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Monodisperse suspensions of rodlike chiralf d viruses are condensed into a rod-length thick colloidal monolayers of aligned
rods by depletion forces. Twist deformations of the molecules are expelled to the monolayer edge as in a chiral smecticA liquid
crystal, and a cholesteric band forms at the edge. Coalescence of two such isolated membranes results in a twist wall sandwiched
between two regions of aligned rods, dubbedπ-walls. By modeling the membrane as a binary fluid of coexisting cholesteric and
chiral smecticA liquid-crystalline regions, we develop a unified theory of theπ-walls and the monolayer edge. The mean-field
analysis of our model yields the molecular tilt profiles, thelocal thickness change, and the crossover from smectic to cholesteric
behavior at the monolayer edge and across theπ-wall. Furthermore, we calculate the line tension associated with the formation
of these interfaces. Our model offers insights regarding the stability and the detailed structure of theπ-wall and the monolayer
edge.

1 Introduction

Chirality, the breaking of mirror symmetry, occurs at many
length scales, from nanometer-sized DNA to the coiled form
of Gastropod snails at various sizes1. In soft matter, micro-
scopic chirality can alter numerous macroscopic properties of
materials. For example, in chiral smectic liquid crystals grain
boundaries form above a critical temperature to alleviate the
frustration between the layer formation and the twist tendency
of the chiral molecules2–4. This is analogous to the penetra-
tion of magnetic field lines into superconductors by creating a
lattice of parallel vortices5. Based on this analogy, smecticA
samples maintain twist- and bend-free molecular orientations
within each layer by the expulsion of these deformations to
the edges or around isolated defects, similar to the well-known
Meissner effect in superconductors6.

One realization of this analogy is a model system of two
dimensional colloidal membranes composed of aligned rods,
which behave as a single layer of a chiral smectic A (Sm-
A∗) liquid crystal. Monodisperse suspensions of the 880 nm
long, rodlike wild-type f d viruses are spontaneously con-
densed into these one rod length thick colloidal monolayers
with free edges by attractive depletion forces7–9. The penetra-
tion of twist at the monolayer edge could be directly observed,
allowing for the confirmation of the de Gennes theory10. Re-
cently, it was reported that the line tension of the monolayer
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edge, an important variable relevant to the formation energy of
the free boundaries, can be controlledin situ by the chirality
of rods11. Furthermore, it was found that monolayers which
consist of achiral rods still possessed twist deformationsat the
edge. A curved edge profile was observed, which was robust
for the entire range of measured line tension values.

By changing the line tension, colloidal Sm-A∗ membranes
can easily be induced to exhibit morphological transitions11.
One way to achieve this is the coalescence of two or more
membranes. When two membranes are surrounded by the
edges with same handedness, the molecular twist localized at
the edge poses a problem for the coalescence, as the direction
of twist will be in opposite directions where the two edges
meet. The final structure adopts a one-dimensional line defect
between the two coalesced membranes when the sizes of the
two membranes are comparable to each other. In order for the
molecular arrangement across the defect to be continuous, the
rods must twist byπ radians. Henceforth we will refer to these
lines of twist asπ-walls. These can also be imprinted in the
monolayers using optical forces12.

π-walls resemble various other phenomena observed in
condensed matter systems. For instance, they are analo-
gous to a laminar model of an array of alternating normal
metal and superconducting regions, which was replaced by the
Abrikosov flux-lattice phase in type-II materials5,13,14. Fur-
thermore, the pitch associated with the helicity of a cholesteric
sample can be unwound by electric and magnetic fields, creat-
ing similar twist walls in the vicinity of the critical field15,16.
Another example is magnetic systems, where the rotation of
spin magnetic moments in space cause resembling domains
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called Bloch walls17.

In this paper we extend the analysis of the theory, first pro-
posed in Ref.12 for the π-walls, to the free edge of the col-
loidal monolayer. Our approach treats the monolayers as a
binary liquid of Sm-A∗, where the rods are aligned parallel
to the layer normal, and a cholesteric (chiral nematic –Ch)
region, which the Sm-A∗ order melts into both at the mono-
layer free edge and theπ-wall. By introducing an order pa-
rameter field which is proportional to the local Sm-A∗ con-
centration, this framework couples the smectic order within
the monolayer and the orientation of the nematic director field
of the constituent molecules where the elastic distortionsare
pronounced. Our approach is reminiscent of the Landau-
Ginzburg formalism of smectics put forward by de Gennes6,
although in the colloidal membranes there is no discrete trans-
lational symmetry as in a layered Sm-A∗ material. Thus, we
replace the conventional smectic order parameter, which pre-
serves the translational symmetry via a complex number, by a
real order parameter in our analysis, which solely accountsfor
the local concentration of the regions of perfectly alignedrods
within the monolayer. Henceforth, a chiral smecticA mono-
layer, which lacks the mass-density wave of a layered smec-
tic, shall be understood by the abbreviation “Sm-A∗.” In the
present work, the effect of the depleting agent,i.e. the non-
adsorbing polymer, is modeled by appropriate surface tension
terms, and plays a crucial role in determining the structureof
the monolayer edge and theπ-walls. We perform a mean-field
analysis of our model to calculate the thickness, tilt angle, and
the smectic order parameter profiles of theπ-walls and the free
edges. These profiles reveal a Sm-A∗-to-Ch transition at both
types of interfaces, as observed in experiments. We examine
the effect of the dimensionless parameters in our model on the
profiles, in order to determine the relevant parameters which
induce pronounced changes in the results. Overall we find that
our theory is robust within a reasonable range of all free pa-
rameters. This allows us to obtain the best fit of the tilt angle
profile and the thickness to the experimental measurements at
the free edge and theπ-wall. Furthermore, we calculate the
line tension of the membrane edge and theπ-wall as a func-
tion of the molecular chirality, or equivalently temperature11,
in order to match them with experimental measurements. Ac-
cordingly, we investigate the thermodynamic stability of these
structures with respect to each other.

The present study is organized as follows: In the next
section, based on experimental evidence, we explain the hy-
pothesized structures of the membrane edge and theπ-wall
(Sec. 2.1), followed by a detailed description of our model
(Sec. 2.2). In Sec. 2.3 we propose a simple analysis regarding
the thermodynamic stability condition of two coalesced mem-
branes with aπ-wall inbetween with respect to two discon-
nected membranes. In Sec. 3 we present the results, where we
apply our theory to the membrane edge and theπ-wall in order

to test our hypotheses. Following the discussion of methods
in Sec. 3.1, we present in Sec. 3.2 how the profiles are altered
when the free parameters in our model are tuned, thereby ver-
ifying the robustness of our theory. Sec. 3.3 is devoted to the
comparison of the theoretical profiles with the experimental
analysis of the interfacial structure. In addition, we calculate
the line tension of the free edge and theπ-wall as a function of
temperature and discuss the relative thermodynamic stability
of theπ-walls with respect to the monolayer edge. Concluding
remarks are offered in the final section of the paper.

