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In the present work we perform Monte Carlo simulations in theisothermal-isobaric ensemble to study defect topologies formed
in a cholesteric liquid crystal due to the presence of a spherical colloidal particle. Topological defects arise because of the
competition between anchoring at the colloidal surface andthe local director. We consider homogeneous colloids with either
local homeotropic or planar anchoring to validate our modelby comparison with earlier lattice Boltzmann studies. Furthermore,
we perform simulations of a colloid in a twisted nematic celland discuss the difference between induced and intrinsic chirality
on the formation of topological defects. We present a simplegeometrical argument capable of describing the complex three-
dimensional topology of disclination lines evolving near the surface of the colloid. The presence of a Janus colloid in acholesteric
host fluid reveals a rich variety of defect structures. Usingthe Frank free energy we analyze these defects quantitatively indicating
a preferred orientation of the Janus colloid relative to thecholesteric helix.

1 Introduction

It is well-known that liquid-crystal molecules (mesogens)in
the nematic phase exhibit no long-range positional order of
their centers-of-mass but tend to align their longer axes par-
allel to a preferred direction specified by the global director
n̂nn0.1 If a colloid is immersed in such a homogeneously or-
dered nematic phase the order is perturbed locally. This is
because mesogens in the vicinity of the colloid’s surface may
orient themselves in such a way that their orientation is in con-
tradiction withn̂nn0.2 As a consequence of the competition be-
tweenn̂nn0 and the local orientation of mesogens near the sur-
face of a colloid, defects arise in the liquid-crystal host phase.
The history of dispersed colloidal particles in ordered liquid-
crystalline host fluids started in the late 1990’s and is still an
active field of research.2–6

Depending on the specific preparation of the colloid the pre-
ferred local orientation of mesogens may be either parallel
or perpendicular with respect to the colloid’s surface normal.
These specific ways of orienting mesogens can be realized, for
example, by varying the chemical composition of the colloid’s
surface.7
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If more than a single colloidal particle is suspended in the
liquid-crystal host phase, their specific defect topologies inter-
act if the separation of the colloids is small enough. This gives
rise to aneffectiveinteraction between the colloids which may
be repulsive or attractive, such that in the latter case specif-
ically structured assemblies can be formed.8 For example,
if a chemically homogeneous spherical colloid with locally
homeotropic surface anchoring (i. e., anchoring of mesogens
parallel with respect to the colloid’s local surface normal) is
placed in a nematic host phase the well known Saturn ring de-
fect topology forms around the colloid’s equator.6 If two such
colloids come sufficiently close, the defect lines interactand
can entangle the colloidal dimer in several ways.9,10

One may measure these effective intercolloidal forces by
trapping them in a certain configuration with optical tweezers
which can then be used to move the colloids through the host
fluid in a controlled manner.11 More recently, optical tweez-
ers have also been used for reconnecting defects of already
linked colloids to achieve a more stable configuration.12 Fur-
thermore, optical tweezers are important tools for analyzing
complex defect structures.13 The possibility of formation and
controlled manipulation of these structures eventually allows
one to fabricate novel ordered arrangements of an assembly
of colloidal particles which already opened a wide range of
applications in optics and photonics.14

Originally, most research in the field was focused on spheri-
cal colloids suspended in nematic liquid crystals but in today’s
research there is no limit regarding the colloid’s shape. These
shapes range, for example, from rod-like and polygonal shapes
to star- or ring-like structures.8 Nowadays, also inhomoge-
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neous, so-called Janus colloids, or, more generally speaking,
patchy colloids are beginning to receive an increasing amount
of scientific attention.7,15–18This is primarily because recent
advances in chemical synthesis allow one to prepare inhomo-
geneous colloids in a controlled fashion even down to particle
sizes in the nanometer range.19 Generally speaking, the sur-
face of a Janus colloid is composed of antithetic materials.For
example, one may envision a spherical Janus colloid where
mesogens are anchored in a locally planar fashion at one hemi-
sphere whereas the anchoring may be locally homeotropic at
the other. Clearly, more complex defect topologies are ex-
pected if such a Janus colloid is immersed in a nematic host
phase.15,16

The complexity of the colloidal suspension may be further
enhanced by replacing the nematic host phase by another or-
dered but structurally more sophisticated one. An interesting
candidate in this respect is the cholesteric phase forming if the
mesogens are chiral. The cholesteric phase may be thought of
as a nematic phase in which the director becomes local and
rotates continuously around a distinguished axis. Hence, the
director forms a helix characterized by the pitchp which is the
distance to be travelled along the preferred axis if the director
field rotates by an angle of 2π .

Consequently, to characterize order in the cholesteric phase
requireŝnnn0 to be replaced bŷnnn0(z) if we take thez-axis as that
axis around which the helix evolves. It is then clear that in
the cholesteric phasênnn0(z) · êeez = 0 whereêeez is a unit vector
pointing in thez-direction. Hence, in planes orthogonal toêeez

the cholesteric phase may be perceived as a stacked sequence
of two-dimensional nematics wherênnn0(z) is rotated in thex–y
plane between neighboring nematic planes.

If a colloid is now immersed in such a cholesteric host
phase it has been demonstrated20,21 that the ratio of pitch
and colloidal size influences the formation of defect struc-
tures. Hence, compared with the nematic phase, where de-
fect topologies are usually independent of the colloid’s size,
the ratio ofp and the colloidal size enters as a new parameter
in the formation of defect topologies in the cholesteric phase.
Hence, more complex topologies are anticipated in a liquid-
crystal host phase composed of chiral mesogens. This is even
more so if two or more colloids are suspended in a cholesteric
host phase. Because of the inherent twist of the cholesteric
helix the defect lines have even more possibilities to entangle
the colloids.12,13

To obtain a theoretical understanding of defect topologies
associated with placing a single, chemically homogeneous
colloid in a cholesteric host phase, a chiral version of Landau-
de Gennes theory1 has been employed in a few cases.13,20–22

As far as computer simulations of a colloid suspended in a
cholesteric phase are concerned, no study exists to date to the
best of our knowledge. The reason is perhaps twofold. First,
becausep is generally quite large, fairly large systems need

to be employed in molecular simulations which can quickly
render such simulations computationally prohibitive. Second,
most standard models for liquid crystals composed of chiral
mesogens are rather costly from a computational perspective
because of pronounced shape anisotropy of the mesogens. For
example, Memmeret al.23 suggested an interaction potential
for a pair of chiral Gay-Berne molecules. They could only
study fairly small systems comprising a few hundred to a few
thousand molecules which casts some doubt on the signifi-
cance of the results obtained for the cholesteric24 and even
more so for the much richer structures characteristic of blue
phases.23

In contrast, we have recently demonstrated25 that large sys-
tems of up to 4×104 chiral mesogens can be studied at mod-
erate computational expense if one employs mesogens with a
much smaller aspect ratio of about 1.30.25 Our model con-
sists of a chiral version of the (achiral) Hess-Su potential26

which has been shown to describe nematic liquid crystals suf-
ficiently realistically.26–31 In the achiral Hess-Su model a pair
of mesogens interact via a Lennard-Jones potential where the
strength of the attraction depends on the orientation of the
mesogens. Because the chiral version of this model repro-
duces cholesteric and even blue phases unambiguously25 we
feel that it is timely to apply it to investigate defect topolo-
gies arising if a colloid is immersed in a cholesteric phase.
Our work is based upon Monte Carlo (MC) simulations in the
isothermal-isobaric ensemble.

We organized our manuscript as follows. In Sec. 2 we intro-
duce our model system. Section 3 is given to key theoretical
quantities and to a presentation of our results which we discuss
in the concluding Sec. 4.

