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Text entry for graphical abstract:

We visualize the dynamic jamming front in a floating layer of cornstarch

suspension and compare velocimetry analysis with force measurements.
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Quasi-2D dynamic jamming in cornstarch suspensions: visualization
and force measurements
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We report experiments investigating jamming fronts in a floating layer of cornstarch suspension. The suspension has a packing
fraction close to jamming, which dynamically turns into a solid when impacted at a high speed. We show that the front propagates
in both axial and transverse direction from the point of impact, with a constant ratio between the two directions of propagation of
approximately 2. Inside the jammed solid, we observe an additional compression, which results from the increasing stress as the
solid grows. During the initial growth of the jammed solid, we measure a force response that can be completely accounted for by
added mass. Only once the jamming front reaches a boundary, the added mass cannot account for the measured force anymore.
We do not, however, immediately see a strong force response as we would expect when compressing a jammed packing. Instead,
we observe a delay in the force response on the pusher, which corresponds to the time it takes for the system to develop a close
to uniform velocity gradient that spans the complete system.

1 Introduction

The behavior of water-cornstarch suspensions is often used as
a prototypical example of a strong shear thickening fluid.1–6

Of special interest is the limit of discontinuous shear thicken-
ing (DST),1–10 where the stress jumps several orders of mag-
nitude, effectively switching the material from liquid-like to
solid-like. A phase diagram of shear thinning, shear thicken-
ing, and its relation to jamming was provided by Brown and
Jaeger.10

More recently, several experiments have focused on the
response of cornstarch suspensions under normal compres-
sion:10 Liu et al.

11 looked at the imprint a sphere makes on
a layer of molding clay when it approaches the clay, all sub-
merged in a cornstarch suspension. A surprisingly focused
depression was found, unlike what would have been expected
for the case of a viscous fluid or dry granular material. von
Kann et al.

12 showed the appearance of undamped velocity
oscillations of a sphere sinking in a bath of cornstarch sus-
pension and stop-go cycles when the sphere approaches the
bottom of the container. Shear thickening models were unable
to account for their observations, which led to the idea that
their system dynamically jammed and unjammed. Waitukaitis
and Jaeger 13 measured the force response on a rod impact-
ing on the surface of a dense cornstarch suspension. Here it
was pointed out that it is not shear thickening per se that ac-
counts for the strong force response, but rather the formation
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of a dynamic jamming front. This jamming front also gives
rise to a force response before there is interaction with bound-
aries. Roché et al.

14 showed that under sufficient load of an
impacting rod, the suspension can even fracture. The speed of
propagating crack tips allowed them to estimate an effective
shear modulus.

These experiments were all done in a three-dimensional
(3D) system. The suspension being opaque, it blocks any vis-
ible access to the bulk, which is where the jamming front is
propagating. All measurements have been indirect (imprint
in clay,11 marked wire connected to a settling sphere,12 em-
bedded force sensors13), or with relatively low temporal and
spatial resolution (x-ray at 30 frames/sec). 13 Therefore, little
is known about the (transient) geometry of the jamming front
and what happens with the jammed region when there is inter-
action with a boundary.

Using a simple, dry model system of disks, Waitukaitis
et al.

15 provided a more detailed picture for the basic mech-
anism of how dynamic jamming fronts can develop. Their
2D system starts in an unjammed configuration, which is then
uniaxially compressed, giving rise to a traveling front with
a speed which is proportional to the pushing speed and di-
verges as the packing fraction of the initial, undisturbed state
approaches jamming. In another 2D system, Burton et al.

16

showed that jamming fronts play an important role in the dis-
sipation of energy during the collision of dense granular gas
clusters.

In this paper, we return to the complexity of a dense corn-
starch suspension, but with a setup more in the spirit of Wait-
ukaitis et al., 15 i.e., we perform impact experiments using a
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horizontal floating layer of suspension of thickness h. This
quasi two-dimensional geometry enables us to directly visu-
alize the motion of the suspension using high speed imaging.
We then compare our optical measurements to the force we
measure as the jamming front is propagating and when it hits
a boundary.

