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We investigate the buckling of a slender rod embedded in a soft elastomeric matrix through a combination of experiments,
numerics and theory. Depending on the control parameters, both planar wavy (2D) or non-planar coiled (3D) configurations are
observed in the post-buckling regime. Our analytical and numerical results indicate that the rod buckles into 2D configurations
when the compression forces associated to the two lowest critical modes are well separated. In contrast, 3D coiled configurations
occur when the two buckling modes are triggered at onset, nearly simultaneously. We show that the separation between these
two lowest critical forces can be controlled by tuning the ratio between the stiffness of the matrix and the bending stiffness of the
rod, thereby allowing for specific buckling configurations to be target by design.

1 Introduction

A slender fiber can buckle under axial compression even when
embedded, and therefore supported, inside an elastomeric ma-
trix1–3. As a result, planar periodic configurations (2D) have
been observed in microtubules4,5, fiber-reinforced compos-
ites6–8, and pipelines on seabeds9,10. Non-planar coiled con-
figurations (3D) have also been observed from the buckling
of other constrained rodlike structures, including: plant roots
growing in soil11, packaged DNA in viruses12, and coil tubing
in oil-field operations13,14. Interestingly, it has recently been
shown that a silicon nano-wire attached to a soft substrate15

can exhibit either planar or non-planar configurations, depend-
ing on the stiffness of the substrate, which can be tuned. Find-
ing both 2D and 3D configurations in the same system rais-
es the fundamental question regarding the conditions under
which an embedded fiber can buckle in-plane or out-of-plane.
From a practical perspective, modern nano-devices that in-
clude rodlike components can be used for sensors, resonators
and electromagnetic wave absorbers16–18. Rationalizing the
post-buckling regime in this class of embedded filamentary
structures could therefore open opportunities for functionality
by generating complex 3D shapes, reversibly and on-demand.

Here, we investigate the mechanical response, under com-
pression, of a single elastic fiber (rod) embedded in an elas-
tomeric matrix. We seek to rationalize the conditions under
which either planar or non-planar buckling configurations are
attained, depending on the combined stiffnesses of the ma-

trix and the rod. Throughout, we assume that no delamination
occurs between the rod and the matrix. We start by perform-
ing precision model experiments where a Nitinol rod is em-
bedded within a Polydimethylsiloxane (PDMS) cylinder, and
the ensemble is compressed uniaxially. Our experiments re-
veal that for matrices that are sufficiently stiff (with respect to
the bending stiffness of the rod) the rod buckles directly on-
to a non-planar coiled configuration. By contrast, with softer
matrices, both 2D and 3D buckling configurations can be ob-
served. Moreover, we find that the morphology of the buckled
patterns and their associated characteristic length scales can
be tuned by changing the geometric and material parameters
of the system. These results are rationalized by a model based
on the classic Winkler foundation19. Our analysis suggest-
s that non-planar configurations are triggered when the criti-
cal buckling loads associated to the first two eigenmodes be-
come comparable. This hypothesis is tested numerically by
performing both dynamic simulations and finite element anal-
yses. The simulations confirms that the separation between
the two lowest critical loads determines whether a rod buck-
les in-plane or out-of-plane. Moreover, the numerical results
highlight the important effect of the boundary conditions and
the presence of shear deformation in the matrix in setting the
observed buckling patterns.
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2 Experiments

2.1 Experimental setup

In Fig. 1 we present a photograph of the experimental appa-
ratus that we used to uniaxially compress our samples. Each
sample consisted of a slender Nitinol rod that was concen-
trically embedded inside an elastomeric cylinder (the matrix)
made out of Polydimethylsiloxane (PDMS). We fabricated,
characterized and tested a total of 15 samples for which we
changed the stiffness of the matrix, as well as as the radius and
length of the rod (see Table S1 for detailed geometric and ma-
terial properties). Upon compression, the Nitinol rod buckled
within the matrix and the process was imaged by two perpen-
dicular digital cameras. Representative configurations from
the two orthogonal views are shown in the insets of Fig. 1.