2 Model system

2.1 The liquid-crystal host phase

In this work we consider a liquid-crystal host phase in whicha
colloidal particle is immersed. The liquid crystal is composed
of N mesogens interacting with each other in a pairwise addi-
tive fashion. The interactions are described by the fluid-fluid
(ff) potential function

uff (rrr i j , ûuui , ûuu j) = 4εff

{(
σ
r i j

)12

−

(
σ
r i j

)6

× [1+Ψ (̂rrr i j , ûuui , ûuu j)]

}
(1)

where rrr i j = rrr i − rrr j is the distance vector connecting the
centers-of-mass of mesogensi and j located atrrr i and rrr j ,
respectively,r i j =

∣∣rrr i j
∣∣, and r̂rr i j = rrr i j /r i j . Unit vectorsûuui

andûuuj specify the orientations of mesogensi and j in space.
Hence,uff is a Lennard-Jones potential where the attractive
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term has been modified to account for different orientationsof
the mesogens. Accordingly,σ is the “diameter” of a spherical
reference molecule andεff is the depth of the attractive well.

As in our previous work25 we take the anisotropy function
to be given by

Ψ(r̂rr i j , ûuui , ûuu j) = 5ε1P2(ûuui · ûuu j)

+5ε2 [P2(r̂rr i j · ûuui)+P2(r̂rr i j · ûuuj)]

+ε3 [(ûuui × ûuuj) · r̂rr i j ] (ûuui · ûuuj) (2)

whereP2(x) =
1
2

(
3x2−1

)
is the second Legendre polyno-

mial. Terms proportional toε1 andε2 arise from an expansion
of the orientation dependence of the interaction between two
achiral mesogens in terms of rotational invariants.32,33 The
pseudo-scalar proportional toε3 accounts for the chirality of
the interaction between a pair of mesogens where the degree
of chirality is controlled by the magnitude ofε3 and the hand-
edness by its sign. The achiral version of the interaction po-
tential was originally suggested by Hess and Su26 whereas the
introduction of chirality by a pseudo-scalar follows in spirit
an earlier suggestion by Memmeret al. for a Gay-Berne-like
model potential.23 Hence, the anisotropy function preserves
the head-tail symmetry of the interaction between pairs of
mesogens characteristic of many liquid-crystalline materials,
that is the interaction potential in Eqn. (1) is invariant with
respect to a change in sign ofûuui and/or̂uuu j .1

The model has already been demonstrated to be capable of
reproducing properties of liquid crystals in a variety of con-
texts ranging from the formation of nematic phases27–30 to
the development of defect topologies arising near the surface
of spherical colloidal particles immersed in a nematic liquid-
crystal host phase composed of achiral mesogens.16 In its chi-
ral version, it has recently been shown to correctly reproduce
cholesteric and blue phases.25

2.2 Homogeneous and Janus colloid

In this work theN mesogens interact with a colloidal particle
via a Yukawa-like potential given by

ufc (rrr i , ûuui) = εfc

[
a1

(
σ

r i − r0

)10

−a2
exp[−η (r i − r0)]

r i − r0
g(r̂rr i , ûuui)

]
(3)

assuming that the colloid is placed at the origin of the (Carte-
sian) coordinate system at the center of the simulation celland
where the subscript “fc” refers to the interaction between a
fluid molecule (i. e., mesogen) and the colloid. In Eqn. (3),
r i = |rrr i |, r̂rr i = rrr i/r i , r0 is the hard-core radius of the colloid,εfc

determines the strength of the interaction,η−1 is the screen-
ing length of the attraction, andg is the anchoring function that

we will discuss further below. Notice that because the colloid
is centered at the origin of the coordinate system,r̂rr i points
from the center-of-mass of the colloid to the center-of-mass of
mesogeni. Parameters

a1 =
1+ησ
9−ησ

(4a)

a2 =
10exp(ησ)

9−ησ
(4b)

are introduced to guarantee that the minimum of the potential

dufc

dr i

∣∣∣∣
r i=rmin

= 0 (5)

remains atrmin = r0 +σ and that the depth of the attractive
well

ufc (rmin) =−εfc (6)

remains unchanged if one variesη at fixedg.
In this work we also focus on Janus colloids with surfaces

composed of antithetic materials. In the present case the con-
flictive properties of the surface of a Janus colloid are different
ways of anchoring a mesogen locally. Anchoring is described
by the anchoring function 0≤ g≤ 1 in Eqn. (3) which serves
to discriminate energetically the desired (undesired) local ori-
entation of a mesogen relative to the surface normal of the
colloid.

More specifically, we take the anchoring function to be
given as16

g(̂rrr i , ûuui) = w‖ (r̂rr i)g‖ (r̂rr i , ûuui)+ χw⊥ (r̂rr i)g⊥ (r̂rr i , ûuui) (7)

where the dimensionless parameter 0≤ χ ≤ 1 has to be intro-
duced to weaken the homeotropic local alignment relative to
the parallel one because in the Hess-Su model, mesogens al-
ways exhibit a rather pronounced tendency to favor the former
alignment over the latter.

The tendency to align homeotropically at flat surfaces with
no specific surface anchoring is known for real liquid crys-
tals34 as well as for model systems i.e. for Gay-Berne35

or Hess-Su29 mesogens. This effect can be explained by
the strong side-side attraction of two mesogens and has also
been observed for strongly curved surfaces.16 Beacuse of the
shape anisotropy homeotropic alignment at a surface enables
a higher areal density of mesogens. Because of the stronger
side-side attraction this is also reduces the configurational po-
tential energy compared with a planar arrangement of meso-
gens at the surface plane. Even though the latter would be
entropically favored, the energatically favored homeotropic
alignment apparently wins. In Eqn. (7),

g‖ (r̂rr i , ûuui) = (1−|ûuui · r̂rr i |)
2 (8a)

g⊥ (r̂rr i , ûuui) = (ûuui · r̂rr i)
2 (8b)
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Table 1 Model parameters used to realize specific defect topologiesnear a spherical colloid immersed in a nematic host phase composed of
achiral mesogens (see Sec. 2.2).16

Defect topology Anchoring η εfc γ⊥ γ‖ χ
Boojum planar 1.0 3.5 0.00 0.00 0.0
Saturn ring homeotropic 0.5 1.0 0.00 1.00 1.0
Boojum ring planar/homeotropic 0.5 4.0 0.05 0.25 0.6

whereg‖ anchors mesogeni locally such that its orientation
ûuui is parallel to the surface of the colloid (i.e.,perpendicu-
lar to r̂rr i) whereasg⊥ serves to align mesogeni in a locally
homeotropic fashion (i.e.,parallel to r̂rr i).

Associated withg‖ andg⊥ are weighting functions

w‖ (r̂rr i) = 1− γ‖ (1− r̂rr i · êeex)
2 (9a)

w⊥ (r̂rr i) = 1− γ⊥ (1+ r̂rr i · êeex)
2 (9b)

whereêeex is a unit vector pointing along the (positive)x-axis
of the space-fixed Cartesian coordinate system. The func-
tion w‖ is largest at the North Pole of the colloid defined by
r̂rr i · êeex =+1 whereasw⊥ assumes its maximum at the colloid’s
South Pole wherêrrr i · êeex = −1. To be physically meaning-
ful both weighting functions in Eqn. (9) have to be positive
semidefinite which is guaranteed ifγ‖, γ⊥ ≤ 1

4. Specific val-
ues ofγ‖ andγ⊥ control the sharpness of the transition between
the antithetic surface parts of the colloid.

Notice also that our model is capable of describing a chemi-
cally homogeneous colloid where mesogens are aligned either
parallel or homeotropically at each point on the colloid’s sur-
face. To that end one needs to set one of the two weighting
functions in Eqn. (9) equal to one and the other one equal to
zero depending on the desired anchoring scenario (see also
Table 1).