2 Theory

2.1 Structures of theπ-wall and the monolayer edge

Disk-shaped assemblages off d-viruses typically reach meso-
scopic sizes in diameter7. Because of the tendency of
monodisperse hard rods to build a one-rod-length thick flat
monolayer, Sm-A∗ membranes do not support molecular twist
and bend deformations and thus expel them to the edge
(Figs. 1a, 1b)18. This constraint is mediated by the depletion
interactions between the rods and the depletant polymer. By
contrast, in a conventional smectic-A material, the exclusion
of twist and bend deformations in the ground state is a natural
consequence of constant distance everywhere between two ad-
jacent layers. In general, bend deformations of the molecules
localized at the edge are negligible as the rod length is much
smaller than the monolayer radius. Whenλb ≪ r and t̄ ≪ r,
the contributionγb of molecular bend to the line tension scales
asγb ∼ K3t̄λb/r2 → 0, whereK3 is the bend elastic constant,
t̄ is the average membrane thickness where the bend distor-
tions occur,λb is the penetration depth of the bend deforma-
tions at the edge, andr is the radius of the monolayer. Since
the rods are perfectly aligned in the bulk, the membrane inte-
rior appears black when viewed under 2D LC-Polscope, corre-
sponding to no birefringence (Fig. 1c)10,11. Towards the edge,
however, optical anisotropy arising from the twist deforma-
tions results in a bright, birefringent region characterized by a
retardance, R, which is given by (Fig. 1d)

R= t∆nsatcSsin2 θ . (1)

Heret is the local membrane thickness.nSat = (3.8±0.3)×
10−5mL/mg is the specific birefringence of a fully aligned
bulk sample at unit concentration19. The nematic order pa-
rameterSwas measured to be 0.95 at a rod concentrationc of
100 mg/mL in the bulk monolayer19. Therefore we assume
thatS∼ 1, namely there is perfect orientational order7,10. θ is
the tilt angle of the molecules with respect to the layer normal.

To quantify the retardance, a simple model focusing on the
spatial variation of the nematic director was proposed10. This
model neglects the variation of the thickness and smectic order
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across the monolayer. For chiral membranes, the theory accu-
rately reproduces the experimental retardance profile. How-
ever, as evidenced by their retardance map, achiral monolayers
exhibit twist at the edge as well, spontaneously breaking the
chiral symmetry at the membrane edge11. Furthermore, elec-
tron micrographs of the membrane edge cross-section reveala
curved thickness profile and melting of the smectic order into
a narrowCh band at the edge. In Fig. 1e, the rods are seen to
be perfectly aligned in thez-direction in the bulk of the mono-
layer. Towards the edge, the rods tilt rapidly such that they
point perpendicular to the image plane, forming aCh region
with a hemi-toroidal curved shape at the edge.

This Ch band constitutes the core of theπ-wall as well,
since aπ-wall is formed from two free edges of same hand-
edness (Fig. 2a). Therefore, we model theπ-wall by a Ch
region sandwiched between two semi-infinite Sm-A∗ mono-
layers (Figs. 2c, 2d).π-walls are linear defects, thereby their
liquid crystalline order does not possess any bend deforma-
tions. The in-plane curvature of aπ-wall is always vanishingly
small compared to the edge curvature of a monolayer mem-
brane12. Thus, the contribution of the bending term to the line
tension of theπ-walls is negligible, thereby not affecting their
stability. As for their cross-sectional shape, the effect of the
thickness variation is anticipated to be more prominent at the
π-walls: an intensity profile having a local minimum located
between two peaks is extracted from retardance measurements
(Figs. 2b, 2e). We hypothesize that this local minimum indi-
cates a significant variation of the membrane thickness across
theπ-wall.

The presence of the depleting agent results in an effective
surface tension over the membrane surface. When a single
molecule protrudes from the monolayer, it reduces the acces-
sible volume of the surrounding depletant polymer. Both in
experiments and simulations, it was found that protrusion fluc-
tuations are significant in Sm-A∗ membranes, and stabilize this
phase against the configuration where single disks stack up on
top of each other and form a layered Sm-A∗ structure7,8,28. In
addition, spontaneous twist at the edge of achiral monolayers
is understood as an outcome of the surface tension: compared
to an untilted edge configuration, the monolayer may reduce
the rod-polymer interfacial area despite resulting in an elastic
energy associated with twist deformations11. This configura-
tion lowers the total surface energy of the membrane, espe-
cially if the surface tension continuosly varies throughout the
monolayer and becomes bigger at the edge than in the bulk,
due to the changing rod orientation. This scenario will be dis-
cussed below. Hence, a curved edge shape is favored when
surface tension becomes dominant in determining the struc-
ture of the monolayer edge. In previous theories, the thickness
variation, as well as theCh-band formation, were not taken
into account, resulting in a line tension which is low by an or-
der of magnitude in comparison to experimental results20,21.

Fig. 1 Structure of the membrane edge.(a) The schematics of the
rod orientation in a membrane and (b) at its edge11. (c) Retardance
image of a membrane (top view)10. Black region corresponds to no
retardance, whereas the bright ring at the edge is birefringent. (d)
Radial retardance profile as a function of distance from the
membrane edge (on the white dotted line shown in (c))10. (e)
Electron micrograph of the cross-section of the membrane edge11.
It visualizes both the curved shape and the Sm-A∗-to-Ch transition
towards the edge. Scale bars, 5µm (c); 0.2µm (e).

2.2 The unified free energy

These recent experimental findings are beyond the scope of
the simple model proposed in Ref.10. Thus, in addition to the
spatial change of the molecular tiltθ , a detailed theory should
account for the local thickness variationt and the crossover
from Sm-A∗-to-Ch behaviorΨ across the monolayer and the
π-wall, in order to correctly predict their structure as wellas
the magnitude and the behavior of the line tension.

