Soft Matter

Soft Matter

Colloidal membranes of hard rods: Unified theory of free

edge structure
and twist walls

Journal:

Soft Matter

Manuscript ID:

SM-ART-04-2014-000803

Article Type:

Paper

Date Submitted by the Author:

14-Apr-2014

Complete List of Authors:

Kaplan, Cihan; Harvard University, Applied Mathematics
Meyer, Robert; Brandeis University, Department of Physics




Page 1 of 13 Soft Matter
CREATED USING THE RSC LaTeX PCCP ARTICLE TEMPLATE - SEE www.rsc.org/electronicfiles FOR DETAILS

ARTICLETYPE WWW., r5C.org/xxoxx | XXXXXXXX

Colloidal membranes of hard rods: Unified theory of free edgestruc-
ture and twist walls

C. Nadir Kaplan *@* and Robert B. Meyer?

Received Xth XXXXXXXXXX 20X X, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

Monodisperse suspensions of rodlike chifdl viruses are condensed into a rod-length thick colloidal oteyers of aligned
rods by depletion forces. Twist deformations of the moleswre expelled to the monolayer edge as in a chiral sm&titiciid
crystal, and a cholesteric band forms at the edge. Coales@étwo such isolated membranes results in a twist wallwariebd
between two regions of aligned rods, dubledalls. By modeling the membrane as a binary fluid of coexgstiholesteric and
chiral smecticA liquid-crystalline regions, we develop a unified theoryloé f-walls and the monolayer edge. The mean-field
analysis of our model yields the molecular tilt profiles, kbeal thickness change, and the crossover from smecticalesteric
behavior at the monolayer edge and acrossthweall. Furthermore, we calculate the line tension assediatith the formation

of these interfaces. Our model offers insights regardiegstability and the detailed structure of tiravall and the monolayer
edge.

1 Introduction edge, an important variable relevant to the formation gnefg
the free boundaries, can be controlladsitu by the chirality

Chirality, the breaking of mirror symmetry, occurs at many of rods'!. Furthermore, it was found that monolayers which
length scales, from nanometer-sized DNA to the coiled formconsist of achiral rods still possessed twist deformatadrise
of Gastropod snails at various sizesin soft matter, micro- edge. A curved edge profile was observed, which was robust
scopic chirality can alter numerous macroscopic propedfe  for the entire range of measured line tension values.
materials. For example, in chiral smectic liquid crystaisig By changing the line tension, colloidal SAi-membranes
boundaries form above a critical temperature to alleviage t 5, easily be induced to exhibit morphological transitidns
frustration between the layer formation and the twist tenigle 5,0 way to achieve this is the coalescence of two or more
of the chiral molecules™. This is analogous to the penetra- membranes. When two membranes are surrounded by the
tion of magnetic field lines into superconductors by Craéin - gqges with same handedness, the molecular twist localized a
lattice of parallel vort_|ce§ Based on this analogy, Smechc e edge poses a problem for the coalescence, as the directio
samples maintain twist- and bend-free molecular oriemati ¢ yyist will be in opposite directions where the two edges
within each layer by the expulsion of these deformations tQneet. The final structure adopts a one-dimensional linectlefe
the edges or around isolated defects, similarto the walkn - petyeen the two coalesced membranes when the sizes of the
Meissner effect in superconductérs two membranes are comparable to each other. In order for the

_One realization of this analogy is a model system of tWomg|ecular arrangement across the defect to be contintreais, t
dimensional colloidal membranes composed of aligned rodsgs must twist byrradians. Henceforth we will refer to these

which behave as a single layer of a chiral smectic A (SMyjnes of twist asr-walls. These can also be imprinted in the
A*) liquid crystal. Monodisperse suspensions of the 880 NMyonolayers using optical forcks
long, rodlike wild-type fd viruses are spontaneously con- . .
. . . -walls resemble various other phenomena observed in

densed into these one rod length thick colloidal monolayers .

; . . condensed matter systems. For instance, they are analo-
with free edges by attractive depletion forées The penetra- i )

: : . gous to a laminar model of an array of alternating normal
tion of twist at the monolayer edge could be directly obsérve metal and superconducting reaions. which was replaceddy th
allowing for the confirmation of the de Gennes thefdryRe- P greg ' b y

; : \ Abrikosov flux-lattice phase in type-Il materidl$®'4 Fur-
cently, it was reported that the line tension of the moncmyethermore, the pitch associated with the helicity of a chielés

- o hor Sohool of P deis Universig] sample can be unwound by electric and magnetic fields, creat-
The Martin Fisher School of Physics, Brandeis Universitgltidm, Mas- ; [ ; ; A e : 16
sachusetts 02454, USA. E-mail: nadir@seas.harvard.edu ing similar twist walls in the vicinity of the critical fieltP-1©.

1 Present addresSchool of Engineering and Applied Sciences, Harvard Uni- An_Other example IS magr_1et|c systems, where the_ rotation f)f
versity, Cambridge, Massachusetts 02138, USA. spin magnetic moments in space cause resembling domains
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called Bloch walls”’. to test our hypotheses. Following the discussion of methods