2.3 Fixing the far-field directors

To study experimentally defect topologies evolving around
colloidal particles in an ordered liquid-crystal host phase, it
is customary to place the colloid and its host between solid
substrates.36 Through a specific anchoring scenario at the sub-
strates, this setup allows one to fix the (nonlocal) far-fielddi-

rectorn̂nn(k)0 in regions of the liquid crystal that are unperturbed
by the presence of the colloid. Superscriptk indicates that the
far-field director at the lower substrate (k= 1) may differ from
its counterpart at the upper substrate (k= 2).

In the vicinity of the colloid, the mismatch between the lo-
cal alignment at the colloid’s surface and the alignment of
mesogens at the solid substrates will generally give rise toa
local director field̂nnn(rrr) wheren̂nn(rrr) does not necessarily coin-

cide withn̂nn(k)0 . Therefore, we follow the experimental setup in
spirit and place our liquid-crystalline host phase plus thedis-

solved colloid between plane parallel, structureless solid sur-
faces separated along thez-axis by a distancesz. This distance
is always chosen large enough so that a direct interaction with
the colloid is precluded and such that in the cholesteric host
phase a helix of a certain pitch can be realized based upon ear-
lier experience (see below for specific values ofsz employed
here).25

Henceforth, we assume the substrates to be located atz=
−sz/2 (k = 1) andsz/2 (k = 2). The interaction between a
mesogen and the substrate is described by the potential func-
tion

u(k)fs (∆z(k)i , ûuui) = εfs


2

5

(
σ

∆z(k)i

)10

−

(
σ

∆z(k)i

)4

g(k)0 (ûuui)




(10)
where∆z(k)i ≡ zi ± sz/2 and the sign is chosen depending on
whether a mesogen interacts with the lower (k= 1,+) or upper
substrate (k = 2, −), respectively. Analogous to Eqn. (1) and
Eqn. (3) the parameterεfs determines the strength of the inter-
action between a mesogen and the solid substrates. Through-
out this work we maintainεfs/εff = 5.0.

To fix the far-field directors in space we introduce the an-
choring function

g(k)0 (ûuui) = (ûuui · n̂nn
(k)
0 )2 =







uxi

uyi

uzi


 ·




cosθ (k)
0

sinθ (k)
0

0







2

(11)

where we assume each far-field director to lie in thex–y plane

andθ (k)
0 is an angle associated with projections ofn̂nn(k)0 onto the

x- andy-axes, respectively (see Sec. 3.2 for specific choices of

θ (k)
0 ).

Fixing the in-plane unidirectional alignment at the surface
is a widely used operational technique in the experimental
setup.6,13,22 For example, a thin layer of polyimide on flat
glass substrates may be “rubbed unidirectionally to obtainan
excellent planar alignment”.13 In this spirit we are following
the experimental approach by anchoring the mesogens in the
plane of the surfaces.
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Fig. 1 Plot of the local densityρ(z) as a function of positionz in the
lower part (z≤ 0) of our system; (•) without and ( ) with a
colloidal particle.

3 Results

3.1 Properties and numerical details

In this work we employ MC simulations carried out predom-
inantly in a specialized isothermal-isobaric ensemble. Asex-
plained elsewhere16 in this ensemble the thermodynamic state
of the liquid crystal is specified byN, volumeszA, the ra-
tio sx/sy (sα is the side length of the simulation cell inα-
direction), and the transverse componentP‖ =

1
2

(
Pxx +Pyy

)

of the pressure tensorP wherePαα (α = x or y) is a diagonal
element ofP; off-diagonal elements ofP vanish as we do not
expose the liquid crystal to any shear strain. For fixed values
of these variables we generate a distribution of configurations
in the 5N-dimensional space spanned by the 3N Cartesian co-
ordinates of theN centers of mass and the 2N orientations of
the N linear mesogens. This distribution is proportional to
exp
[
−β
(
U +P‖szA−Nβ−1 lnA

)]
whereβ = 1/kBT (T de-

notes the temperature andkB is Boltzmann’s constant) and
A= sxsy.

Numerically, this distribution can be realized by employ-
ing a standard Metropolis algorithm adapted to the special-
ized isothermal-isobaric ensemble.37 This algorithm proceeds
in a sequence of two steps. Initially, one of theN mesogens
is picked sequentially and it is decided with equal probability
whether to displace its center-of-mass or to rotate it around
one of the three axes of the space-fixed Cartesian coordinate
system. The specific axis is also picked randomly with equal
probability for each of the axes. Once a displacement or a rota-
tion has been attempted for all mesogens, one attempt is made
to change the areaA= sxsy. The sequence ofN displacement
or rotation attempts plus the one attempt to changeA consti-
tutes an MC cycle. Our results are typically based upon MC
simulations employing 5.0×104 cycles for equilibration fol-
lowed by 1.5−3.0×105 cycles during which ensemble aver-
ages are computed.

Throughout this work we use the customary dimensionless

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

p

|ε3|

Fig. 2 Pitch p as a function of the magnitude of the chiral coupling
constant,|ε3|. The red line is intended to guide the eye. The
transition from the cholesteric to the blue phase occurs at
|ε3|= 0.2.25

(i.e., “reduced”) units, that is lengths are given in units of σ ,
energy in units ofεff , temperature in units ofεff/kB, and pres-
sure in units ofεff/σ3. Based upon previous work16,25 we
fix T = 0.95 andP‖ = 1.80 because under these thermody-
namic conditions a Boojum and a Saturn ring defect topol-
ogy is stable if a homogeneous colloid with respective planar
and homeotropic surface anchoring is immersed in a nematic
phase of the achiral version of our liquid crystal.16 Using in-
stead a Janus colloid, a Boojum ring defect topology would
form under the same thermodynamic conditions.16

Our systems typically accommodate 2× 104 to 7× 104

mesogens interacting with the various components of the
model via Eqn. (1), Eqn. (3), and Eqn. (10) where we set
ε1 = −ε2/2 = 0.04 throughout this work. Under these con-
ditions the liquid crystal is in the nematic phase ifε3 = 0.00
and in the cholesteric phase ifε3 = −0.10.25 These are the
only values of the chirality parameter considered in this work
unless otherwise stated.

In selecting this value of the coupling constantε3 some cau-
tion is advisable. First, one wishes to make|ε3| as large as pos-
sible in order to minimize the pitch of the cholesteric phase.
This is because we focus on a high ratio of the colloid’s size to
p. One could, of course, maximize the ratiod0/p (d0 = 2r0)
by increasing the size of the colloid. However, this would
not be sensible as it would require host phases comprising
many more mesogens. Consequently, this would render the
MC simulations computationally more demanding. Second, it
is known38 and also observed in our simulations (not shown
here) that in the presence of a colloid a transition to a blue
phase is favored even before this transition occurs in the ab-
sence of the colloid, i. e. in a bulk liquid crystal.25 Hence, to
avoid the transition, an upper threshold exists for|ε3| in our
model which is slightly larger than the value chosen.

To ensure that effects caused by the presence of the col-
loidal particle vanish at the boundaries of the simulation cell
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z

Fig. 3 Plots of componentsnx (N, ) andny (�, ) of the local
director field and of the local nematic order parameterλ+ (•, )
as functions ofz. Data are obtained forε3 =−0.10 andsz = 27,
where lines refer to the presence and symbols to the absence of the
colloid.

we calculated the local density profile

ρ(z) =
〈N(z)〉
A∆z

(12)

where〈N(z)〉 is the average number of molecules located in
a slab of volumeAδz centred onz. Plots in Fig. 1 reveal that
ρ(z) = 0 in the immediate vicinity of the substrate because
of the diverging repulsive mesogen-substrate interactions as
z→ −sz/2 (∆z(1) → 0) [see Eqn. (10)]. Asz increases,ρ(z)
turns out to be damped oscillatory function reflecting the for-
mation of layers of mesogens. These layers become increas-

ingly less pronounced asz increases becauseu(1)fs decays to
zero asz becomes larger. It is particularly gratifying that de-
spite this nontrivial structureρ(z) with and without a colloid
are nearly identically the same for|z|& 7 indicating that in this
region the presence of the colloid does not affect the substrate-
induced structure. As one move towards the center of the sim-
ulation cell (z= 0) where the colloid is located a region exists
whereρ(z) without a colloid is slightly larger than that in the
presence of a colloid which is to be expected.