For a bulk Sm-A∗ sample,Ψ is defined as the thermody-
namic average of the amplitude of a periodic mass-density
wave, which preserves the discrete translational symmetryin
the direction locally parallel to the normal vector of the lay-
ers. A colloidal monolayer composed of rod-like particles
lacks this symmetry. However, towards the edge monolay-
ers exhibit a clear transition from an ordered phase where the
molecules are aligned along the layer normal, to aCh region
in which the molecules satisfy the chiral interactions. There-
fore we model the monolayer as a binary fluid, in which the
Sm-A∗ andCh liquid-crystalline regions coexist, separated by
a diffuse interface with a coherence lengthξ||. In our modelΨ
is proportional to the local Sm-A∗ concentration, hence it is a
non-conserved order parameter field.Ψ = Ψ0 is a perfect Sm-
A∗ sample, whereas atΨ = 0 rods formCh. On the contrary,
the thicknesst is a conserved field, as the volume of the mono-
layer, which is the integral of the thickness over the mono-
layer domain, is conserved. In summary we have two non-
conserved fieldsθ andΨ, and a conserved fieldt. Free en-
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Fig. 2 Structure of a π-wall 12. (a) Two coalesced monolayers
generate aπ-wall in between. (b) Retardance image of aπ-wall,
showing a narrow black band at the center surrounded by a bright
region. Schematics of theπ-wall; (c) top view, (d) side view. (e)
Retardance profile versus distance from theπ-wall (on the white
dotted line shown in (b)). The narrow black region in (b)
corresponds to a local minimum at the center. Scale bars, 3µm (a);
1 µm (b).

ergy functionals coupling conserved and non-conserved fields
is common in physical modeling, such as the growth of a sta-
ble phase in a supersaturated phase22. Thus, our approach
can be classified as an equlibrium counterpart of model-C dy-
namics, which is the class of dynamic models containing both
conserved and non-conserved fields23.

The free energy per unit length of the Sm-A∗ flat layer in
(x,y)-plane is given by

F =

∫

dx |t|
[

fCh−A+
Ct

2
Ψ2(t2− (t0cosθ )2)2−ν

]

+
∮

ds
(

σ||(N̂ ·n)2+σ⊥(N̂×n)2+ kκ2
c

)

.

(2)

The volume terms given in square brackets are multiplied by
the local monolayer thicknesst(x). The only symmetry related
with t is up-down symmetry across the monolayer (dashed
lines in Figs. 3(a) and (b)). Since we calculate the profiles
above the symmetry axis, we replace the volume element|t|dx
by tdx> 0 in the following, without loss of generality.fCh−A

in Eq. (2) is written as

fCh−A =− r
2

Ψ2+
u
4

Ψ4+
C1

2
(∇Ψ)2+

C2

2
(Ψsinθ )2

+
K2

2
(n ·∇×n−q0)

2 .

(3)

Eq. (3) resembles the de Gennes free energy for theCh-
Sm-A∗ transition2,6,18, except for the fourth term, which ac-
counts for thebig distortions of the nematic director in a
flat smectic monolayer10,21. Furthermore,Ψ is a real scalar

field. The first three terms in Eq. (3) describe the transition
from one rod-length thick monolayer of perfectly alignedf d
(Ψ = Ψ0 =

√ r
u) to theCh region forming at the monolayer

edge and around theπ wall (Ψ = 0). The energy cost due
to big distortions of the nematic directorn and arising from
t 6= cosθ towards theπ wall and the edge is included in the
second term of Eq. (2) and in the fourth term of Eq. (3) without
loss of generality, ensuring rotational invariance. The fourth
term in Eq. (3), which penalizes the tilting ofn distorting
perfect layer formation, depends nonlinearly on the tilt an-
gle. This term has no counterpart in superconductors. The
last term of Eq. (3) represents the twist deformations, where
K2 is the twist elastic modulus. It is the only contribution to
fCh−A from the Frank free energy density, as the nematic di-
rectorn ≡ (0,sinθ (x),cosθ (x)) rotates by an angleθ about

thex-axis within a characteristic length scaleλt ≡
√

K2
C2Ψ2

0
, the

twist penetration depth10,18. Furthermore, the second term in
Eq. (2) dictates thatt = t0 (see Figs. 3a, 3b) in the region of
fully aligned f d viruses (Ψ = Ψ0), andt is decoupled from
the orientation ofn at theCh band (Ψ = 0). The last volume
term denoted by the Lagrange multiplierν is due to the vol-
ume constraint of the membrane, arising from the rigid nature
of the rod-like f d viruses. That is, the overall monolayer vol-
ume stays constant, being independent of the local molecular
orientation.

The effect of the depletant polymer is represented by sur-
face tension terms given in the second line of Eq. (2). The
coefficients in the fourth and fifth terms of Eq. (2) are the
bulk surface tensionσ|| whenn ‖ N̂, and theπ-wall or edge

surface tensionσ⊥ whenn ⊥ N̂, N̂ ≡ (−sinφ(x),0,cosφ(x))
being the local unit normal of the membrane curved surface.
φ = tan−1 dt

dx is the angle between̂N andz-axis. ds is the in-
finitesimal arc length of the curved surface, and its projec-
tion onto thex-axis isdx (Figs. 3a, 3b). In the presence of
anisotropy (σ|| 6= σ⊥), the local surface tension changes con-
tinuously due to the local tilt ofn between the two regimes.
The last term in Eq. (2) is the curvature free energy cost
of the surface24, wherek is the associated curvature modu-
lus. This term becomes particularly important in calculating
curved edge profiles in agreement with Fig. 4(e). For theπ-
walls, on the other hand, when ignoring the curvature energy
cost, Eq. (2) still produces accurate retardance profiles asa
function of the distance from the interface and surface ener-
gies as a function of chirality. Instead of usingt(x) and its
derivatives, it is preferable to parametrize the curvatureby the
derivative ofφ with respect to the infinitesimal arc length, that
is κc ≡ dφ

ds , whereds= dx
cosφ

24.

The necessity to include three scalar fields, namely the tilt
angleθ , order parameterΨ, and thicknesst, is justified as
follows: In order to determine the width of the cholesteric
dCh (shown in Figs. 4 and 5), which is experimentally seen
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(Fig. 1(e)), we need to calculate the fieldst andΨ simulta-
neously. When these two fields are obtained as a function of
x, then the integration of

∫ L
0 tΨ/Ψ0dx over the monolayer do-

mainL gives the volume of the Sm-A∗ phase. The remaining
volume is occupied by theCh phase, and its distribution un-
derneath the curved thickness profilet yieldsdCh. The deter-
mination of the cholesteric width is only possible when botht
andΨ are taken into account. Furthermore, the molecular tilt
configurations minimizing the Sm-A∗ and theCh free energy
are different. In aCh there is a cholesteric axis along which
∇×n = q0, whereas∇×n = 0 in a perfect Sm-A∗. Addition-
ally, the local monolayer thickness is given by thet0cosθ in
the Sm-A∗, whereas it is decoupled fromθ in theCh regime.
The crossover between the two regimes is maintained byΨ.