Each experimental sample contained a SE508 Nitinol rod
that is 10 cm long. At both ends of the sample, the rod was
made to pass through a tight clearance hole centered on an
acrylic disk, onto which it was glued, which ensured clamped
boundary conditions. We used five Nitinol rods with radi-
i and Young’s moduli in the ranges 25.4 < rr [µm] < 127,
and 59 < Er [GPa] < 78, respectively (see SI for exact val-
ues). Nitinol is known for its unique hyperelastic and shape
memory properties20,21. Given that all experiments were per-
formed at constant room temperature, T = 20 ˚ C, we did not
make use of its shape memory characteristics. Hyperelasticity,
on the other hand, was important since it confers reversibility
to the experimental tests, even for the geometrically nonlinear
configurations observed in the post-buckling regime.

The elastomeric matrix (10 cm long and 2.6 cm in diame-
ter) was cast on a cylindrical mold using PDMS (Sylgard 184
from Dow Corning Inc.), with the Nitinol rod held in between
the two acrylic disks, along the central axis. Using PDMS had
the advantage that its Young’s modulus can be tuned during
fabrication by varying the relative mixture of base and curing
agents, from 0.4kPa to 3MPa22 (see Fig. S1). In our experi-
ments, however, we focused on the range 17 < Em [kPa]< 84,
which enabled us to fully explore the post-buckling regime
of the rod under compression, while preventing delimitation
between the Nitinol and the PDMS matrix. Moreover, this
range ensured that the samples could be supported horizontal-
ly, without significant deflection under their own weight.

Once fabricated, the samples were mechanically tested on
a custom-made uniaxial compression device (Fig. 1). Each
sample was laid horizontally on top of a series of five indepen-
dent acrylic braces that were set perpendicular to the axis of
compression (see inset of Fig. 1). These braces supported the
sample and could slide along the axis of compression using t-
wo PTFE (Polytetrafluoroethylene) linear guides. A computer
controlled linear stage uniaxially compressed the whole sam-
ple (matrix, rod and acrylic disks). Each test was performed

quasi-statically under conditions of controlled displacement.
Note that our setup differs from a previous study23, where on-
ly the rod, without the matrix, was compressed.

During each experimental test, two perpendicular digital
cameras were synchronized to acquire images of the Nitinol
rods (one from the side and the other from above, as shown
in Fig. 1) at every 0.1 mm step of compression. The pairs of
frames were then combined and image-processed to produce
3D reconstructions of the coordinates of the rod. Two repre-
sentative examples of the reconstructed configurations rods in
the planar and non-planar regimes are presented in Fig. 2A and
B, respectively. From the 3D reconstructions we could readily
measure the wavelength of the buckled configurations, as well
as the pitch of the non-planar shapes. Moreover, to further
facilitate the analysis (described in more detail below), we al-
so performed a Principal Component Analysis (PCA)24,25 that
rigidly rotates the configuration of the rod, without distortion,
such that its major lateral buckling direction is always aligned
with the global horizontal y-axis.

2.2 Experimental results

Both 2D and 3D buckling configurations of the Nitinol rod
were observed during the uniaxial compression of our sam-
ples. In Fig. 2A and B, we present two representative configu-
rations obtained for samples #1 and #2 (see Table S1), respec-
tively, at ε = 3% compressive strain. Sample #1 buckled into
a periodic planar configuration, whereas sample #2 buckled
into a non-planar configuration, with deformation in the two
orthogonal lateral directions.

The buckling shapes of each sample are further character-
ized by computing the ellipse of minimum area that encloses
the cross-sectional view of the buckled rod at ε = 3% (dashed
line in the cross-section views in Fig. 2A and B, see SI for
details). The aspect ratio, b/a, between the minor and major
axes of this ellipse, quantifies the extent to which the buckled
shape is 2D or 3D. A flat ellipse (b/a� 1) indicates a planar
configuration, while a more circular one (b/a ∼ 1) indicates
that it is fully 3D.