The key property analyzed in this work is the local direc-
tor field n̂nn(rrr) which we obtain as a numerical solution of the
eigenvalue equation16,39

Q(rrr) n̂nn(rrr) = λ (rrr) n̂nn(rrr) (13)

whereλ (rrr) is the local eigenvalue associated with the local
eigenvector̂nnn(rrr) and

Q(rrr) =
1

2ρ (rrr)

N

∑
i=1

〈[3ûuui (rrr i)⊗ ûuui (rrr i)−1]δ (rrr − rrr i)〉 (14)

is the local alignment tensor. In Eqn. (14), angular brackets
denote an average in the isothermal-isobaric ensemble,ρ is
the local density, the operator⊗ represents the tensor product,

1 is the unit tensor, andδ is the Diracδ -function. Hence,Q
is a real, symmetric, traceless, second-rank tensor which we
represent by a 3×3 matrix. We obtain three eigenvalues and
-vectors numerically using Jacobi’s method.40 As usual we
take the largest eigenvalueλ+(rrr) as the local nematic order
parameter and its associated eigenvector as the local nematic
director field. In a similar fashion we obtain̂nnn0 from the non-
local analogues of Eqn. (13) and Eqn. (14).

Topological defects, which are the main subject of this work
are singularities of the local director field̂nnn(rrr). However, sin-
gularities in the mathematical sense cannot arise in practice
but are instead signalled by finite regions of lower order. In
the subsequent sections we are particularly interested in iden-
tifying such regions characterized by small values ofλ+ (rrr).
To that end we discretize our simulation cell into small cubic
boxes of side lengthδs= 0.3 and for all visualizations, mark
a box with a blue dot ifλ+ (rrr) ≤ 0.25. Whereas the choice
of this threshold is admittedly somewhat arbitrary, it turned
out in practice to optimize the visibility of the rather complex
three-dimensional variation of disclination lines.

In the cholesteric phase the characteristic helix evolves
along thez-axis as shown in Fig. 3. Fixingsz = 27, we
obtain a stable helical structure comprising half a pitch in
the z-direction of lengthp ≃ 50 as can be inferred from
Fig. 2. Because of the excluded volume near the substrate
sz−2δz≃ p/2 (see Fig. 1). The helix is stabilized through the
anchoring of mesogens at the solid substrate where we choose

θ (1)
0 = θ (2)

0 = 0◦ in Eqn. (11). The other case considered in
this work is a system in whichsz = 40 such that about three
quarters of an unstrained full pitch are accommodated. In this

case,θ (2)
0 = 0◦ as before butθ (1)

0 = 90◦. Other parameters of
our model system are summarized in Table 1.

At this stage it seams noteworthy that the cholesteric he-
lix can withstand quite a substantial strain upon compressing
or stretching itp/4. For example, in a system in which an
unstrained helix of total lengthp would form this helix can
be compressed all the way down to a total length ofp/4 by
reducingsz before the helix is destroyed. Destruction of the
helix is signalled by a decay ofλ+(z) to a value close to zero at
z= 0 in the middle between the substrates. Were the helix still
intact,λ+(z) would be constant across the pore at a relatively
high value of about 0.4.

The problem with straining the cholesteric helix on account
of an improperly chosen value ofsz can in principle be avoided
by replacing the monostable directional anchoring conditions
(one easy axis) by degenerate planar conditions (infinitely

many easy axes) so thatn̂nn(1)0 andn̂nn(2)0 are free to adjust them-
selves in thex–y plane so as to remove the spurious strain. In
this case an unstrained helix of a total length corresponding to
some fraction ofp can be accommodated irrespective ofsz.

However, in view of the Janus colloid, where the angle be-
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tween its orientation and the direction of the local director field
enters as a new parameter, the monostable directional anchor-
ing of mesogens at both substrates is to be preferred over the
degenerate planar one. This is because in the later case any

orientation of̂nnn(1)0 andn̂nn(2)0 on the unit circle in thex–y plane

is energetically permissible as long as the angle betweenn̂nn(1)0

andn̂nn(2)0 remains fixed such that at any givensz an unstrained
helix of constant length can be accommodated. Unfortunately,
this way one loses control over the orientation of the local di-
rector field at the position of the Janus colloid.

To ensure that the cholesteric order at the boundaries is not
perturbed by the presence of the colloid we compute the local
director fieldn̂nn0(z) as a function ofz. Plots of the components
nx(z) andny(z) of n̂nn0(z) and of the local nematic order param-
eterλ+(z) reveal that an unperturbed helix exists in the host
phase (see Fig. 3). This helix is apparently affected only neg-
ligibly by the presence of the colloid at the simulation cell’s
boundaries as one concludes from Fig. 3.

With n̂nn(rrr) from MC we also compute the Frank free energy
as a quantitative measure of deformation of the local direc-
tor field. In the one-constant approximation, the Frank free
energy can be cast as41

F

K
=

1
2

∫

V
drrr [∇ · n̂nn(rrr)]2+[n̂nn(rrr) ·∇× n̂nn(rrr)+q0]

2

+[n̂nn(rrr)×∇× n̂nn(rrr)]2 (15)

In Eqn. (15), the constantq0 ≡ 2π/p is the wave number of
the cholesteric helix andK ≃ 1.6εff/σ 42 is a material-specific
constant, for our model turns out to be of the same order of
magnitude as that characteristic of the Gay-Berne model.43

Moreover, assumingT =285K and a particle size ofσ =3.4×
10−10m we obtainεff ≈ 3.9×10−21J. With these numbers the
elastic constant for our model turns out to beK ≈ 19pN in SI
units. Thus, this order of magnitude is realistic for a typical
liquid crystal such asp-azoxyanisole.44 In Ref.42 it was also
shown that the one-constant approximation is valid here on
account of the small aspect ratio of the mesogens. As one can
see from Eqn. (15)q0 modifies the twist contribution toF . In
the nematic phase, whereq0 = 0 becausep → ∞, Eqn. (15)
reduces to the standard form1 such thatF is composed of the
usual splay, twist, and bend contributions.

In general, the contribution of each term in Eqn. (15) is
weighted separately by material-specific constantsK1, K2, and
K3 which can be attributed to bend, splay, and twist defor-
mations of the director field, respectively. However, the one-
constant approximationK1 ≃ K2 ≃ K3 = K is very well sat-
isfied for the Hess-Su model.42 This is because of the rela-
tively small aspect ratio of 1.30 of mesogens in the Hess-Su
model. In practice, we computeF numerically by differenti-
atingn̂nn(rrr) according to Eqn. (15).

At this stage it seems noteworthy that the approach taken
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Fig. 4 Disclination line represented by a set of blue dots (see text)
in the vicinity of a spherical colloidal particle of radiusr0 = 15
(d0/p= 0.6) suspended in a cholesteric host phase. Mesogens are
anchored in a locally homeotropic fashion at each point of the
colloid’s surface. The red line is the fit of the expression in
Eqn. (19) to the MC data takingreff ≃ 20 as a fit parameter. The
little double arrows indicate the local director and the coloured plane
visualizes their continuous variation along thez axis. The colors
green and red indicate one or the other side of this plane.

here is different from the one usually applied in that we obtain
n̂nn0(rrr) as an ensemble average corresponding either to a state at
thermodynamic equilibrium or to a rather stable, ”long lived“
metastable state. That is we obtainn̂nn0(rrr) as result of inter-
molecular interactions. The conventional procedure is to take
a mean-field expression for the free energy and minimize this
functional with respect tônnn0(rrr) in principle. Both approaches
should provide consistent results as long as the mean-field ap-
proximation remains valid.