In this paper we extend the ana|y5is of the theory’ first projn Sec. 3.1, we present in Sec. 3.2 how the profiles are altered
posed in Ref2 for the r-walls, to the free edge of the col- When the free parameters in our model are tuned, thereby ver-
loidal monolayer. Our approach treats the monolayers as #ying the robustness of our theory. Sec. 3.3 is devotedéo th
binary liquid of SmA*, where the rods are aligned parallel comparison of the theoretical profiles with the experimenta
to the layer normal, and a cholesteric (chiral nematichy ~ analysis of the interfacial structure. In addition, we cidte
region, which the Sn#&* order melts into both at the mono- the line tension of the free edge and thevall as a function of
|ayer free edge and the=wall. By introducing an order pa- temperature and discuss the relative thermodynamic Mb”
rameter field which is proportional to the local Skh-con-  Of ther-walls with respect to the monolayer edge. Concluding
centration, this framework couples the smectic order withi remarks are offered in the final section of the paper.
the monolayer and the orientation of the nematic directddt fie
of the constituent molecules where the elastic distortemes
pronounced. Our approach is reminiscent of the Landau-2 Theory
Ginzburg formalism of smectics put forward by de Gerfhes
although in the colloidal membranes there is no discretestra
lational symmetry as in a layered Sii-material. Thus, we  pjsk-shaped assemblagesfaf-viruses typically reach meso-
replace the conventional smectic order parameter, whieh pr scopic sizes in diametér Because of the tendency of
serves the translational symmetry via a complex number, by gonodisperse hard rods to build a one-rod-length thick flat
real order parameter in our analysis, which solely accdents - monolayer, SmA* membranes do not support molecular twist
the local concentration of the regions of perfectly aligneds  ang bend deformations and thus expel them to the edge
within the monolayer. Henceforth, a chiral smedtienono-  (Figs. 1a, 1bJ8. This constraint is mediated by the depletion
layer, which lacks the mass-density wave of a layered smeqnteractions between the rods and the depletant polymer. By
tic, shall be understood by the abbreviation “&m* Inthe  ¢ontrast, in a conventional smec#icmaterial, the exclusion
present work, the effect of the depleting ager, the non-  of twist and bend deformations in the ground state is a nitura
adsorbing polymer, is modeled by appropriate surfacedensi consequence of constant distance everywhere between two ad
terms, and plays a crucial role in determining the structiire jacent layers. In general, bend deformations of the motscul
the monolayer edge and tiewalls. We perform a mean-field |ocalized at the edge are negligible as the rod length is much
analysis of our model to calculate the thickness, tilt angihel ~ smajler than the monolayer radius. Whian< r andt < r,
the smectic order parameter profiles of thevalls and the free  the contributiony, of molecular bend to the line tension scales
edges. These profiles reveal a $¥nto-Chtransition at both a5y, ~ K4tA,/r2 — 0, whereKs is the bend elastic constant,
types of interfaces, as observed in experiments. We examir@js the average membrane thickness where the bend distor-
the effect of the dimensionless parameters in our model®n thtjons occury, is the penetration depth of the bend deforma-
profiles, in order to determine the relevant parametersiwhictjons at the edge, andis the radius of the monolayer. Since
induce pronounced changes in the results. Overall we firtd thahe rods are perfectly aligned in the bulk, the membrane inte
our theory is robust within a reasonable range of all free parjor appears black when viewed under 2D LC-Polscope, corre-
rameters. This allows us to obtain the best fit of the tilt angl sponding to no birefringence (Fig. 28)'L Towards the edge,
profile and the thickness to the experimental measurements gowever, optical anisotropy arising from the twist deforma

the free edge and the-wall. Furthermore, we calculate the tions results in a bright, birefringent region charactediby a
line tension of the membrane edge and thwall as a func-  retardance, R, which is given by (Fig. 1d)

tion of the molecular chirality, or equivalently tempenatt,
in order to match them with experimental measurements. Ac-
cordingly, we investigate the thermodynamic stabilitylafde
structures with respect to each other. Heret is the local membrane thicknesssy = (3.840.3) x

The present study is organized as follows: In the nextl0~°mL/mg is the specific birefringence of a fully aligned
section, based on experimental evidence, we explain the hyulk sample at unit concentratiéh The nematic order pa-
pothesized structures of the membrane edge andrthvall ~ rameterSwas measured to be 0.95 at a rod concentratioi
(Sec. 2.1), followed by a detailed description of our model100 mg/mL in the bulk monolayéf. Therefore we assume
(Sec. 2.2). In Sec. 2.3 we propose a simple analysis regprdirthatS~ 1, namely there is perfect orientational ord&t. 9 is
the thermodynamic stability condition of two coalesced mem the tilt angle of the molecules with respect to the layer radrm
branes with arr-wall inbetween with respect to two discon-  To quantify the retardance, a simple model focusing on the
nected membranes. In Sec. 3 we present the results, where \spatial variation of the nematic director was propoSed@his
apply our theory to the membrane edge andithveall in order  model neglects the variation of the thickness and smedfieror

2.1 Structures of therr-wall and the monolayer edge

R = tAngacSsir’ 6. (1)

2| Journal Name, 2010, [vol] 1-12 This journal is © The Royal Society of Chemistry [year]
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across the monolayer. For chiral membranes, the theory accu
rately reproduces the experimental retardance profile. -How
ever, as evidenced by their retardance map, achiral moaay
exhibit twist at the edge as well, spontaneously breakieg th
chiral symmetry at the membrane edgeFurthermore, elec-
tron micrographs of the membrane edge cross-section raveal
curved thickness profile and melting of the smectic order int
a narrowCh band at the edge. In Fig. 1e, the rods are seen to
be perfectly aligned in thedirection in the bulk of the mono-
layer. Towards the edge, the rods tilt rapidly such that they
point perpendicular to the image plane, forminGlaregion
with a hemi-toroidal curved shape at the edge.

Retardance (nm)

o
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- no
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——

-
T

This Ch band constitutes the core of thewall as we

-0.5

0

0.5

since arr-wall is formed from two free edges of same hand- % (g )