In Fig. 3A, we report the aspect ratio, b/a, for all 15 sam-
ples, as a function of their dimensionless matrix stiffness (ra-
tionalized in detail in §3, below),

η =
EmL4

r

ErIr
, (1)

where Em is the Young’s modulus of the matrix and Er, Ir
and Lr are the Young’s modulus, second moment of area and
length of the rod, respectively. The experimental results re-
veal that: (i) For stiff matrices (η > 5 · 106) all samples are
characterized by large values of b/a, indicating a coiled, non-
planar buckling shape; (ii) For η < 5 · 106, both small and
large values for b/a are observed, indicating that both planar

2 | 1–14

Page 2 of 14Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



and non-planar configurations can occur. Whereas the finding
(ii) is consistent with previous qualitative observations for a
nanowire attached to a soft substrate15, the finding (i) is, to
the best of our knowledge, reported here for the first time.

We proceed by quantifying the wavelength, λ , of the buck-
led configurations, which we plot in Fig. 3B for all samples as
a function of the dimensionless matrix stiffness, η , at ε = 3%
compressive strain. Interestingly, the results for both planar
and non-planar buckling configurations collapse onto the same
curve that is consistent with a power-law λ ∼η−1/4, which we
will show in §3 can be rationalized and derived analytically.

Summarizing the experimental results thus far, we have
found that the dimensionless stifness η = EmL4

r/(ErIr) deter-
mines whether the rod buckles into a planar or a non-planar
configuration and it also sets the characteristic length scales of
the buckling pattern. We now seek to rationalize these results
and proceed by investigating the effect that the stiffness of the
matrix has on the mechanical response of the system, first an-
alytically (§3) and later numerically (§4). The important role
played by the boundary conditions will then be discussed in
more detail in §5.

3 Theoretical analysis

Towards rationalizing the conditions that lead to 2D and 3D
buckling configurations, we adopt the Winkler foundation
model19 of a thin and stiff beam supported by a softer elastic
substrate. Moreover, the treatment of our elastomeric matrix is
simplified as an array of springs with stiffness K acting solely
in radial direction.

Assuming small strains and moderate rotations, the govern-
ing equation for the embedded elastic rod is given by19,

ErIr
∂ 4Y
∂S4 +F

∂ 2Y
∂S2 +KY = 0, (2)

where F is the applied compressive force and Y and S denote
the lateral displacement and the arc length of the rod, respec-
tively. Introducing the normalized displacement, y = Y/Lr,
and arc length, s = S/Lr, allows for Eq. (2) to be rewritten in
dimensionless form,

∂ 4y
∂ s4 +π

2 f
∂ 2y
∂ s2 +π

4k y = 0, (3)

where f = FL2
r/(π

2ErIr) and k = K L4
r/(π

4ErIr) are the di-
mensionless compressive force and spring constant, respec-
tively. When both ends of the rod are free to rotate, the solu-
tion of Eq. (3) has the form y(s) = A sin(nπs), with n denoting
the mode number.

Substituting y(s) into Eq. (3), yields the the compressive
force required to trigger the n-th mode19,

fn = n2 +
k
n2 , (4)

which can be alternatively obtained using an energy ap-
proach26,27(see SI for details). Given that the mode associated
to the lowest fn emerges and grows during loading, the critical
buckling force for the system is given by,

fcr = min
n=1,2,···

(
n2 +

k
n2

)
. (5)

Even if this result is well known in the literature, we turn our
focus to the fact for specific values of k, there can be two pos-
sible modes associated to fcr. In Fig. 4A, we further highlight
this point by plotting the dependence of the dimensionless d-
ifference, ∆ f/ fcr = ( fn′ − fcr)/ fcr, between the lowest ( fcr)
and second lowest ( fn′ ) compressive forces, as a function of k.
We find that for the specific values of the normalized spring
constant,

k = m2(m+1)2, m = 1,2,3, ... (6)

∆ f/ fcr vanishes, such that the system is degenerated and two
different modes, m and m+ 1 say, are both associated with
the same critical compressive force, fcr = fm = fm+1. As a
result, two buckling modes are triggered simultaneously at the
onset of instability and we expect them to interact with one
another28 to produce non-planar (3D) configurations.