Taking the monolayer domainL → ∞, and substituting the
expressions forn, N̂, andκc, Eqs. (2) and (3) are rewritten as

F =

∫ ∞

0
dx

[

t fCh−A+
Ct

2
tΨ2(t2− t2

0 cos2 θ )2−νt

+
σ⊥

cosφ
−∆cos2 θ cosφ + kcosφ

(

dφ
dx

)2

+µ
(

tanφ − dt
dx

)]

,

(4)

where∆ ≡ σ⊥−σ||, and

fCh−A =− r
2

Ψ2+
u
4

Ψ4+
C1

2

(

dΨ
dx

)2

+
C2

2
Ψ2sin2 θ

+
K2

2

(

dθ
dx

−q0

)2

.

(5)

In Eq. (4), due to the parametrization ofN̂ andκc in terms of
φ , there is an extra constraint of tanφ = dt

dx multiplied by the
Lagrange multiplierµ = µ(x).

For one independent and several dependent variables, the
Euler-Lagrange (EL) equations which minimize Eq. (4) are
given by25

∂ f
∂gi

=
d
dx

∂ f
∂g′i

(6)

wheregi ≡ {θ ,Ψ, t,φ}, g′i ≡ {θ ′,Ψ′, t ′,φ ′}, and f = f (gi ,g′i)
is the free energy density given byF =

∫

dx f(gi ,g′i). Primes
denote derivativesdg

dx. With the constraint given in the last
term of Eq. (4), Eq. (6) contains eight coupled nonlinear first-
order differential equations that are solved subject to eight
boundary conditions. These eight equations are calculatedas

u1 ≡
∂ f
∂θ ′ = K2t

(

θ ′−q0
)

, (7)

u2 ≡
∂ f
∂Ψ′ =C1tΨ′ , (8)

ΣÈÈ
N
`

Σ
¦ t0

ds

dx Ch
Sm- A*

z`
Φ(a)

Ch Sm- A*

ΣÈÈ

Σ
¦

N
`

ds

dx

t0

x

z
y

n`

z`
Φ(b)

γ
π

γ
edge

γ
edge

βc
r2r11

(c) (d)

Fig. 3 Schematics of theπ-wall and the edge.Side views of (a)
theπ-wall and (b) the edge. Dashed lines denote the mid-plane.
Light-shaded area indicates theCh region. Dark-shaded area
indicates the projection of ds, which is dx. The surface normal N̂ is
in the(x,z)-plane.φ is the angle between the z-axis and the surface
normalN̂. The nematic directorn is always in the yz-plane.
Schematics of (c) the two monolayers of radiir1 before coalescence
and (d) the coalesced final structure with aπ-wall (gray line). Each
arc has the radiusr2. The line tensionsγedgeandγπ , equivalent to
the applied forces at the anchoring point, should be balanced in
equilibrium.βc is the contact angle. The relationr2 ≥ r1 always
holds.

t ′ = tanφ , (9)

κc = cosφφ ′ , (10)

u′1 = sin2θ
[

∆cosφ + tΨ2
(

C2

2
−Ctt

4
0 cos2 θ +Ctt

2
0t2

)]

,

(11)

u′2 = tΨ
[

−r +C2sin2 θ +Ct
(

t2− t2
0 cos2 θ

)2
+uΨ2

]

, (12)

µ ′ =ν − Ψ2

2

[

−r +C2sin2 θ +Ctt
4
0 cos4 θ

−6Ctt
2
0t2cos2 θ +5Ctt

4]− u
4

Ψ4− u2
1

2K2t2 −
u2

2

2C1t2 ,

(13)

2kcos2 φκ ′
c =∆cos2 θ sinθ cos2 φ +σ⊥sinφ

+ µ − ksinφκ2
c .

(14)

The boundary conditions in the bulk are specified as fol-
lows: because there is parallel alignment of rods in the interior
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of the monolayer, no director tilt occurs (θ0 = 0 or θ0 = π),
there is perfect smectic order (Ψ=Ψ0), andt = t0 (see Figs. 3a
and 3b). The unit layer normalN̂ is parallel to thez-axis, lead-
ing to φ0 = 0. Furthermore, all derivatives must vanish in the
bulk in the ground state of the monolayer.

Using the boundary conditions in the bulk, we determine the
Lagrange multiplier of the volume constraint from Eq. (13) as

ν =
1
2

(

− r2

2u
+K2q2

0

)

. (15)

The physical meaning ofν can be understood by the following
argument: the volume difference between a configuration of
uniformly aligned viruses parallel to thez-axis and the config-
uration shown in Fig. 1c contributes to the bulk of the mono-
layer by the associated energy densityν, as the volume of the
monolayer is constrained to stay constant in Eq. (2). The first
term in Eq. (15) is the energy gain due to the Sm-A∗ order, and
the second term is the energy cost of the chiral rods avoiding

twist deformations.ν vanishes atq0C = Ψ2
0

√

u
2K2

, whereq0C

is defined as the critical chirality.
For theπ-wall and the monolayer edge structure, the bound-

ary conditions are determined separately. The thickness ofa
π-wall saturates at a thicknesstπ at the center, wherêN is par-
allel to thez-axis, henceφπ = 0. Sinceπ-walls are modeled
by aCh region sandwiched between two Sm-A∗ monolayers,
Ψπ = 0 andθπ = π

2 by symmetry. As for the boundary con-
ditions at the edge, from the electron micrograph (Fig. 1e),
it is clear thatφedge=

π
2 , wheretedge= 0. Additionally, at the

edge the viruses stay parallel to they-axis along the membrane
periphery, that isθedge=

π
2 . We assume the rods forming a

perfectChat the monolayer edge, thusΨedge= 0.
The membrane edge and theπ-wall show significant ther-

mal fluctuations on the monolayer plane. The line tension
γe f f , which is the free energy cost associated with the for-
mation of these interfaces, can be extracted from the analysis
at the long wavelength limit of the measured fluctuation spec-
tra11,12. The magnitude ofγe f f is controlled by the chirality of
the constituent rods, since the twist deformations expelled to
the interface reduce the energy of rods arising from chiral in-
teractions. The fluctuation amplitude is inversely proportional
to γe f f . The bigger the depletant concentration, the lower the
fluctuation amplitude becomes at long wavelengths, leadingto
an increase inγe f f

27. Therefore it was proposed that the line
tension is given by

γe f f = γbare− γchiral , (16)

whereγbare depends on the depletant concentration, andγchiral

is the chiral contribution to the line tension11. Theoretically,
γe f f can be calculated by29

γe f f = F −Lt0 f0 , (17)

where F is given by Eq. (2), and the bulk free energy density
of a large disk is written asf0 = ν +σ||/t0, since in Eq. (2) the
contributions of twist deformations tof0 are negligible20,21.
Rods present inside the bulk create a surface energy associated
with σ||, which results in the second term off0.