edness (Fig. 2a). Therefore, we model thevall by aCh Fig. 1 Structure of the membrane edge(a) The schematics of the
region sandwiched between two semi-infinite 8MMONO- 1o orientation in a membrane and (b) at its etlgéc) Retardance
layers (Figs. 2c, 2d)m-walls are linear defects, thereby their image of a membrane (top viedf). Black region corresponds to no
liquid crystalline order does not possess any bend deformaetardance, whereas the bright ring at the edge is birefringd)
tions. The in-plane curvature ofrawall is always vanishingly = Radial retardance profile as a function of distance from the
small compared to the edge curvature of a monolayer memmembrane edge (on the white dotted line shown inft)je)
brané'2. Thus, the contribution of the bending term to the line Electron micrograph of the cross-section of the membrage'ed
tension of ther-walls is negligible, thereby not affecting their It visualizes both the curved shape and the Sfxto-Ch transition
stability. As for their cross-sectional shape, the effddhe ~ 1OWards the edge. Scale barg.@ (c); 0.2um (€).
thickness variation is anticipated to be more prominenhat t
r-walls: an intensity profile having a local minimum located
between two peaks is extracted from retardance measurgme
(Figs. 2b, 2e). We hypothesize that this local minimum indi-These recent experimental findings are beyond the scope of
cates a significant variation of the membrane thicknesssacro the simple model proposed in R¥. Thus, in addition to the
the r-wall. spatial change of the molecular #lf a detailed theory should
The presence of the depleting agent results in an effectivaccount for the local thickness variatibrand the crossover
surface tension over the membrane surface. When a singfeom SmA*-to-Ch behavior across the monolayer and the
molecule protrudes from the monolayer, it reduces the accest-wall, in order to correctly predict their structure as weedl
sible volume of the surrounding depletant polymer. Both inthe magnitude and the behavior of the line tension.
experiments and simulations, it was found that protrusiae fl For a bulk SmA* sample,W is defined as the thermody-
tuations are significant in StA* membranes, and stabilize this namic average of the amplitude of a periodic mass-density
phase against the configuration where single disks stack up ovave, which preserves the discrete translational symnietry
top of each other and form a layered $xhstructure828 In  the direction locally parallel to the normal vector of thg-la
addition, spontaneous twist at the edge of achiral monotaye ers. A colloidal monolayer composed of rod-like particles
is understood as an outcome of the surface tension: compardatcks this symmetry. However, towards the edge monolay-
to an untilted edge configuration, the monolayer may reducers exhibit a clear transition from an ordered phase where th
the rod-polymer interfacial area despite resulting in @st  molecules are aligned along the layer normal, heregion
energy associated with twist deformatidhsThis configura-  in which the molecules satisfy the chiral interactions. fEre
tion lowers the total surface energy of the membrane, espdere we model the monolayer as a binary fluid, in which the
cially if the surface tension continuosly varies throughitbhe =~ Sm-A* andCh liquid-crystalline regions coexist, separated by
monolayer and becomes bigger at the edge than in the bulla diffuse interface with a coherence length In our modeW’
due to the changing rod orientation. This scenario will ke di is proportional to the local SA¢ concentration, hence it is a
cussed below. Hence, a curved edge shape is favored whemn-conserved order parameter fiekdl= W is a perfect Sm-
surface tension becomes dominant in determining the strucA* sample, whereas & = 0 rods formCh. On the contrary,
ture of the monolayer edge. In previous theories, the tliskn the thicknessis a conserved field, as the volume of the mono-
variation, as well as th€h-band formation, were not taken layer, which is the integral of the thickness over the mono-
into account, resulting in a line tension which is low by an or layer domain, is conserved. In summary we have two non-
der of magnitude in comparison to experimental resits conserved field® andW¥, and a conserved field Free en-

nzt.z The unified free energy

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-12 |3
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Fig. 2 Structure of a wall 12. (a) Two coalesced monolayers
generate ar-wall in between. (b) Retardance image afravall,
showing a narrow black band at the center surrounded by htbrig
region. Schematics of the-wall; (c) top view, (d) side view. (e)
Retardance profile versus distance from theall (on the white
dotted line shown in (b)). The narrow black region in (b)
corresponds to a local minimum at the center. Scale baus) 8a);
1 um (b).

field. The first three terms in Eq. (3) describe the transition
from one rod-length thick monolayer of perfectly alignéd
(W=Yo = \/E) to theCh region forming at the monolayer
edge and around the wall (W = 0). The energy cost due
to big distortions of the nematic directarand arising from

t £ cosf towards therr wall and the edge is included in the
second term of Eq. (2) and in the fourth term of Eq. (3) without
loss of generality, ensuring rotational invariance. Thartio
term in Eq. (3), which penalizes the tilting of distorting
perfect layer formation, depends nonlinearly on the tik an
gle. This term has no counterpart in superconductors. The
last term of Eq. (3) represents the twist deformations, eher
K5 is the twist elastic modulus. It is the only contribution to
fchoa from the Frank free energy density, as the nematic di-
rectorn = (0,sin6(x),cosB(x)) rotates by an anglé about

thex-axis within a characteristic length scale= % the
0

twist penetration dept?'® Furthermore, the second term in
Eq. (2) dictates that =ty (see Figs. 3a, 3b) in the region of
fully aligned fd viruses ¥ = Wy), andt is decoupled from
the orientation oh at theCh band @ = 0). The last volume
term denoted by the Lagrange multiplieris due to the vol-
ume constraint of the membrane, arising from the rigid reatur

ergy functionals coupling conserved and non-conservetkfiel of the rod-likefd viruses_. That is, the overall monolayer vol-
is common in physical modeling, such as the growth of a stat/Mme stays constant, being independent of the local molecula

ble phase in a supersaturated pHaseThus, our approach

orientation.

can be classified as an equlibrium counterpart of model-C dy- The effect of the depletant polymer is represented by sur-
namics, which is the class of dynamic models containing bottiace tension terms given in the second line of Eq. (2). The

conserved and non-conserved fiéftls
The free energy per unit length of the Skhflat layer in
(x,y)-plane is given by

F :/dx t] [fChA-l- S 242 t90050)2)% — v
2 2)
+]{ds (o) (N-n)2+ 0y (N xn)?+kkg) .

coefficients in the fourth and fifth terms of Eq. (2) are the
bulk surface tensiow) whenn || N, and therr-wall or edge
surface tensiow, whenn L N, N = (—sing(x),0,cosg(x))
being the local unit normal of the membrane curved surface.
@ =tan * & is the angle betweeN andz-axis. dsis the in-
finitesimal arc length of the curved surface, and its projec-
tion onto thex-axis isdx (Figs. 3a, 3b). In the presence of

anisotropy §j # 0.), the local surface tension changes con-

The volume terms given in square brackets are multiplied byinuously due to the local tilt oh between the two regimes.
the local monolayer thicknesg). The only symmetry related 1€ last term in Eq. (2) is the curvature free energy cost
with t is up-down symmetry across the monolayer (dashe®f the surfacé?, wherek is the associated curvature modu-
lines in Figs. 3(a) and (b)). Since we calculate the prof"egus. This term becomes particularly important in calculgti

above the symmetry axis, we replace the volume eleftjeix
by tdx > 0 in the following, without loss of generalityfch_a
in Eq. (2) is written as

fona—— w2 Yyt G g2 2 (ysing)?
2" t37 T2 2 @)
+%(n-D X n—qo)2.