3.2 Homogeneous colloid in a cholesteric host phase

To validate the model system as being sufficiently realisticwe
begin our presentation of results by considering a chemically
homogeneous colloid suspended in a cholesteric host phase.
In this case the resulting defect topology is well known both
theoretically using lattice Boltzmann calculations20,21and ex-
perimentally.13

The cholesteric phase is characterized by a helix evolving
along thez-axis. As shown in Fig. 3 the unperturbed helix
(i.e., sufficiently far away from the surface of the colloid)is
characterized by a local director field that can be fitted almost
perfectly by the expression

n̂nn0 (z) =




−cos(q0z+ϕ0)
sin(q0z+ϕ0)

0


 (16)

To accommodate a helix of the desired length between the sub-
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Fig. 5 As Fig. 4, but for a planar anchoring. The fit of Eqn. (22) to
the MC data is obtained forreff = 22 andδ r = 0.2reff.

strates we introduce the phase shiftϕ0 which can be obtained
by simply fitting the MC data in Fig. 3 with Eqn. (16). Alter-
natively,ϕ0 can be dertermined as follows.

Because of the form of the fluid-substrate potential function
given in Eqn. (10) the minimum of that potential is located at
zmin = ±sz/2∓ δz depending on whether the upper or lower
substrate is considered. To accommodate a helix of pitchp
between substrates separated by a distancesz we need to have

ϕ0 =±
π (sz−2)

p
+θ (k)

0 (17)

whereθ (k)
0 (k= 1 ork= 2) is the anchoring angle either at the

lower (k= 1,+) or at the upper substrate (k= 2,−). For our
present choiceε3 =−0.10, we determinep≃ 50.25 With these
values and a given anchoring angle either at the lower or at the
upper substrate, the phase shiftϕ0 can easily be determined.

The mesogens are anchored directionally at the lower sub-
strate such that their longer axes point along they-axis, and

henceθ (1)
0 = π

2 in Eqn. (11). Under these conditionsϕ0 ≈
5
4π

is obtained from Eqn. (17) forsz = 40. Because we have cho-
sen bothp andsz such that three quarters of a full pitch can
be accommodated without exposing the helix to any spurious
strain, we also anchor our mesogens at the upper substrate di-
rectionally such that their longer axes now point along thex-

axis which is realized by settingθ (2)
0 = 0 in Eqn. (11) leading,

of course, to the sameϕ0 from Eqn. (17).
We begin our discussion of results by considering a chem-

ically homogeneous colloid withr0 = 15 (d0/p= 0.6) which
anchors the mesogens in a locally homeotropic fashion. If this
colloid were immersed in a nematic rather than a cholesteric
host phase the well-known Saturn ring defect topology would
evolve.16 It consists of a closed disclination line encircling the
colloid in the vicinity of its equator if the line connectingthe

colloid’s North and South Pole is parallel to the far-field direc-
tor.

Because of a possible mismatch betweenn̂nn0 (z) in a
cholesteric phase and the local orientation of the mesogensat
the surface of the colloid, defects also arise in this case. How-
ever, in the present case their topology is much more com-
plex than for a nematic host fluid. For the visualization of this
topology we adopt the procedure already described in Sec. 3.1.
The plot in Fig. 4 shows resulting disclination lines entangling
a colloid suspended in a cholesteric host phase. The change
of n̂nn0 (z) along thez-axis is indicated by the small double ar-
rows rotating around a line parallel to thez-axis in thex–y
plane. The resulting disclination line is closed and wrapped
around the colloid in a rather complex fashion. In particular,
the plot in Fig. 4 agrees very nicely with earlier lattice Boltz-
mann studies21 and experimental results13 and thus validates
the model used here.

To rationalize the complex spatial variation of the discli-
nation line one may invoke a simple geometrical argument.
Consider a vectorrrr pointing from the center of the colloid in
an outward direction such that locallyrrr is collinear to the ori-
entation of a mesogen that is homeotropically aligned. Hence,
for an ideal defect to arise,rrr needs to be orthogonal to the
local director field satisfying the expression

0=n̂nn0 (z) · rrr

=




−cos(q0z+ϕ0)
sin(q0z+ϕ0)

0


 ·




±
√

r2
eff − y2− z2

y
z


 (18)

wherey andz are restricted to the interval[−reff, reff]. The ef-
fective radiusreff arises because depending on the anchoring
strength, the presence of repulsive mesogen-colloid interac-
tion, and details of the thermodynamic conditions, disclination
lines will in general be removed to some extent from the col-
loids’s surface, thusreff > r0. In practice, we shall takereff as
an adjustable parameter that we choose to match the MC data
to the maximum extent possible. Equation (18) can easily be
solved and one obtains the disclination-line path

rrr⊥ (z) =




±
√

r2
eff − z2sin(q0z+ϕ0)

±
√

r2
eff − z2cos(q0z+ϕ0)

z


 (19)

in parametric form. Notice, that only the “++” and “−−”
combinations of the vector components ofrrr⊥ are solutions of
Eqn. (18). By fitting our MC data we obtainreff ≃ 20. With
this value the red line in Fig. 4 represents the disclination-
line path calculated from Eqn. (19) indicating that the above
reasoning is well justified. It is also interesting to note that
larger colloids are encircled by disclination lines with more

8 | 1–16

Page 8 of 16Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



than single loop. This is effected in Eqn. (19) by increasing
reff. Disclination lines with more than a single loop have also
been observed in lattice Boltzmann simulations presented in
Ref.20.

However, if the spherical, chemically homogeneous colloid
anchors the mesogens in a locally planar fashion, the defect
topology changes dramatically. Instead of one closed discli-
nation loop as in Fig. 4 we observe two individual disclination
lines of finite length wrapped around the colloid as shown in
Fig. 5. Again, our results are in accord with earlier lattice
Boltzmann results.20

The geometric concept behind Eqn. (18) can also be applied
to the case of planar anchoring but requires additional modi-
fications. In this case, the ideal defect arises if the preferred,
planar anchoring is perpendicular to the local director, thus
n̂nn0(z) is parallel torrr and satisfies the expression

n̂nn0(z) · rrr = reff (20)

The solution of this expression leads to two defect points
due to the fact that̂nnn0(z) is rotating in thex–y plane and can
only be parallel torrr if its z-components vanish. For that reason
one expects the formation of these defect points atz= 0.

However, our simulation data reveal two line defects in-
stead. In this case, one may wonder how the plot in Fig. 5
depends on our criterion to identify disclination lines. Tothat
end we varied our threshold. It turned out that the length of
the disclination lines depicted in Fig. 5 is independent of the
threshold used forλ+(rrr); however, the thickness of the blue
lines vanishes completely (and thus the disclination lines) if
one usesλ+(rrr)≤ 0.05 to identify regions of lower order in the
cholesteric host phase. Because the threshold value forλ+(rrr)
does not affect the length of the disclination lines shown in
Fig. 5, we propose the following line of arguments to unravel
the apparent discrepancy between MC data and the point de-
fects that would form ideally.

In general, the formation of topological defects (which in a
mathematical sense are singularities in the director-field) costs
free energy. However, it is conceivable that in comparison
with the formation of point defects, a strong local deformation
of the (continuous) director field is even more costly in terms
of free energy. If that is so, the formation of defects is ad-
vantageous and entire lines of defects may form. Eventually,
however, the deformation of the director field wins energeti-
cally such that the disclination lines must end and therefore be
of finite length.