2.3 Thermodynamic stability of the free edge and theπ-
wall

Since the formation ofπ-walls can simply be induced by the
coalescence of two membranes12, we investigate the thermo-
dynamic stability of two disconnected membranes with re-
spect to two coalesced ones with aπ-wall inbetween. The
configurations of two monolayers before and after coalescence
are shown in Figs. 3(c) and 3(d). The coalesced form adopts
a π-wall in between (gray line). The magnitudes of the forces
applied to the anchor points by theπ-wall and the monolayer
edge are equal to theγπ and γedge, the line tensions associ-
ated with theπ-wall and the edge, respectively. In equilibrium
these forces are balanced, giving rise to a certain contact angle
βc, which satisfies the relation

γπ =−2γedgecosβc . (18)

Ignoring the detailed structure of theπ-wall and the mono-
layer edge, we further assume that the total area of two mono-
layers is conserved. Namely,A1st = A2nd, where theA1st and
A2nd, the total areas of the first and second configurations, re-
spectively, are given by

A1st = 2πr2
1 , and A2nd = (2βc− sin2βc)r

2
2 . (19)

To determine the stability ofπ-walls with respect to the mem-
brane edge, we compare the total line energies of the first and
second configurations,F1st andF2nd, which are written as

F1st = 4πr1γedge, (20)

F2nd = 4βcr2γedge+2r2sinβcγπ . (21)

When ∆F ≡ F1st − F2nd > 0 under the constraints given by
Eqs. (18) and (19),π-walls should be favored. On the other
hand, if ∆F ≤ 0, theπ-wall length goes to zero as the two
coalesced disks will separate into two distinct monolayers,
namely back to the first configuration. At∆F = 0, βc be-
comes equal toπ , implying a continuous transition between
the two regimes. Hence, the region ofπ-wall stability is given
asβc < π . In this regime, the radius of a single arc in the sec-
ond configuration,r2, is always bigger thanr1, the radius of a
single disk.
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3 Results

3.1 Methods

We now explore the results by solving the EL Equations given
in Eqs. (7)–(14) and their respective boundary conditions for
the π-wall and the monolayer edge. Since the EL Equa-
tions are coupled to each other and nonlinear, they are ana-
lytically not tractable. Instead, we use the relaxation method
for boundary-value problems, where we replace the ordinary
differential equations by a set of equivalent finite-difference
equations on a grid ofM points. The origin of the grid is either
the monolayer edge or the center of theπ-wall, and the final
boundary is taken to be large enough to ensure that all deriva-
tives in Eqs. (7)–(14) vanish, and all boundary conditions in
the bulk of the Sm-A∗ membranes are satisfied. Starting from
an initial guess, the algorithm iterates the solution by using
Newton’s method until the generated numerical values of the
dependent variables converge to the true solution up to a rel-
ative error30. In our implementation each of the two adjacent
points on the grid are coupled,M = 800, and the relative error
is in the order of 10−8. The dependent variables to be simulta-
neously solved in our analysis areθ ,Ψ, t,φ ,µ ,θ ′,Ψ′,andκc.

When solving differential equations, it is suitable to work
with dimensionless parameters. In our analysis, we use the
assumptiont0 = λt . The half-length of thef d−wt viruses are
t0 = 0.44µm32, and from previous theoriesλt = 0.48µm10.
In what follows, we will show that this assumption still holds.
Furthermore, for simplicity we assume thatr = C2. Hence,

using the previous definitions ofλt ≡
√

K2
C2Ψ2

0
, Ψ0 ≡

√ r
u, and

measuring the distance from the monolayer edge and theπ-
wall in units ofλt , we define the following dimensionless con-
stants:

ξ|| ≡
√

C1

r
, κ2 ≡

λt

ξ||
, α ≡

√

Ct t4
0

r
,

σ̄|| ≡
σ||λt

K2
, σ̄⊥ ≡ σ⊥λt

K2
, ∆̄ ≡ ∆λt

K2
, k̄≡ k

K2λt
, (22)

ν̄ ≡ νλ 2
t

K2
=−1

4
+

(q0λt)
2

2
. (23)

Here ξ|| is the coherence length, andκ2 the twist Ginzburg
parameter2, which is analogous to the Ginzburg parameter
κ in superconductors5,14. By definition, λt is measured in-
side the Sm-A∗ region. That is, the width of the cholesteric
band, which we define asdCh, does not contribute toλt (see
Figs. 4 and 5).α is the dimensionless coupling strength of the
thicknesst with the projected height of a tilted rod,t0cosθ ,
in the Sm-A∗ region. The remaining definitions denoted with
bars are the corresponding dimensionless constants.q0λt in
Eq. (23) is the dimensionless chirality of the rods. Using the

definitions given by the Eqs. (22), (23) in Eqs. (4) and (5),
the dimensionless free energy per unit lengthF̄ is obtained as
F̄ ≡ F/K2. The dimensionless critical chirality is found as
q0cλt = 1/

√
22.

Given the definitions in Eqs. (22) and (23), the dimension-
less forms of Eqs. (4) and (5) become

F =
∫ ∞

0
dx

[ t
2

fCh−A+
α
2

tΨ2(t2− cos2 θ )2− ν̄t

+
σ̄⊥

cosφ
− ∆̄cos2 θ cosφ + k̄cosφ

(

dφ
dx

)2
]

,
(24)

where

fCh−A =−Ψ2+
Ψ4

2
+

1
κ2

(

dΨ
dx

)2

+Ψ2sin2 θ

+

(

dθ
dx

−q0λt

)2

.