Eq. (3) resembles the de Gennes free energy forGhe
SmA* transitior?-618 except for the fourth term, which ac-
counts for thebig distortions of the nematic director in a
flat smectic monolayéf?L FurthermoreW is a real scalar

curved edge profiles in agreement with Fig. 4(e). Forrthe
walls, on the other hand, when ignoring the curvature energy
cost, Eg. (2) still produces accurate retardance profiles as
function of the distance from the interface and surface-ener
gies as a function of chirality. Instead of usibg) and its
derivatives, it is preferable to parametrize the curvalyrthe
derivative ofp with respect to the infinitesimal arc length, that

is ke = 92, whereds= £—;‘¢ 24

The necessity to include three scalar fields, namely the tilt
angle 8, order parameteW, and thickness, is justified as
follows: In order to determine the width of the cholesteric
dch (shown in Figs. 4 and 5), which is experimentally seen

4| Journal Name, 2010, [voll1-12
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(Fig. 1(e)), we need to calculate the fieldand ¥ simulta-

neously. When these two fields are obtained as a function of

X, then the integration ofOLtLIJ/LIJodx over the monolayer do-

mainL gives the volume of the SrA* phase. The remaining

volume is occupied by th€h phase, and its distribution un-

derneath the curved thickness profilgieldsdc,. The deter-

mination of the cholesteric width is only possible when both

andW are taken into account. Furthermore, the molecular tilt

configurations minimizing the S* and theCh free energy

are different. In &h there is a cholesteric axis along which

O x n = o, Wheread] x n =0 in a perfect SmA*. Addition-

ally, the local monolayer thickness is given by theos6 in

the SmA*, whereas it is decoupled frofin theCh regime.

The crossover between the two regimes is maintainedl.by
Taking the monolayer domain— oo, and substituting the Teage  Tedge

expressions fon, N, andkc, Egs. (2) and (3) are rewritten as (©)
F :/ dx [thhA+%t‘#2(t2—t§co§6)2—vt @ Q
0
i ¢ 2

+ cosp ~Acos'6 cosp+kcosp (&) Fig. 3 Schematics of therwall and the edge.Side views of (a)
dt the -wall and (b) the edge. Dashed lines denote the mid-plane.

+u <tanq0— _ﬂ , Light-shaded area indicates tBé@region. Dark-shaded area_
dx indicates the projection of ds, which is dx. The surface radixhis

in the (x,2)-plane. @ is the angle between the z-axis and the surface
normalN. The nematic directan is always in the yz-plane.
Schematics of (c) the two monolayers of radibefore coalescence
and (d) the coalesced final structure withr-avall (gray line). Each

whereA = o, —0j, and

f - _L|J2 L|J4 dw C2 Z2W?5irt 0 arc has the radius. The line tensiongeqgeandyy, equivalent to
Ch-A= +- g
2 4 2 dx 2 (5) the applied forces at the anchoring point, should be bathirce
do 2 equilibrium. B¢ is the contact angle. The relation> r; always
+ > \ax do holds

In EqQ. (4), due to the parametrizationl%lfandKC in terms of

@, there is an extra constraint of tan: mult|pI|ed by the

Lagrange multipliept = p(x). Kc = COpg | (10)
For one independent and several dependent variables, the

Euler-Lagrange (EL) equations which minimize Eq. (4) are u; =sin29 |:Acos(p+tl.|.12 <% _Qt300526+qt§t2):| ,

t' = tang, 9

given by?®
af d of 5 , (11)
9g  dxag ©® oyt [—r+czsin29+q(t2—t§cosze) +uw2} . (12)
whereg = {0,W.t,9}, g = {6',W.t', ¢/}, andf = f(gi,9)) 2

W .
is the free energy density given By= [ dxf(gi,g{). Primes p=v-— > [—r +C,sir 0 —i—C[tg cod 0

denote derivative%g. With the constraint given in the last W2 W2
term of Eq. (4), Eq. (6) contains eight coupled nonlineat-firs —6Gt§t? cos 0 + 5Git?] — -2

. . . . . 2Kt 2Ct
order differential equations that are solved subject tdteig (13)

boundary conditions. These eight equations are calcuésted
2kcog gk =Acos 8sinfcog g+ g, sing

_ of 14
=50~ Kat (6" —do) , (7) + pu—ksingkZ. 4
F) i The boundary conditions in the bulk are specified as fol-
Uz = F I Citw', (8) lows: because there is parallel alignment of rods in theimite

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-12 |5
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of the monolayer, no director tilt occurfy(= 0 or 6y = 1), where F is given by Eq. (2), and the bulk free energy density
there is perfect smectic ordeP & Wo), andt =to (see Figs. 3a  of a large disk is written a& = v + 0j /to, since in Eq. (2) the
and 3b). The unit layer normalis parallel to the-axis, lead-  contributions of twist deformations t& are negligiblé®2

ing to @ = 0. Furthermore, all derivatives must vanish in the Rods present inside the bulk create a surface energy agsbcia

bulk in the ground state of the monolayer. with o, which results in the second term fif
Using the boundary conditionsin the bulk, we determine the

Lagrange multiplier of the volume constraint from Eq. (18) a

1 r2 2.3 Thermodynamic stability of the free edge and thet-
_ 2
V= > (—E + KZQO) . (15) wall
The physical meaning of can be understood by the following  Since the formation ofr-walls can simply be induced by the
argument: the volume difference between a configuration ogoalescence of two membrartdswe investigate the thermo-
uniformly aligned viruses parallel to tizeaxis and the config-  dynamic stability of two disconnected membranes with re-
uration shown in Fig. 1c contributes to the bulk of the mono-spect to two coalesced ones withrawall inbetween. The
layer by the associated energy densitys the volume of the  configurations of two monolayers before and after coaleszen
monolayer is constrained to stay constant in Eq. (2). The firsare shown in Figs. 3(c) and 3(d). The coalesced form adopts
termin Eq. (15) is the energy gain due to the 8ferder, and  a sr-wall in between (gray line). The magnitudes of the forces
the second term is the energy cost of the chiral rods avoidingpplied to the anchor points by tiewall and the monolayer
twist deformationsy vanishes atjpc = WS 2—{22 whereqoc edge are equal to thg; and y.qge the line tensions associ-
is defined as the critical chirality. ated with therr-wall and the e(_jge, r(_especnvely. I_n equilibrium
For therwall and the monolayer edge structure, the bound{hese forces are balanced, giving rise to a certain comai: a
ary conditions are determined separately. The thickness of Be; Which satisfies the relation
r-wall saturates at a thicknessat the center, wher is par-
allel to thez-axis, henceap; = 0. Sincerr-walls are modeled Y = —2YedgeCOSBe - (18)
by aChregion sandwiched between two SWi-monolayers,

Wr =0 andfy = 3 by symmetry. As for the boundary con- |gnoring the detailed structure of threwall and the mono-
ditions at the edge, :‘Trom the electron micrograph (Fig. 1€)jayer edge, we further assume that the total area of two mono-

edge the viruses stay parallel to fhaxis along the membrane a, , the total areas of the first and second configurations, re-
periphery, that isfeqge= 7. We assume the rods forming a spectively, are given by

perfectChat the monolayer edge, thl4gge= 0.