The paper is organized as follows: We describe the exper-
imental setup in Sec. 2. In Sec. 3 we detail the experimen-
tal results, which we split up in two parts: the growth of the
jammed region before interaction with boundaries (Sec. 3.1-
3.2) and after interaction with the boundaries (Sec. 3.3). We
finish with conclusions and discussion in Sec. 4.

2 Experimental setup

Figure 1 shows a schematic drawing of the experimental setup.
It consists of a rectangular container (30 cm ⇥ 20 cm ⇥ 5 cm)
with the bottom filled with fluorinert. Across the container
runs a thin rubber sheet (0.13 mm thick silicone rubber, red
line in Fig. 1), which restricts the cornstarch suspension to the
left half of the container and allows us to perform a normal
impact on the suspension from the side.

The layer of suspension has a uniform thickness h. We im-
pact the suspension (from right to left in Fig. 1) at controlled
speed up using a linear actuator (SCN5, Dyadic Systems). The
force applied by the linear actuator is measured using a dy-
namic force sensor (DLC101, Omega). The experiments are
recorded with a high speed camera (Phantom V12, Vision Re-
search) at frame rates up to 4 kHz. We obtain a full top-view
of the floating suspension with a resolution of 250 µm/pixel.
Tracer particles (ground black pepper) allow us to perform
Particle Image Velocimetry (PIV) on the suspension (see for
example Fig. 2).

Linear actuator

Dynamic force sensor

Pusher

Floating cornstarch 
suspension Fluorinert

Top view

Side view

Rubber sheet

Fig. 1 Schematic top view (a) and side view (b) of the experimental
setup. Not shown here are the high speed camera, lights and mirror.

The suspension is made of cornstarch, water, glycerol, and

CsCl. We denote the fraction of cornstarch particles (typical
diameter 5 to 20 µm

1,12) in the total suspension volume by the
packing fraction �0. We use glycerol to increase the viscosity
of the suspending liquid. This does not change the impact
behavior,13 but delays the decay of the jammed state and thus
enables us to perform the experiments at lower velocities. We
density-match the suspension by dissolving CsCl. The density
of the suspension is ⇢s = 1580± 20 kg/m

3.
For our suspensions, we find a spread in measured quan-

tities while keeping �0 constant, which is most likely due
to variation of the moisture content in the “dry” cornstarch
grains. When preparing a suspension, we assume that the
cornstarch consists of pure dry grains with a density of 1.59 ·
10

3
kg/m

3, 2 so that moisture content will result in an over-
estimation of the actual packing fraction. We tested this by
making two batches of cornstarch which we kept in a humidity
controlled chamber: one for ⇠ 40 hours at 0.1%, and one for
⇠ 100 hours at 80% relative humidity. After preparing a sus-
pension with a nominal packing fraction �0 = 0.46 for both
batches, we found the values k = 9.9± 0.4 and k = 6.6± 0.2

(with k the front/pusher velocity ratio, see Sec. 3.1.1) for the
batch that was kept at low humidity and high humidity, re-
spectively.⇤ Given the difficulty in precisely determining the
absolute packing fraction, we focus in the following on k as
the control parameter rather than �0.

Out of plane motions are small (less than 1 mm vertical dis-
placement, measured using a laser sheet),† and we therefore
do not take it into account in our calculations of the added
mass. We note however that the the out of plane displacement
is localized in the front region, where the transition from the
unjammed to the jammed state occurs. We estimate the max-
imum out of plane velocity to reach half the pusher speed as
the front passes. Once the suspension is jammed, out of plane
velocity is negligible.

In order to approximate a stress-free boundary condition at
the bottom surface of the suspension, we use fluorinert (FC-
3283) on which the suspension will float (see App. A). The
fluorinert has a density ⇢ = 1820 kg/m

3 and a kinematic vis-
cosity ⌫ = 0.75 cSt.