(25)

The theoretical retardance profile is calculated by plugging
the t andθ profiles in Eq. (1). To successfully reproduce the
retardance data using the model in Eq. (2), the finite resolution
of an object viewed with optical microscopy must be taken
into account. The resolution is characterized by a Gaussian
distribution function, and it is convolved with the theoretical
retardance to compare the resulting profile with the experi-
mental retardance data10. For best fit, the rod concentrationc
in Eq. (1) andλt are adjusted accordingly. Since theπ-wall
thicknesstπ is not determined by experiments, it is a fitting
parameter as well. We extracttπ from the local minimum of
the retardance at theπ-wall (Figs. 2e, 6d).

To compare with the line tension measured in experiments,
the T-dependence ofq0 allows us to calculateγe f f , given in
Eq. (16), as a function of the temperature (Fig. 7). At ap-
proximatelyTc = 60 oC wild-type f d viruses become achi-
ral11. Henceγchiral vanishes in Eq. (16), leading toγe f f =
γbare. Beyond this critical temperatureTc the experimental
line tension shows no temperature dependence. The chiral-
ity of wild-type f d viruses was converted into a temperature-
dependent function, given byq0 = a(Tc −T)1/2, wherea =
0.056(oCµm2)−1/2 11. Since self assembly of the rods into
the monolayers is primarily governed by hard-core repulsions
among the rods and the surrounding depletant, we assume that
all other constants in Eqs. (2) and (3) are independent of tem-
perature.

3.2 The edge andπ-wall profiles

Figs. 4–7 display our main results. For convenience, in Figs. 4
and 5 we illustrate the results in terms of dimensionless pa-
rameters to determine the relevant parameters which resultin
pronounced changes in the results. By minimizing Eqs. (24)
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Fig. 4 From top to bottom, the profiles of the smectic order parameter Ψ, thicknesst, and the tilt angle θ , as a function of the distance
from the edge.Ψ is normalized byΨ0 ≡

√ r
u , t by t0 = λt , andθ by π (vertical axes). The origin of the horizontal axes lie at at the

monolayer edge, positive values of the distance are inside the monolayer. From left to right, each column displays the evolution of the profiles
upon variation of the corresponding dimensionless variable; the chiralityq0λt = {0,0.3,0.6,1/

√
2}, the surface tension anisotropy

∆̄ = {0.1,0.2,0.3,0.4}, the curvature modulus̄k= {0.1,0.2,0.5,1.0}, and the thickness coupling strengthα = {1,5,10,15}, respectively
(Eq. (22)), as denoted at the top. All other parameters are taken to be constant for each column. The arrows are oriented inthe direction in
which the profiles evolve as the corresponding dimensionless variable increases. In the first, third, and fourth columns, maximum width of the
ChbanddCh and corresponding twist penetration depthλt are shown.Ψ exhibitsCh region,t qualitatively reproduces the curved shape in the
electron micrograph (Fig. 1b), andθ shows a decay characterizing the twist penetration at the edge10. Overall the profiles are fairly robust
upon change of the variables in Eq. (2).

and (25), the smectic order parameterΨ, the thicknesst, and
the tilt angleθ are calculated as a function of the following di-
mensionless parameters: the chiralityq0λt , the twist Ginzburg
parameterκ2, the bulk surface tension modulus̄σ||, the sur-
face tension anisotropȳ∆, the thickness coupling strengthα,
and the curvature modulus̄k.

In Fig. 4 the evolution ofΨ, t, andθ , versus the distance
from the edge, are shown asq0λt , ∆̄, k̄, andα are varied in
successive columns, respectively. The set of these parame-
ters is given in Fig. 4 caption, and all other parameters for a
given column are taken to be constant. These constant param-
eters are;q0λt = q0cλt = 1/

√
2, κ2 = 10, σ̄|| = 0.4, ∆̄ = 0,

α = 15, andk̄ = 0.2. To our knowledge, the critical chiral-
ity q0cλt does not have any thermodynamic significance for
Sm-A∗ monolayers. However,q0cλt is fairly high compared
to the range ofq0λt observed in experiments which is approx-

imately betweenq0λt ∼ 0− 0.2211. Therefore a high value
of q0λt allows us to better examine the effects of theCh band
formation to the edge structure. The effect ofκ2 and σ̄|| on
the edge structure is found to be negligible. Thus, the evolu-
tion of the profiles with respect toκ2 and σ̄|| are not shown.
From Eq. (22) the energy scale of the surface tension moduli
is estimated asK2/λt ∼ 250kBT/µm2, given thatλt ∼ 0.5 µm
andK2 = 125kBT

µm
10,31. This order of magnitude agrees well

with the results presented in Ref.7. Therefore we choose the
bulk surface tension modulus to bēσ|| = 0.4 (on the order of

102 kBT
µm2 ) and assume the surface tension to be isotropic, that

is ∆̄ = 0. α andk̄ are not determined by experiments. We set
α = 15 to work in the strong-coupling limit. Additionally, we
find thatk ∼ kBT or 10kBT results int profiles which quali-
tatively reproduce the shape of the edge as in Fig. 1(d). This
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corresponds to a range ofk̄∼ 0.02−0.2.
Figs. 4(a)-(c) show the evolution of the profiles from the

achiral limit (q0λt = 0) to qλt = 1/
√

2. The reduction in the
chiral energy density−K2q0n · (∇×n), given by the cross-
term in Eq. (3), favorsdCh to become bigger whenq0λt in-
creases. This is also evidenced by the linearθ profiles. In
the Ch phase the last term in Eq. (4) is minimized when
n · (∇×n) = q0, leading to a linearθ profile, which corre-
sponds to a uniform twist about a helical axis throughout the
sample. The change int profiles is negligible, that isq0λt does
not affect the overall shape of the monolayer edge. The twist
penetration depth is constant atλt = 0.38 µm throughout the
whole range ofqλt . Likewise, in Ref.11 it is reported that the
retardance profiles andλt are independent of the molecular
chirality q0.

In Figs. 4(d)-(f), the effect of anisotropy in the surface
tension (∆ > 0) is investigated. When anisotropy increases,
θ profiles become more steep to suppress the effect of
anisotropy, which is given by the fifth term in Eq. (2). Accord-
ingly Ψ profiles show thatdCh decreases. Again, the shape of
the monolayer edge is not affected, as evindenced by thet pro-
files. The change inλt is small;λt = 0.39 µm for ∆̄ = 0.1 and
λt = 0.42 µm for ∆̄ = 0.4.

Figs. 4(g)-(i) indicate that̄k has a profound effect on the
shape and structure of the membrane edge. With increasingk̄,
the apices oft profiles become flatter. Since we work in the
strong coupling limit (α = 15), the change in̄k affects bothθ
andΨ profiles. dCh becomes lower andθ profiles drift apart
from the linear regime close to the edge.k̄ significantly alters
the twist penetration depth:λt = 0.34 µm whenk̄ = 0.1 and
λt = 0.47 µm whenk̄= 1.

