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Using dynamic light scattering, we study orientational fluctuation modes in the nematic phase of 

a self-assembled lyotropic chromonic liquid crystal (LCLC) disodium cromoglycate and measure 

the Frank elastic moduli and viscosity coefficients. The elastic moduli of splay ( 1K ) and bend 

( 3K ) are on the order of 10 pN while the twist modulus ( 2K ) is an order of magnitude smaller.  

The splay constant 1K and the ratio 1 3/K K both increase substantially as the temperature T 

decreases, which we attribute to the elongation of the chromonic aggregates at lower 

temperatures. The bend viscosity is comparable to that of thermotropic liquid crystals, while the 

splay and twist viscosities are several orders of magnitude larger. The temperature dependence of 

bend viscosity is weak. The splay and twist viscosities change exponentially with the 

temperature. In addition to the director modes, the fluctuation spectrum reveals an additional 

mode that is attributed to diffusion of structural defects in the column-like aggregates. 
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Using dynamic light scattering, we study orientational fluctuation modes in the nematic 

phase of a self-assembled lyotropic chromonic liquid crystal (LCLC) disodium cromoglycate 

and measure the Frank elastic moduli and viscosity coefficients. The elastic moduli of splay 

(K1) and bend (K3) are on the order of 10 pN while the twist modulus (K2) is an order of 

magnitude smaller.  The splay constant K1 and the ratio K1/K3 both increase substantially as 

the temperature T decreases, which we attribute to the elongation of the chromonic 

aggregates at lower temperatures. The bend viscosity is comparable to that of thermotropic 

liquid crystals, while the splay and twist viscosities are several orders of magnitude larger. 

The temperature dependence of bend viscosity is weak. The splay and twist viscosities 

change exponentially with the temperature. In addition to the director modes, the fluctuation 

spectrum reveals an additional mode that is attributed to diffusion of structural defects in the 

column-like aggregates. 

 

 

 

 

 

 

 

 

I. Introduction 

Molecular self-assembly in solutions often results in 

anisometric aggregates capable of orientational order. The 

simplest examples are end-to-end “living polymerization”, 

formation of wormlike micelles by surfactants, and face-to-face 

stacking of disc-like molecules1-8. In many systems, ranging 

from organic dyes and drugs 1-3, 5 to DNA9, the aggregated 

polydisperse “building units” (Fig.1 (A)) form nematic and 

columnar phases, generally classified as lyotropic chromonic 

liquid crystals (LCLCs). Since the molecules in the aggregates 

are not covalently bound, the length of aggregates varies 

strongly with concentration, temperature, ionic content, etc., 

making the LCLCs very different from classic liquid crystals 

composed of molecules of fixed size and shape. Despite the 

growing interest in the LCLCs1, 9, 10, little is known about their 

elastic and viscous properties. Knowledge of viscoelastic 

constants is of prime importance in understanding phenomena 

such as template-assisted alignment11-14, behaviour of LCLCs in 

samples with various thickness15-17, LCLC-guided orientation 

of nanoparticles 18, shape of LCLC tactoids 19, 20, effect of 

spontaneously broken chiral symmetry 21, 22, and flow 

behaviour of LCLC23. 

 

There are two primary experimental techniques to determine 

the viscoelastic properties of nematic liquid crystals (LCs)24: 

(1) the Frederiks transition, i.e., reorientation of the axis of 

nematic order (director) by an applied field, and (2) light 

scattering on thermal fluctuations of the director. The magnetic 

Frederiks transition has been applied to explore the elastic 

properties of two LCLCs, disulphoindantrone25, 26 and sunset 

yellow (SSY)27. The Frederiks approach requires the LC 

director to be uniformly aligned in two different fashions, 

planar and homeotropic, with the director parallel to the 

bounding substrates of the sample cell and perpendicular to 

them, respectively. Such a requirement is difficult to satisfy for 

lyotropic systems. In particular, homeotropic anchoring of 

LCLCs has been reported only for a few cases17, 27, 28.  One of 

the most studied LCLCs, representing water dispersions of 

disodium cromoglycate (DSCG), shows only transient 
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homeotropic alignment (although there is a recent report on the 

homeotropic alignment at a grapheme substrate28), thus making 

it difficult to determine the viscoelastic properties of this 

material. On the other hand, knowledge of viscoelastic 

properties of DSCG is of particular importance for further 

understanding of LCLCs, since DSCG is optically transparent 

and has been used as a biocompatible component in real-time 

biological sensors29 and in formulations of LCLC-bacterial 

dispersions30-32. 

 

In this paper, in order to characterize the material parameters of 

the nematic phase of water solutions of DSCG, we use the 

dynamic light scattering (DLS) that requires only one type 

(planar) of surface anchoring.  The approach is similar to the 

one used previously by Meyer et al to characterize polymer 

solutions exhibiting the nematic phase8, 24, 33-36, and allows one 

to extract both the elastic moduli and the viscosity coefficients.  

By calibrating the set-up with the measurement of DLS 

spectrum for the well-studied nematic 4’-n-pentyl-4-

cyanobiphenyl (5CB), we extract the absolute values of the 

elastic constants and viscosities for DSCG. The approach 

allows us to trace both the concentration and temperature 

dependences of these viscoelastic parameters. A small portion 

of these results (one concentration only) were made available in 

2008 in electronic-Liquid Crystal Communications37 and 

arXiv38.  

 

 

In these measurements, we observe that the splay elastic 

constant
1K , splay and twist viscosities splayη and 

twistη  all 

increase dramatically as the temperature is reduced.  The DLS 

spectrum not only shows the modes that correspond to the 

standard viscoelastic response (director modes), but also reveals 

an additional fluctuation mode weakly coupled to the director.  