Based upon this qualitative energetic argument one would
also argue that a disclination line forms as long as the mis-
match between̂nnn0(z) and the local alignment of mesogens at
the colloid’s surface is maximized. Mathematically speaking,
the disclination lines satisfy

∂ [n̂nn0(z) · rrr]
∂y

∣∣∣∣
z
= 0 (21)

x

y

(a)
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Fig. 6 (a) Sketch of a cross-section of the simulation cell in thex–y
plane atz= z′. Colloid andn̂nn0(z) are represented by the gray shaded
area and the dashes respectively. Red and green areas refer to
respective regions in which locally planar anchored mesogens are
orthogonal or collinear tônnn0(z). (b) Corresponding data for̂nnn0(z)
(dashes) and the local order parameter atz= 0.2 (see attached color
bar).

for each fixedz. Differentiating the right side of Eqn. (18) and
solving Eqn. (21 one easily verifies that the disclination line
path is given in this case by

rrr‖(z) =




±
√

r2
eff − z2cos(q0z+ϕ0)

±
√

r2
eff − z2sin(q0z+ϕ0)

z


 (22)

Notice though thatrrr‖(z) in Eqn. (22) again turns out to en-
circle the colloid in a closed loop as compared to Eqn. (19),
only sine and cosine functions are interchanged. However,
to rationalize that disclination lines are of finite extent in re-
ality, we argue that the largest mismatch betweenn̂nn0(z) and
the locally planar alignment of mesogens at the surface of the
colloid arise atz= 0. The mismatch then decreases with in-
creasing|z|, vanishing eventually at|z| = reff. However, there
has to exist a certain threshold valuen̂nn0(z) · rrr‖ = δ r for the
formation of topological defects. Beyond this value an elas-
tic deformation of the director field is energetically favored
compared to the defect formation. Clearly, the value of the
threshold isa priori unknown but may be adjusted likereff to
obtain an optimal representation of the MC data. This repre-
sentation is possible forreff ≃ 22 andδ r ≃ 0.8reff as the plot
in Fig. 5 illustrates where again the “++” and “−−” combi-
nations of the components ofrrr‖ in the interval[−reff, reff] have
been used.

The similarity between Eqn. (19) and Eqn. (22) can be ra-
tionalized as follows. Consider a cross section of the colloid in
thex–y plane that is located at somez= z′. With respect to the
local director̂nnn0(z′) but irrespective of both the actual anchor-
ing of mesogens at the surface of the colloid and the direction
of n̂nn0(z′), four distinguished points exist (see Fig. 6). At two
of themn̂nn0(z′) is locally parallel to the cross section whereas
at the other twônnn0(z′) is locally orthogonal to it. Hence, at the
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Fig. 7 The red line represents the pitch of a TNC withsz = 27 as a

function of the the angleθ (1)
0 at constantθ (2)

0 = 0◦ (see Eqn. 11)
whereas the circles mark the relevant pitches used in Fig. 8 and 9 in
a TNC.

latter two one anticipates the formation of defects. The posi-
tion of defects alternates with position of the other two points
at which the local orientation of the cross section agrees per-
fectly with n̂nn0(z′). Because of Eqn. (16) all four points rotate
in thex–y plane in a counter clockwise fashion with increasing
z.

3.3 The twisted nematic cell

In the preceding section anintrinsic cholesteric host phase
could form because of the chirality of the interactions between
a pair of mesogens. However, aquasi-cholestericphase may
be induced if one places achiral mesogens (ε3 = 0) between
planar solid surfaces with hybrid anchoring for which the en-
ergetically most favorable alignment of mesogens at one sub-
strate differs from that at the other one.

Consider first a homogeneous anchoring scenario realized

by settingθ (1) = θ (2) in Eqn. (11), such that̂nnn(1)0 = n̂nn(2)0 . If
thermodynamic conditions have been chosen properly, a ne-
matic phase will form between the substrates characterizedby

n̂nn(1)0 = n̂nn(2)0 = n̂nn0. If one now maintainsθ (2)
0 but changesθ (1)

0
the mesogens have to change their orientation from the one
imposed by the lower substrate to the favorable one at the up-
per substrate. This is possible by gradually switching the local

director field fromn̂nn0(−sz/2) = n̂nn(1)0 to n̂nn0(sz/2) = n̂nn(2)0 along
thez-axis normal to the substrates’ planes. As a result a heli-
cal structure evolves along thez-axis similar to the one formed
when the mesogens themselves are chiral.

However, in the present case the quasi-cholesteric phase is
induced solely by the substrates: The important differenceis
that in the case of intrinsic chirality, the pitch of the cholesteric
helix can be modified by changingε3 in the mesogen-mesogen
interaction potential. A similar tuning of interactions is, of
course, impossible in real materials. Here the pitch is a
quantity characteristic of any given material. In the quasi-

cholesteric phase, however,p is a function of the angle in-

crement∆θ0 ≡ θ (1)
0 − θ (2)

0 and the handedness of the helix is
determined by the sign of∆θ0 (see Fig. 7). Notice, in par-
ticular, the different pitch in the quasi-cholesteric helix (see
Fig. 7) compared with typical values ofp in an intrinsically
cholesteric liquid crystal (see Fig. 2).

The formation of a quasi-cholesteric, substrate-induced
phase can also be realized experimentally in a so called twisted
nematic cell (TNC). However, experimentally it is generally
impossible to gradually vary the anchoring at one substrate
relative to the other. In an experimental setup one would sim-
ply employ homogeneously anchoring substrates where one of
them is rotated in thex–y plane relative to the other.

If a chemically homogeneous colloid is immersed in a
quasi-cholesteric phase, one anticipates the formation of
disclination lines. Starting with a colloid anchoring meso-
gens in a locally homeotropic fashion, we see in Fig. 8(a)
that the well-known Saturn ring defect topology arises for the

caseθ (1)
0 = θ (2)

0 = 0◦ where the host phase is nematic with
n̂nn0 pointing in thex-direction. Because of the direction ofn̂nn0

the maximum mismatch between̂nnn0 and the local alignment
of mesogens at the colloidal surface arises around the equator
of the colloid as one can see from Fig. 8(a).

Increasing nowθ (1)
0 in steps of 10◦ sequentially from one

MC run to the next one realizes from Fig. 7 thatp decreases
from infinity (nematic phase) to a large but finite value in the
quasi-cholesteric phase. Plots in Fig. 8(b)-8(f) show thatin the
quasi-cholesteric phase the initial Saturn ring [see Fig. 8(a)]

becomes increasingly deformed asp decays (i. e., asθ (1)
0 in-

creases). However, it is particularly noteworthy from the plots
in Fig. 8 that both undeformed and deformed disclination lines
can be represented by the simple analytic expression given in
Eqn. (19). The projection of disclination lines onto thex–y
plane in Fig. 8(f) in conjunction with its full three-dimensional
representation in Fig. 8(e) reveals that the disclination line is

a closed loop wrapped around the colloid forθ (1)
0 = 110◦.

At this point another feature of a quasi-cholesteric helix in

a TNC setup should perhaps be emphasized. Forθ (1)
0 > 90◦

the helix has two options of responding to a further increase

of θ (1)
0 . On the one hand,p may decreasefurther such that

the alreadymetastablequasi-cholesteric helix becomes more
twisted or, on the other hand, the handedness of the helix may
flip at the expense of anincreaseof p. The latter is possible
because of the head-tail symmetry of the achiral mesogens in
our model. In practice, we observe in our MC simulations
that the change in helix handedness and a simultaneous sudden

increase ofp occur under TNC conditions ifθ (1)
0 > 110◦.

At this stage another important difference between a quasi-
cholesteric phase in a TNC setup and a true cholesteric phase
in a liquid crystal with intrinsic mesogenic chirality arises.
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Fig. 8 As Fig. 4, but for a spherical colloid of radiusr0 = 6 suspended in a TNC. The angleθ in the top-right corner of the plots (a)–(f)
indicates the rotation of the directional anchoring vectorin Eqn. (11) and is used for calculation of the pitch. The ratio d0/p in parts (a)–(e) is
0.00, 0.04, 0.08, 0.12, and 0.15 respectively.