3 Experimental results

In every experiment, the pusher approaches the suspension at
a constant speed up from the right. When the pusher hits the
suspension, the motion initially is localized around the impact
site (Fig. 2[a]). Fig. 2 shows the axial component of the ve-

⇤This is only to illustrate the influence of moisture content on the actual pack-
ing fraction. It is not clear how fast cornstarch will loose moisture when kept
in a dry environment. These details are outside the scope of this study.

†The out of plane displacement can also be estimated by adding the decrease
in volume on the right side of the rubber sheet to the jammed region, giving a
displacement of ⇠ 0.5 mm, in agreement with the laser sheet measurement
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u / up
0

0.2

0.4

0.6

0.8

1(a) (b) (c) (d)

t = 2.5 ms t = 17.5 ms t = 36.25 ms t = 46 ms

Fig. 2 Example of PIV analysis of an experiment. The pusher is moving from right to left with a velocity up = 0.375± 0.007 m/s in (a-c)
and up = 0.33 m/s in (d). The pusher hits the interface at t = 0, after which a jammed region starts growing. The colors indicate the
magnitude of the axial velocity component (see velocity scale on the right). The dashed lines in (b) indicate the position where the velocity
profiles of Fig. 3 are calculated. See supplementary material for a movie.

locity u, normalized by the pusher velocity up. As the pusher
moves in further, the motion in the suspension grows in both
the axial and transverse direction (Fig. 2[b]). Remarkably, the
gradient from high to low velocity is very localized, as can
be seen in Fig. 3. We identify a dynamically jammed region
as the part where the suspension approaches uniform motion,
i.e., velocity gradients are moderate. We define the dynamic
jamming front13,15 as the position where the velocity of the
suspension is half that of the pusher. The front travels at a
speed uf , much larger than the pushing speed up (see section
3.1.1), thereby expanding the jammed region.

The jammed region keeps growing until the front reaches
the solid boundary (Fig. 2[c]), after which the system has to
adjust to new boundary conditions. Visually from the PIV re-
sults, this adjustment looks like a stagnation front that moves
from left to right towards the pusher (Fig. 2[d]). Our physical
interpretation of this changing velocity field can be found in
Sec. 3.3.

We will first focus on the growth of the jammed region be-
fore there is any interaction with boundaries. The two main
points of interest are (i) the growth rate in axial and transverse
direction, and (ii) the force response on the pusher. Following
Waitukaitis and Jaeger,13 there is a growing force response
due to an added mass term. In our quasi-2D system, we can
visualize the motion of the suspension, and therefore accu-
rately measure the added mass term by integrating the veloc-
ity field. We will shortly discuss the role of dissipation during
the growth of the jammed region. After this, we will consider
the response of the system when there is interaction with solid
boundaries.

3.1 Growth rate

We first quantify the growth of the jammed region through
analysis of the PIV data, starting with the axial growth
(Sec. 3.1.1), and then the transverse growth (Sec. 3.1.2).

3.1.1 Axial growth. We measure the growth in the axial
direction with the following 5 steps: (i) We determine the time
window during which there is a forward (from right to left
in Fig. 2) motion of the jamming front. (ii) By tracking the
position of the pusher within this interval we determine up and
the standard deviation of up. (iii) Using the PIV-analysis, we
determine the normalized velocity profile u/up for each frame
(see for example Fig. 3[a]). (iv) Defining the front position by
the point where u/up = 1/2,‡ we determine the position of
the front as a function of time (see Fig. 4). (v) A fit to the
linear regime gives the front velocity uf . In Fig. 4, the linear
regime is 10 ms . t < trch, where trch is the moment when
the front reaches the wall of the container (see Sec. 3.3).