The membrane edge and threwall show significant ther-
mal fluctuations on the monolayer plane. The line tension
Yetf, Which is the free energy cost associated with the for- ) - )
mation of these interfaces, can be extracted from the aisalys T0 determine the stability af-walls with respect to the mem-
at the long wavelength limit of the measured fluctuation specPrane edge, we compare the total line energies of the first and
trall12 The magnitude ofs ;1 is controlled by the chirality of second configuration;g; andF,ng, Which are written as
the constituent rods, since the twist deformations expete
the interface reduce the energy of rods arising from chiral i Fist = 470 1 Yedge, (20)
teractions. The fluctuation amplitude is inversely projooe| Fond = 4Bcl 2Yedge-+ 22 SiNBey. (21)
to ye1f. The bigger the depletant concentration, the lower the
fluctuation amplitude becomes at long wavelengths, leaing
an increase inye¢12’. Therefore it was proposed that the line
tension is given by

Asst=2mr2, and Agng = (2. —sin2Bc)r3. (19)

When AF = Fiit — Fong > 0 under the constraints given by
Egs. (18) and (19)r-walls should be favored. On the other
hand, if AF < 0, the r-wall length goes to zero as the two
coalesced disks will separate into two distinct monolayers
namely back to the first configuration. A = 0, (. be-
wherey,are depends on the depletant concentration, @R comes equal tar, implying a continuous transition between
is the chiral contribution to the line tensibh Theoretically, the two regimes. Hence, the regionmfvall stability is given

Yeff = Ybare — Ychiral (16)

yetf can be calculated By asf; < 1. In this regime, the radius of a single arc in the sec-
ond configurationty, is always bigger than, the radius of a
Yeit = F — Ltgfo, a7 single disk.

6| Journal Name, 2010, [vol]1-12 This journal is © The Royal Society of Chemistry [year]
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3 Results definitions given by the Egs. (22), (23) in Egs. (4) and (5),
the dimensionless free energy per unit lentis obtained as
3.1 Methods F = F/K,. The dimensionless critical chirality is found as

i i o ardocAt = 1/\/22.
We now explore the results by solving the EL Equations given Given the definitions in Egs. (22) and (23), the dimension-

in Egs. (7)—-(14) and their respective boundary conditiams f
the r-wall and the monolayer edge. Since the EL Equa-IeSS forms of Egs. (4) and (5) become
tions are coupled to each other and nonlinear, they are ana- o t a5 , -
lytically not tractable. Instead, we use the relaxationhodt F :/o dx [EfCth‘f' th’ (t?—cos 8)” — vt
for boundary-value problems, where we replace the ordinary _ 2
differential equations by a set of equivalent finite-difiece +- 9L _ Acog 6cosp+kcosp <_(p) ] ,
equations on a grid &¥ points. The origin of the grid is either cosp dx
the monolayer edge or the center of tlravall, and the final
boundary is taken to be large enough to ensure that all derivavhere
tives in Egs. (7)—-(14) vanish, and all boundary conditions i Wi 1 /dw\2
the bulk of the SmA* membranes are satisfied. Starting from feha=—Wo+ —+ = (_) +W2sint g
an initial guess, the algorithm iterates the solution byhgsi 2 K2\ dx
Newton’s method until the generated numerical values of the deé 2

+ (& - QO/\I)

(24)

(25)

dependent variables converge to the true solution up to-a rel

ative errof?. In our implementation each of the two adjacent

points on the grid are couplell, = 800, and the relative error ~ The theoretical retardance profile is calculated by pluggin

is in the order of 108. The dependent variables to be simulta- thet and 6 profiles in Eq. (1). To successfully reproduce the

neously solved in our analysis afeW,t, @, u, 6', W' andkc. retardance data using the model in Eq. (2), the finite reieoiut
When solving differential equations, it is suitable to work of an object viewed with optical microscopy must be taken

with dimensionless parameters. In our analysis, we use thi@to account. The resolution is characterized by a Gaussian

assumptiory = A;. The half-length of théd —wt viruses are  distribution function, and it is convolved with the theacet

to = 0.44um3?, and from previous theoriek = 0.48um?°, retardance to compare the resulting profile with the experi-

In what follows, we will show that this assumption still held mental retardance data For best fit, the rod concentratian

Furthermore, for simplicity we assume that C,. Hence, in Eg. (1) andA; are adjusted accordingly. Since tirawall

using the previous definitions af = CKSJZ’ Wo=,/T, and thicknesst;; is not determined by experiments, _it .is a fitting

measuring the distance from the monzolgyer edge andrthe parameter as well. We extrgr;,tfrom the local minimum of

the retardance at the-wall (Figs. 2e, 6d).

wall in units of A, we define the following dimensionless con- . . : . .
To compare with the line tension measured in experiments,

stants: the T-dependence ofjy allows us to calculatgzf, given in
c A th Eq. (16), as a functci)on qf the temperature (Fig. 7). At ap-
§i=y\/—, Ke=%, =1/ =2, proximately T, = 60 C_wﬂd—type fd viruses b(_acome achi-
r g r ral'l. Henceygira Vanishes in Eq. (16), leading taf =
Vhare- Beyond this critical temperaturg the experimental
0= M’ o, = ILA . A= A_’\t’ K= L’ (22) line tension shows no temperature dependence. The chiral-
K2 K2 K2 Kot ity of wild-type fd viruses was converted into a temperature-
Y 1 (goh)? dependent function, given by = a(T; — T)¥/?, wherea =
Ve T at 2 (23)  0.0560°Cum?)~%/211  Since self assembly of the rods into

the monolayers is primarily governed by hard-core repuksio
Here¢) is the coherence length, amd the twist Ginzburg  among the rods and the surrounding depletant, we assume that
parametef, which is analogous to the Ginzburg parameterall other constants in Egs. (2) and (3) are independent of tem
Kk in superconductofs'4. By definition, A; is measured in- perature.