The effect of the dimensionless coupling constantα is ex-
amined in Figs. 4(j)-(l). Asα increases, the apices oft pro-
files become rounder.θ profiles slightly change such that the
twist penetration depth grows fromλt = 0.34 µm for α = 1
to λt = 0.38 µm at α = 15. Additionally,dCh becomes big-
ger whenα increases. Whenα is small, there is a deviation
between the projected height of the rodt0cosθ and t in the
Sm-A∗ region. On the other hand, bigger values ofα result in
good agreement betweent andt0cosθ outsidedCh. Hence, our
choice to work in the strong coupling limit is justified within
the framework of our model.

In Fig. 5 the evolution ofΨ, t, andθ , versus the distance
from the edge, are shown asq0λt , κ2, k̄, andα are varied in
successive columns, respectively. Again, all other parameters
for each column are taken to be constant. These constant pa-
rameters are the same as before, except thatk̄ = 0.05, that
is, k∼ 3kBT. In contrast to the edge structure,π-walls are af-
fected by the anisotropȳ∆ negligibly. Therefore, the evolution
of the profiles with respect tō∆ will not be discussed. Over-
all the profiles are very robust upon change of the variables in
Eq. (2). For all columns except the column ofk̄, we extract

λt = 0.21 µm, which is fairly low compared toλt of the edge,
being independent ofq0λt . Namely the twist penetration depth
is constant, as observed in experiments11.

The change inq0λt (Figs. 5(a)-(c)) andα (Figs. 5(j)-(l)) al-
ter the profiles the same way as described above for the edge.
However, the effects ofκ2 andk̄ onπ-wall profiles are qualita-
tively different from the edge profiles. In Figs. 5(d)-(f), when
κ2 changes, the relaxation length scaleξ|| of the smectic order
affectsΨ profiles. As a result,dCh becomes bigger for higher
κ2, corresponding to smallerξ||, thereby rapid variation ofΨ.
Moreover, Fig. 5(g)-(i) indicate that̄k has a negligible effect
on the shape and structure of theπ-wall. λt = 0.23 µm (see
Fig. 5(i)) for k̄= 0.01 and it reduces to 0.2µm whenk̄= 0.1.

3.3 The retardance and the line tension

Next we interpret the retardance profiles in Figs. 6(d) and (h),
calculated from thet andθ profiles displayed in Figs. 6(b)–
(c) and (f)–(g). These profiles are obtained for the range of
chirality q0 ∼ 0−0.5 µm−1 (equivalentlyT ∼ 0−60 oC) at
the strong coupling limit (α = 18), corresponding to a deple-
tant concentration of 35 mg/mL, as given in Tables 1 and 2.
For both types of interfaces, Fig. 6 contains three sets of in-
distinguishable theoretical profiles (black full curves) corre-
sponding to intermediate and high chiralities within this range,
and the achiral limit. That is, the retardance profiles are es-
sentially unchanged, revealing that theπ-wall and the edge
structures are independent of the rod chirality11. The local
minimum of theπ-wall retardance is successfully reproduced
by our model and allows us to extract theπ-wall thickness as
tπ = t0/4 (Fig. 6(d)). In the experimentally realized range of
q0, Ψ profiles reveal that the width of theCh band goes to
zero (Figs. 6(a) and (e)). Furthermore,λt is found to be bigger
at the edge than at theπ-wall (see Tables 1, 2). We have no
simple physical reason for this difference. Revisiting ouras-
sumption thatt0 = λt , for the edge and theπ-walls, we obtain
the membrane thickness oft0 ≃ 0.6 µm andt0 ≃ 0.8 µm, re-
spectively. These results are in reasonable agreement withthe
expected membrane thickness of 0.88µm, ignoring protrusion
fluctuations of the rods.

Dextran
(mg

mL

)

σ||(
kBT

(µm)2
) σ⊥(

kBT
(µm)2

) k(kBT) λt(µm)

45 183 349 23.5 0.47
40 145 276 5.38 0.43
35 80 128 4.88 0.39

Table 1For the edge,λt , surface tension and curvature moduli as a
function of the depletant concentration. The twist elasticconstant is
kept fixed atK2=125kBT/µm 31. The twist Ginzburg parameter is
chosen asκ2 = 4. Using Eq. (1), the rod concentration is found to be
c= 170 mg/mL.
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Fig. 5 From top to bottom, the profiles of the smectic order parameter Ψ, thicknesst, and the tilt angle θ , as a function of the distance
from the π-wall. The origin of the horizontal axes lie at at theπ-wall, positive and negative values of the distance are inside the monolayer in
opposite directions. From left to right, each column displays the evolution of the profiles as a function of the dimensionless variables; the
chirality q0λt = {0.1,0.3,0.6,1/

√
2}, the twist Ginzburg parameterκ2 = {2,6,10,15}, the curvature modulus̄k= {0.01,0.02,0.05,0.1}, and

the thickness coupling strengthα = {1,5,10,15}, respectively (Eq. (22)), as denoted at the top. The arrows are oriented in the direction in
which the profiles evolve as the corresponding dimensionless variable increases. In the second and third columns, maximum dCh and
correspondingλt are shown.Ψ exhibits theCh region across theπ-wall, andθ shows a decay characterizing the twist penetration around the
π-wall10. t is significantly reduced fromt0 in the bulk tot0/4 at the center of theπ-wall.

Dextran
(mg

mL

)

σ||(
kBT

(µm)2
) σ⊥(

kBT
(µm)2

) k(kBT) λt(µm)

45 184 350 2.13 0.34
40 161 282 1.94 0.31
35 112 179 1.75 0.28

Table 2For theπ-walls,λt , surface tension and curvature moduli as
a function of depletant concentration (K2=125kBTµm, κ2 = 4, and
c= 145 mg/mL).

Eq. (16) states that the chirality of the constituent rods
controls the line tensionsγedge and γπ . It follows that de-
creasing the temperature results in higher chirality of wild-
type f d virus, subsequently reducingγedge and γπ (Fig. 7),
since the twist deformations favored by the edge andπ-wall
structures also satisfy the chiral interactions. This is real-
ized in Figs. 7(a)-(c). Furthermore, the depletant concentra-
tionCdextranaffects the order of magnitude of the line tension.

Consequently, whenCdextran decreases from Figs. 7(a) to (c),
the overall line tension becomes smaller.