In the example of Fig. 4, we find a ratio k between the
pusher velocity and the front velocity of k = uf/up�1 = 6.5.
Using k =

�0

�J��0
, 15 with �0 = 0.43 the initial, as prepared

packing fraction and �J the jamming packing fraction, gives
�J = 0.50. Collecting data from all our experiments, we ar-
rive at a value �J = 0.51±0.02, which is consistent with data
from 3D-experiments in cornstarch.13,17

A closer look at the axial velocity profile in Fig. 3 shows
three distinct regions. Going from left to right, far away from
the pusher, at x & 0.08 m, the velocity of the suspension is

‡The front velocities as measured in Fig. 4 are insensitive to the choice of cut-
off velocity for the determination of the front position.

1–7 | 3

Page 5 of 9 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



00.020.040.060.080.10.12
0

0.5

1

x (m)

u 
/ u

p

(a)

←xf

−0.05 0 0.05
0

0.5

1

y (m)

u 
/ u

p

(b)
←yf

Fig. 3 Axial (a) and transverse (b) velocity profiles at t = 17.5 ms
along the lines indicated in Fig. 2(b). The vertical dashed lines
indicate the axial and transverse front position. The maximum slope
du/dx of the axial velocity in (a) is approximately �14 s�1. At the
transverse front position yf , the shear rate (slope of the velocity
profile du/dy) is approximately 15 s�1.

uniformly zero. In the center, at 0.05 m . x . 0.08 m,
there is a region with a large velocity gradient (front region),
which connects the fast moving region with the quiescent re-
gion. The velocity gradient indicates the compaction which
happens when going from an unjammed to a jammed state.15

The width w of the front is of the order of 2 cm. The front
will need time to develop, which we estimate by using the
speed uf at which the front travels. This gives a typical time
w/uf ⇡ 7 ms, which corresponds to the transient time in
Fig. 4. Finally, there is a region with a small but significant
velocity gradient.

A possible explanation why we find a velocity gradient
in the jammed region is that the stress is not constant in
time. All the stress that is applied along the boundary of the
jammed region is transferred backwards and accumulates at
the pusher. This translates into an additional compaction in-
side the jammed region. Just like the compaction from un-
jammed to jammed results in a velocity gradient in the front
region, the slight additional compaction in the jammed region
results in a small velocity gradient. As we will show in Sec.
3.3, this velocity gradient will increase and span the complete
system once the stress increases due to interaction with the
opposing boundary.

3.1.2 Transverse growth. We analyze the transverse
growth in the same way as we do for the axial growth, and
find that it has similar properties. Fig. 3(b) shows the velocity
profile along the vertical dashed line shown in Fig. 2(b). Note
that the velocity plotted in Fig. 3(b) is still the axial component
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Fig. 4 Example of the axial and transverse growth of the jammed
region. The solid lines are fits to the linear regime. The velocity of
the axial front is 2.83 m/s; the transverse front velocity is 1.52 m/s.
The vertical dashed line indicates trch, when the axial front reaches
the wall of the container. There is a initial transient time (t . 0.01)
where the front develops (see main text). Inset: Ratio between axial
and transverse front speed as a function of k. Blue circles:
�0 = 0.43; green diamonds: �0 = 0.46; red squares: �0 = 0.48.

of the velocity (i.e., u).
There are two transverse fronts, which move fairly sym-

metrically sideways from the point of impact at y = 0. We
determine the position of the transverse fronts by taking their
average position with respect to the origin. Fig. 4 shows that
the transverse fronts move with a constant velocity ufT . The
value we find for ufT is insensitive to the exact position where
we determine the velocity profiles (vertical dashed yellow line
in Fig. 2[b]). In Figs. 3-4, we have determined the velocity
profiles at a distance of 7 mm from the rubber sheet. Measur-
ing the velocity profiles at double (14 mm) or half (3.5 mm)
the distance from the rubber sheet gives a difference less than
1% in ufT . We find that for our experiments the ratio be-
tween the axial and transverse velocity of the jamming front
ranges from 1.7 to 2.7. The ratio increases weakly with k, see
inset Fig. 4. We have performed experiments with a rubber
sheet of 4 times the thickness of the one used in the rest of
the experiments, and found the same ratio (2.01± 0.03 for the
experiments performed).