Starting with a quasi-cholesteric and a cholesteric phase of
the samep we are able to reducep continuously in the lat-
ter case by increasingε3. At some critical value ofε3 the
cholesteric phase undergoes a phase transition to a blue phase
as we demonstrated elsewhere.25 This blue phase is distin-
guished from the cholesteric phase structurally because itex-
hibits double- instead of single-twist helices. A similar phase
transition is impossible in the TNC with a liquid crystal com-
posed of achiral mesogens.

Turning now to a discussion of a TNC where a colloid
with planar local surface anchoring is immersed in a quasi-
cholesteric host phase, we investigate in Fig. 9 the effect of

gradually decreasingp asθ (1)
0 increases. Starting again with

the nematic phase of infinitep (e. g., θ (1)
0 = θ (2)

0 = 0◦) we
see from Fig. 9(a) that the well-known Boojum defect topol-
ogy forms where two defects are located at the North and

South Pole of the colloid. Again, asθ (1)
0 increases from its

initial value of 0◦ the localized defects of the Boojum topol-

ogy become short lines which are stretched the largerθ (1)
0 (the

smallerp) becomes [see Fig. 9(b)-9(e)]. Forθ (1)
0 = 120◦ the

three-dimensional representation in Fig. 9(e) and its projec-
tion onto thex–y plane in Fig. 9(f) show that the disclination
lines are partially wrapped around the colloid but remain dis-
connected. This is apropos of the situation depicted in Fig.5
for a colloid suspended in a cholesteric phase composed of in-

trinsically chiral mesogens. However, compared with the plot
in Fig. 5 the disclination lines depicted in Fig. 9(f) are shorter,
which is primarily ascribed to the smaller size of the colloid in
the latter case. However, the reader should realize that it is not
the absolute value of the colloid’s size that matters but only the
ratio between this size and the pitch. Typical values for this
ratio in the present case [see Fig. 8(f)] are 0.16 as opposed to,
for instance, 0.6 for data presented in Fig. 4 or Fig. 5.

For anchoring anglesθ (1)
0 > 120◦ the same sudden change

in handedness of the already metastable quasi-cholesteriche-
lix and increase ofp occurs that was already described above
for a colloid with locally homeotropic surface anchoring of
the mesogens. Nevertheless, the plots presented in Fig. 9(a)-
Fig. 9(f) also show that the simple analytic expression for
disclination lines given in Eqn. (22) is capable of represent-
ing the MC data very well. Hence we conclude that as far as
disclination lines are concerned there is essentially no differ-
ence between a cholesteric phase formed by intrinsically chiral
mesogens and a quasi-cholesteric phase composed of achiral
mesogens in a TNC.

3.4 Janus colloid

If, instead of a colloid with homogeneous surface anchoring,
a Janus colloid is immersed in a cholesteric phase, the already
quite complex spatial variation of disclination lines becomes
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0 = 120◦θ (1)
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Fig. 9 As Fig. 8, but for planar anchoring andd0/p= 0.16 in part (e).

even more complicated. This is because in the case of a Janus
colloid the orientation of its antithetic surfaces with respect to
the local orientation of the director field at the position ofthe
colloid’s center of mass enters the analysis as a new parameter
ϑ which we introduce viânnn0(0) · ûuuJ= cosϑ whereûuuJ is a unit
vector describing the orientation of the Janus colloid. Hence,
we focus on the rotation of the Janus colloid around thez-axis,
such that̂uuuJ · êeez = 0.

For all the results presented below we fix the position of
the Janus colloid such that its center of mass coincides with
the origin of the Cartesian coordinate system located at the
center of the simulation cell. To analyze the effect of different
orientations of the Janus colloid with respect to the cholesteric
helix we proceed as follows.

We fix ûuuJ such that is parallel to thex-axis. By changing

the anglesθ (k)
0 (k= 1,2) in Eqn. (11) simultaneously one can

then expose the Janus colloid to different orientations of the
director field. Therefore, disclination lines form over different
parts of the Janus colloid asϑ is varied. Moreover, because
we fix the substrate distancesz = 27 and maintain the coupling
constantε3 = −0.10 the pitch is always fixed such that half a
pitch fits between the substrates without spurious strain.

Results plotted in Fig. 10 illustrate the rather complex spa-
tial variation of disclination lines asϑ varies between 0◦ and
90◦. In all cases we have only a single line of disclinations
with disconnected ends such that the line neither forms a
closed loop as in the case of a chemically homogeneous col-

loid with homeotropic surface anchoring nor form two discon-
nected lines as is the case for locally planar surface anchoring.
However, as before in the case of a chemically homogeneous
colloid with planar anchoring the disclination line we are deal-
ing with here is of finite length. The fact that we are dealing
only with a single disclination line emphasizes the interplay
between the locally planar and homeotropic surface anchoring
over two hemispheres of the Janus colloid. Generally speak-
ing, the plots in Fig. 10(a) and 10(b) show that the way in
which the disclination line is wrapped around the Janus col-
loid changes significantly withϑ .

This variation of disclination lines withϑ also has an-
other interesting consequence which becomes apparent as one
changes the size of the Janus colloid. As it is mainlyn̂nn0(rrr)
that changes asϑ is varied, it seems plausible to discriminate
energetically between states for differentϑ via the Frank free
energy which is a quantitative measure of the free energy den-
sity associated with different defect topologies. Based upon a
quantitative analysis of the Frank free energy [see Eqn. (15)]
plots in Fig. 11 illustrate the effect. Starting with a small
colloid of hard-core radiusr0 = 3 (d0/p = 0.12) we see in
Fig. 11(a) that the Frank free energy is apparently insensitive
to a variation ofϑ except the weak minimum atϑ = 0. Com-
paring Fig. 10(a) and Fig. 12(a) reveals the size independence
of the defect structure atϑ = 90◦ as far as the overall topology
of the disclination line is concerned. This changes dramati-
cally at ϑ = 0◦. The disclination line in Fig. 12(b) is much
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Fig. 10As Fig. 4, but for a Janus colloid (r0 = 6, d0/p= 0.24) with
planar surface anchoring at the upper (black) hemisphere and a
homeotropic anchoring at the lower (grey) hemisphere. The arrow
through the colloid indicates its orientation̂uuuJ. The configurations
are related to (a)ϑ = 90◦ and (b)ϑ = 0◦.

closer to the surface and is less curved than the one shown in
Fig. 10(b). These differences between disclination lines pre-
sented in Fig. 10(b) Fig. 12(b) might be the reason for the dif-
ferent behavior ofF (ϑ). For a vanishing ratiod0/p (p→ ∞,
nematic host phase) one anticipates the formation of a Boo-
jum ring defect topology as confirmed by plots in Fig. 10(c)
and in agreement with experiments, Landau-de Gennes theory,
and molecular simulations.7,15,16Thus, the defect topology in
a cholesteric phase, whered0/p= 0.12 [see Fig. 12(b)] is in-
termediate between the one shown in Fig. 10(b) (d0/p= 0.24)
and the Boojum ring topology shown Fig. 12(c).