The above interpretation is supported by our experimen-
tal results since in all cases of 3D coiled configurations, two
neighboring modes were observed to grow in perpendicular
directions. For example, the configuration shown in Fig. 2B
exhibits the orthogonal modes m = 2 and m = 3, simultane-
ously. In contrast, when k is far from the specific values given
by Eq. (6), the critical forces for adjacent modes are suffi-
ciently separated such that only a single mode is expected to
be triggered and grow, resulting in a 2D planar buckling con-
figuration. It is also interesting to note that the maxima of
∆ f/ fcr plotted in Fig. 4A decrease for increasing values of k.
Consequently, rods embedded in stiff matrices are expected
to always buckle into non-planar configurations, which is also
consistent with the experimental results reported in Fig. 3A
(for η > 5 ·106).

The relation between our analysis and the experimental re-
sults can now be made more quantitative. We make use of
existing results for the spring stiffness6,7,

K =
16πGm(1−νm)

2(3−4νm)K0(nπrr/Lr)+nπrrK1(nπrr/Lr)/Lr
, (7)

arising when a rod of radius rr and length Lr buckles into mode
n inside a matrix with shear modulus Gm = Em/[2(1+ νm)],
where K0(·) and K1(·) are the modified Bessel functions and
Em and νm are the and Young’s modulus and Poisson’s ratio
of the matrix, respectively. In the limit of a slender rod, i.e.
rr/Lr→ 0, Eq. (7) can be further simplified (see SI for details)
to

K =
8πGm(1−νm)

ln(2Lr/nrr)
, (8)
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which has been recently used to study buckling of confined
microtubules (assuming νm = 0.5)5.

Eqs. (7) and (8) indicate that K depends on both Gm and n,
suggesting that attaining a general description for all buckling
modes may be challenging. However, a unique relation be-
tween the wavelength of the mode, λ = 2Lr/n, and the spring
and matrix stiffness can indeed be determined upon calcula-
tion of the mode number that minimize fn (i.e. determining
the values of n for which ∂ fn/∂n = 0). In particular, mini-
mization of fn using Eq. (8) yields,

(λ/Lr)
4 (2ln(λ/rr)−1)

[ln(λ/rr)]
2 =

24π3

η
, (9)

where η =EmL4
r/ErIr is the dimensionless stiffness of the ma-

trix introduced earlier in Eq. (1). Eq. (9) can be solved itera-
tively to obtain λ for a given set of matrix and rod properties.

This analysis reveals that λ depends on both the dimension-
less stiffness of the matrix, η , and the radius of the rod, rr, but
the dependence on the latter is found to be weak. As a result,
we can further simplify Eq. (9) to

λ

Lr
= αη

−1/4, (10)

where the prefactor α is found to depend weakly on λ/rr.
For example, in our experiments where 134.4< λ/rr < 432.8,
the prefactor can be calculated to lie within 6.71 < α < 7.04.
Given this limited range for α , and without loss of general-
ity, for the reminder of this analysis we choose λ/rr = 240,
for which α = 6.88. Note that an almost identical prediction
for the wavelength (i.e. λ/Lr = 6.62η−1/4) has been obtained
using an energy approach and a nonlinear von Karman formu-
lation to model the rod26 (see SI for details).

In Fig. 4 B we plot the evolution of the dimensionless spring
constant, k = KL4/(πErIr), (left axis) and the buckling wave-
length, λ , (right axis) as a function of the dimensionless ma-
trix stiffness, η , determined by combining either Eqs. (7)∗ or
(8) and (10). Using either the full version of K from Eq. (7) or
its slender rod limit from Eq. (8), provide nearly identical pre-
dictions (solid lines and dashed lines, respectively) within the
range of dimensionless matrix stiffness explored in this study.
In Fig. 3B, the theoretical prediction for λ (black dashed line)
is also superposed on top of our experimental results discussed
above, showing excellent quantitative agreement.