When we examine the transverse velocity profile the same
way we did for axial profile, we find also here a region, far
away from the pusher, where the velocity is uniformly zero.
Then there is a region with a large velocity gradient, followed
by a smaller velocity gradient closer to the pusher. Although
the velocity profiles show similar features, the interpretation
of the velocity gradients in the transverse direction is different
from the axial one. In the axial direction, a velocity gradient
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indicates that there is compression in the front. In the trans-
verse direction however, the velocity gradients are shear flows.
The typical magnitude of the shear rate in Fig. 3(b) is �̇ =

@u
@y

= 15± 2 s

�1.

050100

−50

0

50

x (mm)

y 
(m

m
)

(a)

00.51

−0.5

0

0.5

x / x
f

y 
/ x

f

(b)

Fig. 5 Shape of the front plotted for different instances of time.
Time difference between each line is 2.5 ms. Lines are drawn where
the axial component of the velocity is half the pusher velocity (i.e.,
u/up = 1

2 ). The origin of the coordinate system is defined as the
instantaneous position of the pusher. (a): the evolution of the front
during the experiment. (b): the same lines, normalized by the axial
front position xf .

3.1.3 General shape. Above, we determined the position
of the jamming front in the axial and transverse direction. We
can apply the same approach to arbitrary directions, which re-
sults in a well-defined shape of the jammed region. Fig. 5(a)
shows the development of the jamming front through contour
lines where u = up/2 for a time interval of about 35 ms. In
Fig. 5(b) we normalize the contour lines by the front position
xf , demonstrating that the front has essentially a self-similar
shape, while the overall size (defined by the length scale xf )
grows almost one order of magnitude.

3.2 Added mass

During the experiment we find a growing force response of
the suspension on the pusher (Fig. 6(a,b), solid lines). A sim-
ilar behavior was found by13 in a 3D experiment, through the
deceleration of the impacting rod. There are different possible
explanations for the origin of this rather strong response. Con-
sidering the cornstarch suspension as a strongly shear thicken-
ing liquid, viscous interactions with the walls would be a first
possibility. A different possibility is that interaction with the
walls can be neglected, and the force originates purely from
added mass due to the growing jammed region. Figures 2-3
suggest the latter explanation, because there is no significant
velocity gradient near the walls. Viscous interaction with the
boundaries would only be possible if there is a velocity gradi-
ent which connects to the wall.

We can calculate the contribution of added mass by integrat-
ing the velocity fields we obtained through the PIV-analysis.
From every frame, we determine the momentum of the sys-
tem by evaluating p(t) = ⇢sh

RR
udxdy, with ⇢s the density

of the suspension and h the thickness of the suspension layer.
After this, we calculate the force by taking the time derivative
F =

@p
@t , assuming conservation of momentum within the sus-

pension. In Fig. 6(a) we compare the force we obtain through
momentum conservation with the actual force measured with
a dynamic force sensor.

ï���� � ���� ���� ����
�

�

�

�

8

��

t (s)
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(N

)

trchA

@tspan
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(b) (c)

� ���� ����
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��

��

t (s)
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(N

)

1 �� ���

��
�

��
3

k

F t
* / 
h 

 (N
/m

)

Fig. 6 (a) Direct comparison, without adjustable parameters, of the
force calculated from momentum conservation (squares) and the
force measured with the force sensor (solid line). Only after
interaction with the boundary (t ⇡ trch = 0.036 s) do the values
deviate. (b) Representative set of measured forces as a function of
time for different experimental conditions. Black: h = 16.5 mm,
k = 8.0± 0.9, ⌫ = 6.9 cSt; Green: h = 30.0 mm, k = 12.1± 0.8,
⌫ = 7.2 cSt; Purple: h = 13.0 mm, k = 6.0, ⌫ = 43 cSt; Blue:
h = 22.0 mm, k = 17.9± 0.5, ⌫ = 7.8 cSt; Red: h = 15.0 mm,
k = 7.5, ⌫ = 6.9 cSt. (c) Force per unit suspension depth at time
t

⇤ = 0.02 s as a function of k. The dashed line is a fit with slope 1.0.