side the SmA* region. That is, the width of the cholesteric
band, which we define af, does not contribute td; (see
Figs. 4 and 5)a is the dimensionless coupling strength of the
thicknesg with the projected height of a tilted rothcosé, Figs. 4—7 display our main results. For convenience, in.Figs
in the SmA* region. The remaining definitions denoted with and 5 we illustrate the results in terms of dimensionless pa-
bars are the corresponding dimensionless constapts. in rameters to determine the relevant parameters which riesult
Eqg. (23) is the dimensionless chirality of the rods. Using th pronounced changes in the results. By minimizing Eqgs. (24)

3.2 The edge andt-wall profiles

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-12 |7
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1
X (4 m)

Fig. 4 From top to bottom, the profiles of the smectic order paameter W, thicknesst, and the tilt angle 8, as a function of the distance
from the edge.W is normalized by = \/f,t by tg = At, and @ by T (vertical axes). The origin of the horizontal axes lie athat t
monolayer edge, positive values of the distance are inbglenbnolayer. From left to right, each column displays thagion of the profiles
upon variation of the corresponding dimensionless vaeiable chiralityqoAt = {0,0.3,0.6, 1/+/2}, the surface tension anisotropy

A ={0.1,0.2,0.3,0.4}, the curvature modulus= {0.1,0.2,0.5,1.0}, and the thickness coupling strength= {1,5,10, 15}, respectively

(Eq. (22)), as denoted at the top. All other parameters &entw be constant for each column. The arrows are orientdtidirection in
which the profiles evolve as the corresponding dimensisnlagable increases. In the first, third, and fourth colummaximum width of the
Chbanddch, and corresponding twist penetration deptlare shownW exhibitsChregion,t qualitatively reproduces the curved shape in the
electron micrograph (Fig. 1b), afishows a decay characterizing the twist penetration at thel@dOverall the profiles are fairly robust
upon change of the variables in Eq. (2).

and (25), the smectic order parameiérthe thickness, and  imately betweerggA; ~ 0 — 0.22'1. Therefore a high value
the tilt angled are calculated as a function of the following di- of gpA; allows us to better examine the effects of @leband
mensionless parameters: the chiratjgf, the twist Ginzburg ~ formation to the edge structure. The effectrofand EH on
parametek, the bulk surface tension modulag, the sur-  the edge structure is found to be negligible. Thus, the evolu
face tension anisotropy, the thickness coupling strength  tion of the profiles with respect &, and g are not shown.
and the curvature modulis From Eq. (22) the energy scale of the surface tension moduli
In Fig. 4 the evolution of¥, t, and @, versus the distance 1S estimated aka/A; ~ 250kgT /pn¥, given thai ~ 0.5 um
from the edge, are shown ggA;, A, k, anda are varied in ~ andKz = 125% 1031 This order of magnitude agrees well
successive columns, respectively. The set of these paramesth the results presented in R&f.Therefore we choose the
ters is given in Fig. 4 caption, and all other parameters for dulk surface tension modulus to b_gq = 0.4 (on the order of

given column are taken to be constant. These constant pararyJOZ@_nTz) and assume the surface tension to be isotropic, that

_ _ — 10 & — _ _u >
eters arefoA = Goch = 1/v/2, kz = 10, 0 = 04,A=0, s A'_ 0. a andk are not determined by experiments. We set
o =15, andk = 0.2. To our knowledge, the critical chiral-

) o o = 15 to work in the strong-coupling limit. Additionally, we
ity gocAt does not have any thermodynamic significance forfind thatk ~ kT or 10kgT results int profiles which quali-

Sm-A" monolayers. Howevng\t is_fairly high co_mpared tatively reproduce the shape of the edge as in Fig. 1(d). This
to the range ofpA; observed in experiments which is approx-

8| Journal Name, 2010, [vol] 1-12 This journal is © The Royal Society of Chemistry [year]
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corresponds to a range lof- 0.02—0.2.

At = 0.21 um, which is fairly low compared t@; of the edge,

Figs. 4(a)-(c) show the evolution of the profiles from the being independent @pA;. Namely the twist penetration depth

achiral limit (goA; = 0) to gA; = 1/+/2. The reduction in the
chiral energy density-K,qon - (O x n), given by the cross-
term in Eq. (3), favorsicy, to become bigger whegp/; in-
creases. This is also evidenced by the lin@arofiles. In

is constant, as observed in experiméhts

The change impA; (Figs. 5(a)-(c)) andr (Figs. 5(j)-(1)) al-
ter the profiles the same way as described above for the edge.
However, the effects af; andk on r-wall profiles are qualita-

the Ch phase the last term in Eq. (4) is minimized when tively different from the edge profiles. In Figs. 5(d)-(f)hen

n-(Oxn) = qo, leading to a linead profile, which corre-

K2 changes, the relaxation length scéleof the smectic order

sponds to a uniform twist about a helical axis throughout theaffectsW profiles. As a result-;, becomes bigger for higher

sample. The change trprofiles is negligible, that iggA; does

Kz, corresponding to smalley, thereby rapid variation d¥.

not affect the overall shape of the monolayer edge. The twisMoreover, Fig. 5(g)-(i) indicate tha& has a negligible effect

penetration depth is constantiat= 0.38 um throughout the
whole range ofj);. Likewise, in Ref!! it is reported that the
retardance profiles antl are independent of the molecular
chirality qp.

In Figs. 4(d)-(f), the effect of anisotropy in the surface

on the shape and structure of titevall. Ay = 0.23 ym (see
Fig. 5(i)) fork = 0.01 and it reduces to 0/2m whenk = 0.1.