In summary, our linear stability analysis is therefore able to
correctly predict the experimentally observed buckling wave-
length. Moreover, Eq. (6) indicates that, for certain values
of k, two eigenmodes can be triggered simultaneously at the
buckling onset, suggesting that the formation of non-planar
buckling modes results form their interaction. This stability

∗The buckling wavelength λ associated to Eq. (7) has been calculated follow-
ing a similar procedure to that reported above - see SI for details

analysis is, however, unable to provide information on how
these modes grow and interact. We now gain further insight
into both of these effects through numerical simulations.

4 Numerical Simulations

4.1 Discrete Elastic Rod simulations

We performed dynamic rod simulations using a code devel-
oped by Bergou et al.29, where the response of an extensi-
ble Kirchhoff rod30,31 under external forces is computed us-
ing a symplectic Euler method to update the position of the
discretized system. More details on the code can be found in
the original paper29.

In our simulations, we matched the geometric and material-
s properties of the experimental Nitionol rods (Er = 64 GPa,
rr = 50 µm and Lr = 9.7 cm), with free rotation at both ends.
Following the simplifications introduced in the theoretical de-
scription of §3, we modeled the confinement provided by the
matrix as a series of linear springs with stiffness K given by
Eq. (8), acting in the radial direction. A total of 22 rods were
simulated, with different values of K; the exact value of the
parameters for each analysis is provided in Table S2 of the SI.

In Fig. 5A and B we present two representative simulat-
ed buckling configurations for k = KL4/(πErIr) = 2450 and
1764, respectively. For the case of k = 2450, our analytical
model from §3 predicts that the compressive forces associat-
ed with the first and second eigenmodes are well separated
(see Eq. (6) and Fig. 4), which is consistent with the numeri-
cal finding that the rod buckles into a 2D planar configuration
(Fig. 5A). By contrast, for k = 1764, Eq. (6) is satisfied with
m = 6, such that the critical buckling forces associated with
modes 6 and 7 are the lowest and identical. In this case, the-
ory predicts that the rod should buckle into a non-planar 3D
configuration. This is corroborated by the numerical config-
uration in Fig. 5B where modes 6 and 7 are triggered almost
simultaneously and grow in two perpendicular lateral direc-
tions. We note that the rods that buckle into planar configura-
tions may eventually deform into non-planar shapes because
of a second bifurcation32,33. However, this transition occurs
at strains much higher than those associated to the onset of the
first instability, and is therefore beyond the scope of our study.

Similarly to the analysis of the experimental results dis-
cussed in §2, for each simulated configuration, we have also
computed the ellipse of minimum area that encloses the cross-
sectional projection of the rod.

In Fig. 5C we present the aspect ratio of this ellipse, b/a,
as a function of the dimensionless spring constant k. For high
values of the matrix stiffness (k > 5000), we find that b/a∼ 1
and the rod buckles in a non-planar configuration. On the other
hand, for more moderate confinements (k < 5000), there is
an alternation of 2D (b/a ∼ 0) and 3D configurations as k is
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increased. These numerical findings are in good agreement
with the experimental results presented earlier in Fig. 2.

These dynamic simulations agree qualitatively with the ex-
periments of §2, and support the stability analysis and sub-
sequent interpretation presented in §3: the formation of 3D
buckling configuration is due to the interactions between
eigenmodes that are triggered nearly simultaneously. It is im-
portant to note, however, that in these dynamic simulations,
similarly to the analytical model in §3, we have made the sim-
plifying assumption that the elastomeric matrix is modeled as
an array of linear springs that only act in the radial direction.
In doing so, we have completely neglected the effect of shear
of the distorted matrix, which we shall now see through fi-
nite element analysis becomes important past the onset of the
buckling instability.