Returning now to a more detailed analysis of the Frank free
energy in Fig. 11, we notice that ford0/p = 0.16 the plot of
F in Fig. 11(a) reveals thatF becomes a monotonically de-
caying function ofϑ with the largest values arising at small
angles. However,F quickly levels off asϑ increases beyond
30◦. Going finally to a Janus colloid ofr0 = 6 (d0/p= 0.24)
we notice that the plot ofF in Fig. 11(a) exhibits a maximum
atϑ = 0◦ and then decays monotonically until a constant value
is assumed. The different values in the plateaus of all three
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Fig. 11The Frank free energy in units ofK (left ordinate) as a
function ofϑ is shown in (a) for colloids of radiusr0 = 3
(d0/p= 0.12) ( ), r0 = 4 (d0/p= 0.16) ( ), andr0 = 6
(d0/p= 0.24) ( ). The conversion to SI units (right ordinate) is
effected by usingK ≈ 19pN (see Sec. 3.1). Plots in (b) represent the
rescaled Frank free energy for the three colloid’s sizes.

curves in Fig. 11(a) are related to the increase in the length
of the disclination lines as the colloid becomes bigger. Divid-
ing the curves plotted in Fig. 11(a) by the respective plateau
valueF0 reveals that the width of the free energy barrier as
well as the relative height of this barrier increases the larger
the colloid becomes. This can be seen in Fig. 11(b) where the
plot of F/F0 approaches the common value of 1 at increas-
ingly largerϑ as the radius of the colloid increases. The same
results are expected for a fixed size of the Janus colloid but
increasingly shorter pitch. The crucial quantity here is, again,
the ratio between the colloid’s size and the pitch and not indi-
vidual values of these quantities.

Because of the periodicity of the cholesteric helix the re-
sults shown in Fig. 11 will also be repeated periodically. For
example, for the curves shown in Fig. 11 there will be an-
other free-energy barrier at angles approaching 180◦. These
observations offer the possibility for the followingGedanken-
experiment. Suppose, one were able to fix the orientation of a
Janus colloid which might be conceivable by using a homoge-
neous magnetic field.45 For Janus colloids much bigger then
the ones that could be studied here on account of computa-
tional limitations most angles would correspond to energeti-
cally unfavorable regions because the width of the free-energy
barrier increases withd0/p. Hence, the Janus colloid would be
more or less restricted to positions somewhere in thex-y plane
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Fig. 12As Fig. 10, but forr0 = 3, (d0/p= 0.12). (a)ϑ = 90◦, (b) ϑ = 0◦, and (c) Boojum ring defect topology forming in a nematic host
fluid (d0/p= 0). Notice that only a fraction of the entire system is shown.Therefore, the local director fields at the upper and lower boundary
of thez-axis are not orthogonal as they would be atz=±sz/2 on account of the anchoring at the substrates.

so that it might be feasible to form a quasi two-dimensional
layer of Janus colloids all with the same orientation through
orientational self-assembly.

4 Conclusions

In this work we employ MC simulations carried out in the
isothermal-isobaric ensemble to calculate the local director
field of a cholesteric liquid-crystal host phase in the presence
of an immersed spherical particle. We employ a simple, modi-
fied Lennard-Jones model for the liquid crystal following ear-
lier suggestions by Hess and Su.26 To form a cholesteric phase
the mesogens need to be chiral. We introduce chirality through
a pseudo-scalar coupling in addition to the other orientation
dependent terms in the Hess-Su potential. This follows in
spirit a suggestion by Memmeret al. for the interaction be-
tween a mesogenic pair in the classical Gay-Berne model.23

By considering homogeneous colloids with either locally
planar or homeotropic surface anchoring of the mesogens we
determine disclination lines that had already been obtained
earlier in either experiments or in lattice-Boltzmann calcula-
tions.13,20,21Besides the validation of our model through this
agreement with earlier works we also offer a simple geomet-
rical argument that explains the complex spatial variationof
disclination lines quite nicely.

Based upon the present study one might consider a system
with two colloids immersed in a cholesteric host to study the
effectivepair-wise interactions. This has already been done
in experiments22 and lattice-Boltzmann calculations46,47 and
could, in principle, also be realized in our model system. In
another work we disperse two homogeneous colloids with pla-
nar anchoring in a nematic phase and obtain the Frank free en-
ergy as a function of the distance between two colloids and the
angle formed by the distance vector connecting their centers
and the nematic director.48 It turns out that the Frank free en-

ergy is well-suited to study the effective interactions between
a colloidal pair that are mediated by a nematic host phase.
The Frank free energy allowed us48 to explain quantitatively
the “magic angle” of about 30◦ formed between the center-of-
mass distance vector of the colloidal pair andn̂nn0 which is ob-
tained experientially6,11 for a stable configuration of the col-
loids. From this agreement we conclude thatF (ϑ) is equally
well-suited to determine the stability of a Janus colloid im-
mersed in a cholesteric host phase.

However, to apply the approach of Ref.48 to study effec-
tive interactions between a pair of Janus colloids in such a
cholesteric phase comprehensively would be much more de-
manding. Here the Frank free energy is a function of all
three coordinates (e.g. spherical coordinates) and the ratio
of d0/p. In the case of Janus colloids one has to take into
account the relative orientation of the Janus colloid with re-
spect to the cholesteric helix in addition. Given large and suf-
ficient computational resources one can, of course, use this
model system to study a colloidal interactions mediated by the
cholesteric phase. However, at least at present the dimension
of the parameter space corresponding to such a setup seems
prohibitive.

In addition to the Hess-Su potential, where the intrinsic chi-
rality is introduced via the interaction potential, we alsostudy
a quasi-cholesteric phase where the mesogen-mesogen inter-
action is achiral and the formation of a cholesteric helix is
introduced through the anchoring of mesogens at two planar
solid substrates. This setup follows in spirit that characteris-
tic of a TNC. By comparing disclination lines arising in the
intrinsically cholesteric and the quasi-cholesteric liquid crys-
tal, we demonstrate that the topology of the disclination lines
apparently only depends on the presence of a helically vary-
ing director field irrespective of the precise origin of the helix.
Again, the analytic expression derived here from a geometri-
cal argument is capable of describing the complex topology of
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the resulting disclination lines.
Although the topology of disclination lines evolving around

a spherical colloid with homogeneous surface anchoring is
quite complex, even more complicated structures occur in
the vicinity of a Janus colloid consisting of two hemispheres
at which the mesogens are anchored in a locally planar and
homeotropic fashion, respectively. Because of the presence of
the two hemispheres of antithetic surface anchoring, the orien-
tation of the Janus colloid relative to the local director field of
the cholesteric phase matters. Depending on this orientation
the topology of disclination lines varies.

Associated with these different topologies is a higher (or
lower) free energy which we determine by calculating the
Frank free energy in the one-constant approximation. The
one-constant approximation is nearly exact because of the
small aspect ratio of mesogens in the Hess-Su model.26

By varying the size of the colloid or the pitch of the
cholesteric helix, we show that barriers in free energy arise
for certain orientations of the Janus colloid relative to the lo-
cal director field. These barriers increase in magnitude with
growing size of the Janus colloids. Simultaneously, the range
of angles over which the free-energy barriers are observed
becomes wider as the colloid becomes larger (or the pitch
smaller). As the size of the colloid as well as the pitch are
controllable parameters in corresponding experiments7,13,49,
it seems conceivable that similar free-energy barriers might be
used to form self-assembled quasi two-dimensional layers of
Janus colloids experimentally, provided the orientation of the
Janus colloid can be maintained. The latter may be possible
by using homogeneous magnetic fields such that orientation-
ally ordered quasi two-dimensional arrays of Janus colloids
could be formed that might have interesting properties. How-
ever, at this stage more in-depth research is clearly required to
investigate the potential usefulness of the effect reported here
for future applications.

Finally, it seems worthwhile emphasizing that the disclina-
tion lines obtained in this work have been computed as ensem-
ble averages from relatively long Markov chains of configura-
tions. In none of these individual simulations we observed
“jumps” between structurally or thermodynamically distinct
states similar to what is occasionally encountered in MC sim-
ulations of coexisting phases near the coexistence line. Hence,
we conclude that the data presented here correspond to ther-
modynamically stable or metastable states of a lifetime ex-
ceeding that of the simulations considerably.
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14 I. Muševič,Phil. Trans. R. Soc. A, 2013,371, 20120266.
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