If there would exist an interaction with the wall, either
through the suspension, or through the rubber sheet, a part of
the force would would not go into momentum of the suspen-
sion, but rather to the boundaries. In that case, the momentum
balance described above would show a difference between the
calculated force and the signal from the force sensor. Clearly,
Fig. 6(a) shows that there is no significant contribution from
the boundaries, for t . 0.35. Similarly, Fig. 6(a) shows that
no significant amount of momentum is transferred to the fluo-
rinert (see also App. A).

The two-dimensional nature of our experiment suggests that
the force curves can be normalized by the thickness h of the
suspension layer. Indeed, Fig. 6(c) shows that the forces mea-
sured at a fixed time t

⇤ follow the same trend with k when
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normalized by h. An increase of the measured force is ex-
pected for increasing k, because the added mass grows faster
for higher values of k.

3.3 Interaction with boundaries

The results we described above are all during the time that
there is no interaction with any of the boundaries. Figure 2(d)
shows that the structure of the velocity field changes drasti-
cally after interaction with the boundaries. In Fig. 4 we de-
fined the time trch as the moment when the detected front po-
sition reaches a maximum. We confirm that this behavior is
due to the interaction with the opposite wall, and that the side
walls can be neglected, by performing the experiment with
half the distance between the rubber sheet and the opposite
wall L, and keeping the distance between the side walls fixed.
In Fig. 7(b) we show that, as expected, trchup/L / (k+1)

�1.
Note that to estimate the time that the front reaches the bound-
ary, we have to use k + 1: k only represents the growth of the
solid region, but the solid region is also translated as a whole
at a speed up, which gives k + 1 = uf/up.

The interaction can be broken up in two steps: First, as
the jamming front reaches the boundary, the velocity profile
changes, which can be detected as a front traveling back to-
wards the pusher (see the axial front position for t > trch

in Fig. 4). After this, once a uniform velocity gradient that
spans the system size has been established, we detect a strong
response at the force sensor.

(a) (b)

1 10 100
0.01

0.1

1

k + 1

(t rc
h u

p) /
 L

00.050.1
0

0.5

1

x (m)

u 
/ u

p

t
rch

t
span

Fig. 7 (a) Evolution of the velocity profiles between trch (top
curve) and tspan (bottom curve). Time interval between different
profiles is 1.25 ms. (b) Time to reach system boundary, trch, made
dimensionless by the ratio of size of the experiment L to pusher
velocity up, as function of k+ 1. Slope of dashed line is -1.0. Green
diamonds: L = 0.150 m, red circles: L = 0.077 m.

Figure 7(a) shows the evolution of the velocity profile for
times larger than trch. The front stops moving from right to
left, but instead starts to flatten out. The result of this is that
the detected front position (u/up =

1
2 ) starts to move from

left to right. Fig. 6(a) also shows that for t > trch, there
is a large discrepancy between the force calculated through
momentum conservation and the force measured by the force
sensor, because momentum is being transferred to the walls of
the container. However, although there is a clear interaction

with the wall, there is no clear sign of this in the measured

force at t = trch (see Fig. 6[a]).
If we imagine the response of a homogeneous solid between

the pusher and the wall, the expected velocity (or displace-
ment) profile would be linear, due to the two boundary con-
ditions u = up at x = 0 and u = 0 at x = L (with L the
distance between the pusher and the wall). Clearly, we ob-
serve a very different velocity profile at t = trch. To quantify
the difference of the observed profile with the profile expected
for a homogeneous solid for t > trch, we calculate the dif-
ference between our velocity profile and a purely linear one,
u/up = 1�x/L. We define tspan as the moment when the dif-
ference (least squares) between the measured profile and the
linear profile is minimal. Figure 6(a) shows that for t > tspan

there is a sudden large increase in force, much like the behav-
ior expected for a solid connecting the pusher with the wall.