4.2 Finite element simulations

In order to more accurately capture the effect of the deforma-
tion of the elastomeric matrix on the response of the rod, we
have performed finite element (FE) simulations of our system
using the commercial package Abaqus. In these analyses the
matrix was discretized using brick elements (Abaqus elemen-
t type C3D8R) and, because of the small strains considered
in this study, was modeled as a linear elastic material with
Poisson’s ratio νm = 0.495. The rod was modeled as a beam
(Abaqus element type B31) and assumed to be perfectly bond-
ed to the matrix (using the embedded element algorithm avail-
able in Abaqus). The accuracy of the mesh was ascertained
through a mesh refinement study, resulting in 11700 elements
for the elastomeric matrix and 194 elements for the rod. In all
FE simulations, we considered a rod with Young’s modulus
Er = 59 GPa, radius rr = 101.5 µm, length Lr = 9.7 cm and
both ends were free to rotate. Moreover, the diameter of the
matrix cylinder was chosen to be 2 cm, which was found to be
sufficient to eliminate any boundary effects.

First, a buckling analysis was performed using a linear
perturbation algorithm (through the *BUCKLE module in
Abaqus). We carried out 50 simulations with the dimension-
less matrix stiffness in the range (0.54 < η < 2.69) · 105 to
investigate its effects on the stability of the rod. In Fig. 6A
we report the normalized separation between the lowest two
critical forces, ∆ f/ fcr, as a function of η , where the FE re-
sults (blue continuous line) are compared with the previous
analytical prediction (red dashed line). The corresponding di-
mensionless spring constant, k, calculated using Eq. (7) is also
quantified on the upper horizontal axis. Both numerical and
analytical results show the expected alternations of maxima
and minima. However, there is a clear horizontal shift between
the two sets of data. For example, in the region where theo-
ry predicts n = 5, we find n = 4 in the numerics and likewise
for higher modes. This discrepancy indicates that although the

simple Winkler foundation description does successfully pro-
vide a qualitative description of the response of the system,
it is not sufficiently accurate to predict the exact conditions
for which the rod will buckle into a 2D or 3D configuration.
We speculate that the reasons for the differences between the
reduced model (used in the analytical and the dynamic simu-
lations) and the FE results is due to shear deformation in the
matrix, which the Wrinkler model does not take into account.

Next, the post-buckling response was captured through
dynamic explicit simulations, which were performed under
quasi-static conditions ensured by monitoring the kinetic en-
ergy. In Fig. 6B and C we show two representative config-
urations recorded immediately after the buckling onset for t-
wo values of the dimensionless matrix stiffness η = 1.30 ·105

and 8.40 · 104 (each marked in Fig. 6A by the points B and
C, respectively). For η = 1.30 ·105 a 2D buckling configura-
tion is observed, as expected given that ∆ f/ fcr is large in this
case. In contrast, for η = 8.40 ·104 a clear 3D buckling pattern
emerges as the result of the interaction between two eigen-
modes triggered nearly simultaneously, which grow in per-
pendicular directions. These FE results provide further con-
firmation that the dimensionless matrix stiffness determines
whether the confined rod buckles into a 2D or 3D configura-
tion by controlling the separation between the critical forces
associated with the two lowest eigenmodes.

5 Discussion and conclusions

We have shown through a combination of experiments, theo-
retical analyses and numerical simulations that an elastic rod
embedded within an elastomeric matrix can buckle into ei-
ther a planar wavy configuration or a non-planar coiled con-
figuration. Our analytical and numerical studies indicate that
the separation ∆ f/ fcr between the two lowest critical forces
dictates the post-buckling behavior of the rod and that this
parameter can be effectively controlled by changing the ra-
tio between the stiffness of the matrix and the bending s-
tiffness of the rod (i.e. the dimensionless matrix stiffness
η = EmL4

r/ErIr). For large values of η the rod always buck-
les into a 3D coiled configuration, whereas for soft matrices,
a monotonic increase of the stiffness results in an alternation
between 2D planar and 3D coiled buckling configurations.