3.3 The retardance and the line tension

tension Q > 0) is investigated. When anisotropy increases,Next we interpret the retardance profiles in Figs. 6(d) and (h
6 profiles become more steep to suppress the effect afalculated from the and 8 profiles displayed in Figs. 6(b)—

anisotropy, which is given by the fifth term in Eq. (2). Accerd

(c) and (f)—(g). These profiles are obtained for the range of

ingly W profiles show thatlc,, decreases. Again, the shape of chirality gg ~ 0— 0.5 um~1 (equivalentlyT ~ 0— 60 °C) at

the monolayer edge is not affected, as evindenced bypte
files. The change iR is small;A; = 0.39 um for A = 0.1 and
At =0.42 um forA = 0.4.

Figs. 4(g)-(i) indicate thak has a profound effect on the

the strong coupling limit¢ = 18), corresponding to a deple-
tant concentration of 35 mg/mL, as given in Tables 1 and 2.
For both types of interfaces, Fig. 6 contains three sets-of in
distinguishable theoretical profiles (black full curves)yre-

shape and structure of the membrane edge. With mcrek,smg sponding to intermediate and high chiralities within tlrisge,
the apices of profiles become flatter. Since we work in the and the achiral limit. That is, the retardance profiles are es

strong coupling limit & = 15), the change ik affects bothd
andW profiles. dc;, becomes lower an@ profiles drift apart
from the linear regime close to the eddesignificantly alters
the twist penetration depthk; = 0.34 um whenk = 0.1 and
At = 0.47 um whenk = 1.

The effect of the dimensionless coupling constaris ex-
amined in Figs. 4(j)-(I). Asx increases, the apices bpro-
files become roundef profiles slightly change such that the
twist penetration depth grows frolg = 0.34 um fora =1
to Ay = 0.38 um ata = 15. Additionally,dcn, becomes big-
ger whena increases. When is small, there is a deviation
between the projected height of the a@tosd andt in the
Sm-A* region. On the other hand, bigger valuestofesult in
good agreement betweeandty cos outsidedcy,. Hence, our
choice to work in the strong coupling limit is justified withi
the framework of our model.

In Fig. 5 the evolution oM, t, and 6, versus the distance
from the edge, are shown agA;, ko, k, anda are varied in
successive columns, respectively. Again, all other patarse

sentially unchanged, revealing that tirewall and the edge
structures are independent of the rod chirafity The local
minimum of therr-wall retardance is successfully reproduced
by our model and allows us to extract tirewall thickness as
tnr = to/4 (Fig. 6(d)). In the experimentally realized range of
Jo, W profiles reveal that the width of théh band goes to
zero (Figs. 6(a) and (e)). Furthermohejs found to be bigger
at the edge than at thewall (see Tables 1, 2). We have no
simple physical reason for this difference. Revisiting asf
sumption thaty = A;, for the edge and tha-walls, we obtain
the membrane thickness tf~ 0.6 um andtg ~ 0.8 um, re-
spectively. These results are in reasonable agreementheith
expected membrane thickness of 0188, ignoring protrusion
fluctuations of the rods.

Dextran( 9 || | o ( (EBrr;F)Z) | k(ksT) | At (um)
45 183 349 235 | 047
40 145 276 538 | 0.43
35 80 128 488 | 0.39

for each column are taken to be constant. These constant pa-

rameters are the same as before, exceptkhat0.05, that
is, k ~ 3kgT. In contrast to the edge structurewalls are af-
fected by the anisotropy negligibly. Therefore, the evolution
of the profiles with respect ta will not be discussed. Over-

Table 1 For the edgej:, surface tension and curvature moduli as a
function of the depletant concentration. The twist elastiostant is
kept fixed atk,=125kgT /um 31, The twist Ginzburg parameter is
chosen ag, = 4. Using Eq. (1), the rod concentration is found to be

all the profiles are very robust upon change of the variables i ¢ = 170 mg/mL.

Eqg. (2). For all columns except the column lofwe extract

This journal is © The Royal Society of Chemistry [year]
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X (4 m) X (4 m)

Fig. 5 From top to bottom, the profiles of the smectic order paameter W, thicknesst, and the tilt angle 8, as a function of the distance
from the r-wall. The origin of the horizontal axes lie at at tirewall, positive and negative values of the distance ara@@#ie monolayer in
opposite directions. From left to right, each column digplthe evolution of the profiles as a function of the dimenisissvariables; the
chirality goA: = {0.1,0.3,0.6,1/+/2}, the twist Ginzburg parametep = {2,6,10,15}, the curvature modulus= {0.01,0.02,0.05,0.1}, and
the thickness coupling strength= {1, 5,10, 15}, respectively (Eg. (22)), as denoted at the top. The arrosm@ented in the direction in
which the profiles evolve as the corresponding dimensisniagable increases. In the second and third columns, memida, and
corresponding\; are shownW¥ exhibits theCh region across tha-wall, and8 shows a decay characterizing the twist penetration arcumd t
r-wall 10, t is significantly reduced frorty in the bulk totg/4 at the center of tha-walll.

Dextran(r:?) || GH((%T)Z) | Ui((i';mT)Z) | k(ksT) | At(um)  Consequently, whe@yexiran decreases from Figs. 7(a) to (c),
a5 184 350 513 034 _ the overall line tension becomes smaller.
40 161 282 1.94 0.31 In Fig. 7 the theoreticaleqge (black full curves) andy,
35 112 179 1.75 0.28 (gray full curves) are compared to the experiments (respec-

tively, black dots and gray squares) as well. For thevalls
Table 2 For therrwalls, A¢, surface tension and curvature moduli as we obtain excellent agreement between theory and expetrimen
a function of depletant concentratiokg=125kgT um, k2 = 4, and over the entire range of temperature and depletant corseentr
¢= 145 mg/mL). tion. Chirality lowersy;; by up to 100kgT /um. On the other

hand, even though the logg behavior and order of magnitude

of theoreticalysqgeagrees well with experiment, the slopes of

Eq. (16) states that the chirality of the constituent rodsthe experimental and theoretigaljgedisagree. The origin of

controls the line tensionggge and y. It follows that de-  this discrepancy, as well as the slope difference betwggg
creasing the temperature results in higher chirality oflwil andy;; are not understood. Additionally, the theoretical line
type fd virus, subsequently reducingqge and yr (Fig. 7),  tension profiles of both structures are found to be closetto pa
since the twist deformations favored by the edge analall allel to each other. In contrast to the theory where the reduc
structures also satisfy the chiral interactions. This i@l-re tion is by up to 10kgT /um, chirality reducesedge by €.9.
ized in Figs. 7(a)-(c). Furthermore, the depletant comeent up to 400kgT /um whenCyexira=45 mg/mL in experiments
tion Cyextran @ffects the order of magnitude of the line tension. (Fig. 7a).