4 Conclusions and discussion

We have directly visualized dynamic jamming fronts in a
dense cornstarch suspension (Fig. 2). The front propagates at a
constant speed in axial and transverse direction (Fig. 4), result-
ing in a self-similar shape (Fig. 5). The constant speed with a
ratio k depending on how close the system is to the jamming
point agrees at least qualitatively with the 2D model system
of Waitukaitis et al., 15 pointing out the difference with shocks
that travel through a system beyond the jamming point. 18,19

Our results demonstrate that the force response on the im-
pactor can be completely accounted for by the added mass
until the front reaches the system boundaries (Fig. 6). From
the axial velocity profile we identify three regions, going from
(i) unjammed to (ii) jammed, and (iii) further compression of
a jammed packing (Fig. 3). Finally, we observed that after
the moment of first interaction with the boundaries, there is
a delay in the response of the force sensor. This delay corre-
sponds to the time it takes for the jammed region to become
homogeneous across the full system (Fig. 7).

Our experiments confirm the added mass model proposed
earlier, 13 but the shape of the jammed solid appears to be
rather different. An important remaining question therefore is
how the shapes in Fig. 5 map to a 3D experiment. Related
to that, it is of interest to know whether the ratio between
uf and ufT we observe is a feature of the two-dimensional
nature of the current experiment or more general. To an-
swer these questions, a mechanism that explains the trans-
verse growth rate of the jammed region will be needed. We
speculate that it might be possible to think of this as dy-
namic shear jamming, whereby instead of having a fixed vol-
ume that is quasi-statically deforming, as in ordinary shear-
jamming,9,20,21 the confinement is a dynamic one resulting
from the inertia of the quiescent, unjammed suspension. Fi-
nally, while the experiments reported here focused on the
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growth of the impact-generated jammed region and its inter-
action with system boundaries, they did not explore the even-
tual fracture of such a jammed solid as the applied stress is
increased even further. This has been investigated in 3D sys-
tems by analyzing the crack pattern on the impacted surface.14

However, in the current experimental setup, the required mag-
nitude of force will buckle the floating layer and hence the
conditions are not well controlled. An adjusted setup (for ex-
ample a thicker suspension layer or a smaller system size) pos-
sibly omits this problem and would allow for a way to investi-
gate how cracks propagate into a jammed solid.
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A Influence of fluorinert

We estimate an upper bound for the influence of the fluorinert
by investigating the added mass and estimate the viscous dis-
sipation. For simplicity, we will treat the floating cornstarch
suspension as a moving solid boundary that drives the fluid
below it. Momentum is therefore transferred to the fluorinert
through the growing boundary layer with thickness � ⇠

p
⌫t,

where ⌫ is the kinematic viscosity of the fluorinert, and t

the typical time of the experiment. Taking t ⇡ 0.06 s gives
� ⇠ 0.2 mm. With a layer of cornstarch suspension of 15 mm,
the moving mass of fluorinert compared to the suspension is
. 2%.

Considering the viscous stress due to the fluorinert, using
an average boundary layer � ⇠ 0.1 mm and a velocity U0 =

0.4 m/s gives ⌧ ⇠ ⇢⌫U0/� ⇠ 5.6 Pa, acting on a typical
surface of 0.2 m by 0.15 m results in a typical force Fv ⇠
0.2 N. This upper bound is 5% of the typical force response
measured in the experiment, and falls within the noise of our
measurements.
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