In Fig. 7 the theoreticalγedge (black full curves) andγπ
(gray full curves) are compared to the experiments (respec-
tively, black dots and gray squares) as well. For theπ-walls
we obtain excellent agreement between theory and experiment
over the entire range of temperature and depletant concentra-
tion. Chirality lowersγπ by up to 100kBT/µm. On the other
hand, even though the lowq0 behavior and order of magnitude
of theoreticalγedgeagrees well with experiment, the slopes of
the experimental and theoreticalγedgedisagree. The origin of
this discrepancy, as well as the slope difference betweenγedge

andγπ are not understood. Additionally, the theoretical line
tension profiles of both structures are found to be close to par-
allel to each other. In contrast to the theory where the reduc-
tion is by up to 100kBT/µm, chirality reducesγedge by e.g.
up to 400kBT/µm whenCdextran=45 mg/mL in experiments
(Fig. 7a).
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Fig. 6 Experimental versus theoretical retardance.From top to
bottom, the profiles of the smectic order parameterΨ, thicknesst,
the tilt angleθ , and the retardanceR, as a function of the distance
from theπ-wall (left column, (a)–(d)) and the edge (right column,
(e)–(h)). The origins of the horizontal axes lie at theπ-wall (left)
and the edge (right). The dotted vertical lines indicate theregion of
twist penetrationλt . The squares in (d) and dots in (h) are
experimental retardance data, whereas full curves are calculated
from Eqs. (7)–(14). Excellent agreement is obtained between
experiment and theory, the theoretical retardance being robust upon
the change ofq0λt (or equivalently, temperature)11,12.

The moduliσ||, σ⊥, andk for the theoretical curves in Fig. 7
are given in Tables 1 and 2 corresponding to the monolayer
edge and theπ-wall, respectively, as a function of the deple-
tant concentration. The magnitudes ofσ|| and σ⊥ of both
structures are found to be very close to each other, reflect-
ing the unified nature of our model. Besides, their orders of
magnitude match with experimental predictions7. Whereas
the curvature modulusk is on the order ofkBT for theπ-wall,
thermal fluctuations should not alter its shape, since the shape
dependence onk was found to be negligible (Figs 5(g)-(i)).
For the edge, althoughk affects the structure (see Figs. 4(g)-
(i)), the shape qualitatively agrees with the electron micro-
graph (Fig. 4(e)) for the entire range ofk. Last, in order to
fit the slope ofγedge to experiments, an extensive scan over
the parameter space resulted inγedgeprofiles of similar slopes,
solely affecting their magnitude.

Using Eq. (18), we extract the dependence of the contact an-
gleβc on the experimental profiles ofγedgeandγπ . At βc = π ,
∆F vanishes (Eq. (21)). Thus, atTc (the vertical dashed lines
in Fig. 7), which corresponds toβc = π , π-walls should be
separated continuously into two free edges and become un-
stable belowTc. Furthermore, whenT approachesTc from
above, a gradual contraction of theπ-wall length is expected.
None of these predictions are confirmed in experiments, and
π-walls are observed at temperatures as low asT = 5oC (see
Fig. 7). Therefore, we conclude thatπ-walls survive, how-
ever become metastable at sufficiently low temperatures. In
addition, we exclude the possibility of spontaneous formation
of theπ-walls at sufficiently high chirality, or equivalently at
low temperatures.

The anticipated dissociation of the coalesced configuration
into two separate monolayers is replaced by the formation of
alternating-bridge pore arrays (ABPAs), where the rods are
aligned in the monolayer plane at the bridges12. The pores
are occupied by the ambient suspension of depletant polymer.
When ABPAs replace theπ-walls, the amount of membrane-
depletant interface considerably increases compared to aπ-
wall. This interface has a curved two-dimensional shape ac-
companied with mean and Gaussian curvatures. When ABPAs
form, they build a layered Sm-A∗ in the plane of the mono-
layer. Thus, in the presence of ABPAs, the structure is to be
understood as an array of monolayer Sm-A∗–Ch–layered Sm-
A∗–Ch–monolayer Sm-A∗, which has a counterpart neither in
superconductors nor in conventional smectics. Modeling these
structures is beyond the scope of our work, since our model is
missing the relevant contributions due to the mean and Gaus-
sian curvatures of the curved bridge-depletant interface.
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Fig. 7 The effective line tensionγ of both structures as a
function of temperature T and the depletant concentration
Cdextran. The gray squares and black dots, with their error bars, are
extracted from the experimentalπ-wall and edge fluctuation spectra,
respectively11,12. Likewise, the gray and black full curves are the
theoreticalγ of theπ-wall and the edge, respectively, calculated
from Eq. (16). The dashed lines correspondβc = π.
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4 Conclusion

The present theoretical study demonstrates that, in addition to
the spatial change of the molecular tilt, the structure of the
membrane edge andπ-wall are strongly determined by the
crossover between Sm-A∗ andCh regions, as well as the local
thickness change in these structures. The membrane lowers
the rod-depletant interfacial energy by a hemi-toroidal curved
edge. On the other hand, the local thickness change of theπ-
wall occurs due to the global constraints imposed by its topol-
ogy, resulting in a retardance drop at theπ-wall. Our the-
ory succesfully reproduces this unusual retardance behavior,
confirming the hypothesized structure of theπ-walls. Further-
more, theπ-wall thickness, which is not measured in experi-
ments, is determined by our model.

Our calculations indicate that theπ-wall line tension is lin-
ear in the chirality of viruses. In contrast, line tension mea-
surements of the edge revealed a quadratic dependence on the
rod chirality11, which is not well understood. A possible ex-
planation is the effect of higher order chiral terms in the Frank
elastic theory, as the variation of the molecular director field
towards the edge is rapid and may be more significant than
around theπ-wall.

In the superconductivity literature, the laminar model of
alternating normal metal and superconducting regions was
abondoned since the Abrikosov vortex lattice phase was found
to be more favorable5,13,14. Nevertheless, its analog in smec-
tics is now realized in the coalescence of Sm-A∗ monolayers.
Note that in the presence of big distortions Sm-A∗ monolayers
show differences from superconductors, as evidenced by the
current study. Hence, the existence ofπ-walls in bulk Sm-A∗

samples and their comparison to twist-grain-boundary phases,
which are analogous to Abrikosov phases, are subject to fur-
ther examination.
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The graphical and textual abstract for

Colloidal membranes of hard rods:

Unified theory of free edge structure

and twist walls

The unified framework of the monolayer edge and twist walls, observed

in colloidal fluid membranes, reveals their structure and stability.
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