enhanced diffusion, followed by a decrease due to
a higher nucleation barrier caused by a reduced driving
force. However, as shown in Fig. 2g, the crystallization
time for different f cannot simply be scaled onto a sin-
gle curve by plotting τX as a function of fα, and with
larger f , the optimal fα for the fastest crystallization
decreases. This suggests that the effect of active particle
on the crystallization can not be described via the sim-
ple linear combination fα, and further investigation is
required.

In conclusion, by performing event-driven Brownian
dynamics simulations, we systematically study the crys-
tallization of hard-sphere glasses consisting of a mixture
of passive and active hard spheres. Our results can be
summarized as follows: 1) doping hard-sphere glasses
with a small amount of active particles enhances the
mobility of the passive particles, which assists the co-
alescence of the crystalline clusters and speeds up the
crystallization dynamics via spinodal decomposition; 2)
upon increasing the fraction of active particles further,
the crystallization speed reaches a maximum, beyond
which the glass first melts into a non-equilibrium fluid,
and the crystal may form via nucleation and growth af-
terwards. These results can be reasonably well explain by
a modified CNT. By doping with active particles, we are
able to crystallize hard-sphere glasses up to φ = 0.635,
around 0.5% below the RCP limit ∼ 0.64, for which no
crystallization has ever been observed before. When the
density of a colloidal glass approaches the RCP, the pres-
sure of the system diverges, and the driving force of the
crystallization increases to infinity. Since we find that
the fraction of active particles in the critical nuclei is
lower than that in the bulk phase, doping with a tiny
amount of strong active particles enhances the mobil-
ity of passive particles without changing significantly the
stability of the crystal phase, which enables the crystal-
lization of glasses at densities close to the RCP. Hence,
we expect that this crystallization method can be em-
ployed for most colloidal glasses as long as the thermo-
dynamically stable phase is a crystal. For instance, in
systems of binary hard spheres, the crystallization has
become highly challenging, and we hope our method can
be future employed to help the crystallization of binary
hard-sphere crystals. Moreover, we wish to note that if
the active particles are much smaller than the passive
particles, the situation can be much more complicated,
since it has been found that the small active particles
can produce giant long range effect interactions between
the large passive particles in the system [28]. Although
most experimental studies correspond to low activities
fσ/kBT < 10 [7, 9, 11, 13, 29], light-activated colloids
[12], the catalytic Janus particles [10], and the particles
with a artificial magnetic flagella [6] are capable of pro-
ducing self-propulsions as high as fσ/kBT ≃ 20, 50, 80,
respectively, making our findings highly relevant for these
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systems. Moreover, one can also use optical tweezers to
actively move small amounts of colloidal particles in the
glass with large forces [30], which should have a profound
effect on the crystallization dynamics of colloidal glasses.
In this work, we neglected the effect of hydrodynamics,
which could be an important direction for future inves-
tigation. However, it has been found that Brownian dy-
namics simulations without explicit hydrodynamics can
reproduce most of structures and patterns observed in ex-
periments [12, 24], which suggests that the method used
in this work can capture the essential physics in the dy-
namic assembly of active colloidal swimmers.
Our results suggest a new way of fabricating crystalline

materials from glasses, and it may be particularly impor-
tant for the crystallization of photonic crystals [31, 32].
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