Good qualitative agreement was found between our analysis
and experiments. However, a direct quantitative comparison is
challenging due to the important role played by imperfections
and measurement uncertainties. In fact, our analysis indicates
that ∆ f/ fcr is extremely sensitive to imperfections. For exam-
ple, for a rod with Er = 59 GPa, Lr = 4 cm, rr = 101.5 µm
embedded in a matrix with Em = 1.3 kPa a relative uncertain-
ty in the measurement of rod length and rod radius as small as
5% (i.e. ∆Lr/Lr ≤ 5% and ∆rr/rr ≤ 5%) modifies the predic-
tion of ∆ f/ fcr from 0.28 to 0.021, leading to a switch from a
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2D to a 3D buckling configuration.

Furthermore, we have also found that the buckling pattern
is highly sensitive to the boundary conditions imposed at the
two ends of the rod. In the experiments, small segments of the
rod near its ends were embedded into a much stiffer disk to
provide support and minimize rotation. In analysis and sim-
ulations, however, we assumed for the sake of simplicity that
both ends of the rod were free to rotate.

To address this issue on the important role of the boundary
conditions, we have repeated the stability analysis presented
in §3 and the FE simulations in §4.2, but now also for rods
whose ends are fixed (see SI for details). In Fig. 7A and B
we present analytical and numerical (FE) results, respective-
ly, for the evolution of the normalized separation between the
two lowest critical forces as a function of the dimensionless
matrix stiffness and compare the two cases of a rod with fixed
and free-to-rotate ends. Both sets of results indicate that the
profile of ∆ f/ fcr for the case of a rod with fixed ends is shifted
by approximately half a zone compared to that corresponding
to a rod with free-to-rotate ends. By way of example, for a
dimensionless stiffness of k = 576, our theory predicts that
a confined rod buckles into a non-planar configuration if its
ends are fixed, but into a planar configuration if the ends are
free to rotate. Moreover, for the rod with fixed ends, the peaks
of ∆ f/ fcr are lower in magnitude and decreases considerably
faster as a function of k, indicating a greater tendency to buck-
le into a 3D coiled shape, when compared to the rod with free-
to-rotate ends. These results demonstrate that the boundary
conditions at the extremities of the rod play an important role
in determining the buckling shape. If the boundary conditions
are not perfectly fixed in the experiments, we expect these un-
certainties to have a significant influence on the final buckled
configuration.

In conclusion, we have demonstrated that a rod embedded
in an elastomeric matrix can buckle either into a planar (2D)
or a non-planar (3D) configuration, in a way that depends non-
trivially on the geometric and material parameters, as well
as the boundary conditions. The 3D buckling configurations
were rationalized to arise when two eigenmodes are triggered
nearly simultaneously. Furthermore, our analysis indicate that
the buckling pattern can be controlled by tuning both the ma-
trix stiffness and the boundary conditions. This tunability,
combined with the scalability of the buckling phenomenon,
opens avenues for exploiting the underlying mechanical insta-
bilities to generate the next generation of future photonic and
piezoelectric devices with complex 3D structure. However,
given the sensitivity of the system to imperfections, our study
calls for more accurate fabrication protocols and experimen-
tal procedures to be able to exploit buckling as mechanism to
generate complex patterns with fine tunable features.
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Fig. 1 Experimental apparatus. A Nitinol rod is embedded within a cylindrical PDMS matrix (inside dashed frame). The sample is uniaxially
compressed under displacement control. Two synchronized cameras placed on the top and side of the setup capture snapshots of the buckling
of the rod (insets). The paired images are then sent to a computer for reconstruction of the configuration of the rod and further analyses.
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Fig. 2 Experimental results. Buckled configurations of (A) Sample #1 and (B) Sample #2 acquired at ε = 3% compressive strain. Both 3D
and projected views (onto the z-y, y-x and z-x) are shown, clearly indicating that Sample #1 buckles into a 2D planar configurations, while
Sample #2 buckles into a 3D coiled configuration. The dashed ellipse shown in the y-z view corresponds to the ellipse with minimum area that
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