10| Journal Name, 2010, [vol]l, 1-12 This journal is © The Royal Society of Chemistry [year]
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Fig. 6 Experimental versus theoretical retardanceFrom top to
bottom, the profiles of the smectic order paramétethicknesg,
the tilt angled, and the retardand® as a function of the distance
from the r-wall (left column, (a)—(d)) and the edge (right column,
(e)—(h)). The origins of the horizontal axes lie at tirvall (left)
and the edge (right). The dotted vertical lines indicateréggon of
twist penetration\;. The squares in (d) and dots in (h) are
experimental retardance data, whereas full curves aralatdcl
from Eqgs. (7)—(14). Excellent agreement is obtained beatwee
experiment and theory, the theoretical retardance beimgstaipon
the change ofipA; (or equivalently, temperatur&)12

The modulioj, ., andk for the theoretical curvesin Fig. 7

are given in Tables 1 and 2 corresponding to the monolaye — 690" . = gf(®" 17 " Ho) e

edge and ther-wall, respectively, as a function of the deple-
tant concentration. The magnitudes @f and o, of both

Using Eg. (18), we extract the dependence of the contact an-
gle B on the experimental profiles gfggeandyr. At B =,
AF vanishes (Eq. (21)). Thus, & (the vertical dashed lines
in Fig. 7), which corresponds tB8; = 1, -walls should be
separated continuously into two free edges and become un-
stable belowT.. Furthermore, whed approached; from
above, a gradual contraction of theewall length is expected.
None of these predictions are confirmed in experiments, and
mr-walls are observed at temperatures as low as 5°C (see
Fig. 7). Therefore, we conclude thatwalls survive, how-
ever become metastable at sufficiently low temperatures. In
addition, we exclude the possibility of spontaneous foromat
of the r-walls at sufficiently high chirality, or equivalently at
low temperatures.

The anticipated dissociation of the coalesced configuratio
into two separate monolayers is replaced by the formation of
alternating-bridge pore arrays (ABPAs), where the rods are
aligned in the monolayer plane at the bridéfesThe pores
are occupied by the ambient suspension of depletant polymer
When ABPAs replace thg-walls, the amount of membrane-
depletant interface considerably increases comparedrto a
wall. This interface has a curved two-dimensional shape ac-
companied with mean and Gaussian curvatures. When ABPAs
form, they build a layered SmA* in the plane of the mono-
layer. Thus, in the presence of ABPAs, the structure is to be
understood as an array of monolayer 8frCh-layered Sm-
A*—Ch-monolayer SmA*, which has a counterpart neither in
superconductors nor in conventional smectics. Modelirgéh
structures is beyond the scope of our work, since our model is
missing the relevant contributions due to the mean and Gaus-
sian curvatures of the curved bridge-depletant interface.

S T
it TR mmamay

%200 + . —
structures are found to be very close to each other, reflec = {C =5 T ¢ “C =iomant| [ :?fs}ng,m,_‘
ing the unified nature of our model. Besides, their orders o 0 ™= —L— L@ Lt — 1
magnitude match with experimental predictibnsWhereas T(°C)

the curvature modulusis on the order okgT for the r-wall,
thermal fluctuations should not alter its shape, since thpeh
dependence ok was found to be negligible (Figs 5(g)-(i)).
For the edge, althougkaffects the structure (see Figs. 4(g)-
(), the shape qualitatively agrees with the electron odicr
graph (Fig. 4(e)) for the entire range kf Last, in order to

Fig. 7 The effective line tensiory of both structures as a

function of temperature T and the depletant concentration

Cdextran The gray squares and black dots, with their error bars, are
extracted from the experimentatwall and edge fluctuation spectra,
respectively112 Likewise, the gray and black full curves are the
theoreticaly of the -wall and the edge, respectively, calculated

fit the slope ofyeqge to €Xperiments, an extensive scan overfom Eq. (16). The dashed lines correspgd= 7.

the parameter space resulteddngeprofiles of similar slopes,
solely affecting their magnitude.

This journal is © The Royal Society of Chemistry [year]
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4 Conclusion 5 De Gennes, P. Gsuperconductivity of Metals and Alloys
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The present theoretical study demonstrates that, in addti 6 P, G. De Gennes, Solid State Commi®,753 (1972).

the spatial change of the molecular tilt, the structure ef th 7 £ Barry and Z. Dogic, PNA$07,10348 (2010).

membrane edge and-wall are strongly determined by the g Yang, E. Barry, Z. Dogic, and M. F. Hagan, Soft Matter
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thickness change in these structures. The membrane Iowe{;ss' Asakura, F. Oosawa, J. Polym. 3, 183 (1958).

o o epetnt el oty b TCTVTOGRIY 10 Gy i . 1y . Ploon,and
ge. ! 9 Oldenburg, J. Phys. Chem®.3,3910 (2009).

wall occurs due to the global constraints imposed by itsltopo .
ogy, resulting in a retardance drop at titevall. Our the- 11 T. Gibauckt al. Nature481,348 (2012).
ory succesfully reproduces this unusual retardance behavi 12 M. J. Zakharetal.Nat. Commun5, 3063 (2014).
confirming the hypothesized structure of thievalls. Further- 13 B. B. Goodman, Phys. Rev. Let.597 (1961).
more, ther-wall thickness, which is not measured in experi- 14 Saint-James, D., Thomas, E. J. & Sarma;T¢e Il Su-
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Our calculations indicate that trewall line tension is lin- 15 R. B. Meyer, Appl. Phys. Let.2,281 (1968).
ear in the chirality of viruses. In contrast, line tensioname 16 P. G. De Gennes, Solid State Comm@iril63 (1968).
surements of the edge revealed a quadratic dependence on ttig F. Bloch, Z. Physr4,295 (1932).
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The graphical and textual abstract for
Colloidal membranes of hard rods:
Unified theory of free edge structure
and twist walls

The unified framework of the monolayer edge and twist walls, observed
in colloidal fluid membranes, reveals their structure and stability.