We suggest that this mode is associated with structural defects 

in packing of chromonic aggregates such as stacking faults. The 

observed peculiarities of viscoelastic properties of LCLCs, 

absent in other LCs, originate from the fact that the chromonic 

molecules in the aggregates are bound by weak non-covalent 

interactions. As a result, the length of aggregates and the 

viscoelastic parameters that depend on it are extremely 

sensitive to both concentration and temperature. 

 

 

 

II. EXPERIMENTAL DETAILS  

Disodium Cromoglycate (DSCG), Fig. 1(A), was purchased 

from Spectrum Chemicals (98% purity) and subsequently 

dissolved in deionized water (resistivity 18 MΩ cm) at 

concentrations of c=12.5, 14.0, 16.0 and 18.0 wt%. Following 

Ref 10, the corresponding volume fractions are: φ =0.089, 

0.100, 0.115, and 0.129. The transition temperatures of the 

nematic to nematic-isotropic biphasic region are 
niT  = 

297.0±0.2K, 299.6±0.4K, 303.5±0.3K and 306.2±0.2K, 

respectively, according to the established phase diagram39 and 

our independent microscopy analysis. The DLS measurements 

were performed in the homogeneous nematic phase over the 

temperature range from 294.5K to within 1K of 
niT . The 

nematic director was aligned in a planar fashion by glass 

substrates coated with buffed layers of polyimide SE-7511 

(Nissan Chemical Inc.)19. Optical cells of thickness 19 µm were 

sealed with epoxy to prevent water evaporation from the 

samples. The value of 
niT  of each sample was checked before 

and after the measurement, showing changes of less than 1K in 

all cases. For light scattering measurements, the samples were 

housed in a hot stage with optical access and temperature 

control with an accuracy of 0.1 K and stability of 0.01 K over 1 

hr. 

 

The thermotropic nematic liquid crystal 4’-n-pentyl-4-

cyanobiphenyl (5CB), used for reference measurements, was 

purchased from Sigma-Aldrich (98 % purity).  Planar alignment 

of the director in a 13.7 µm thick sample is produced by buffed 

polyimide PI2555 layers (HD MicroSystems) applied to 

surfaces of the flat glass substrates. 

 

In the two studied light scattering geometries, the director n̂  is 

either perpendicular (geometry “1&2”, Fig 1(B)) or parallel 

(geometry “3”, Fig 1(C)) to the scattering plane. The 

polarization ( î ) of the normally incident λ  =532 nm laser light 

is vertical; depolarized scattering was collected through a 

horizontal analyzer ( ŝ ). The laser power was kept below 3 mW 

to avoid parasite effects of light absorption. Homodyne cross-

correlation functions of the scattered light intensity (evenly split 

between two independent detectors) were recorded as a 

function of time on a nanosecond digital correlator. The 

angular-dependent average light intensity 
1&2 ( )I θ  (divided by 

the incident light intensity 
0I in the sample) measured in 

geometry “1&2” may be expressed as40: 

2 2 2 1 2
1&2 1 2 2 2

1 2

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
B

G G
I I I dAk T

K q K q

θ θ
θ θ ε πλ

θ θ
−

⊥ ⊥

 
= + = ∆ Ω + 

 

  (1) 

where θ  is the laboratory scattering angle, Ω  is the collection solid 

angle, A  is the cross-sectional area and d the thickness of the 

illuminated sample volume, 
2 2n nε ε ε⊥ ⊥∆ = − = −

� �
is the dielectric 

anisotropy at optical frequency, ||n  and n⊥  are the refractive indices 

for light polarized parallel and perpendicular to the director, 

respectively, and ( )q θ
�

and ( )q θ⊥  are the two components of 

scattering vector 
s iq=k -k  along and perpendicular to n̂

respectively. The geometrical scattering factors 
1( )G θ  and 

2 ( )G θ

are: 

  

2

2 2

1 22 2

sin coscos (1 )
2 22( ) , ( )

1 1

sp

G G
p s p s

θ θθ

θ θ

 −+  
 = =

+ + + +
   (2) 
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where

2 sin
2

n
s

n
θ

⊥

∆
= , 

n
p

n⊥

∆
=  , and n n n⊥∆ = −

�
 is the optical 

birefringence of the LCLC sample. The separation of 
1( )I θ  and 

2 ( )I θ is done by fitting the time correlation function of the scattered 

intensity 
1&2 ( )I θ  to  two overdamped decay processes with different 

relaxation rates 
1Γ  and 

2Γ  (as discussed below).  

The expression for the scattered intensity in geometry “3” is: 

2 2 2 3
3 2 2

3 2

( )
( ) ( ) ( )

( ) ( )
B

G
I dAk T

K q K q

θ
θ ε πλ

θ θ
−

⊥

= ∆ Ω
+

�

   (3) 

where 2

3( ) cosG θ θ=  . In DSCG LCLC, as we will confirm below, 

2 3K K� . Over the range of angles (5 35)θ = − ° studied, we 

estimate 
2

2

2

3 max

0.01
K q

K q

⊥
 

≈  
 �

. Thus we neglect 2

2
K q⊥  in Eq.(3), 

leading to:  

2 2 2 3
3 2

3

( )
( ) ( ) ( )

( )
B

G
I dAk T

K q

θ
θ ε πλ

θ
−= ∆ Ω

�

   (4) 

The cell gap (sample thickness) d  was measured by interferometry 

in empty cells.  

The measured intensities 1,2,3I  are functions of material parameters 

such as ε∆  and K ’s , and experimental conditions such as d  and 

T . To obtain absolute values of 
3K , we calibrated the scattered 

intensity ( ( )3I θ  ) measured on DSCG LCLC against measurements 

made in the identical geometry “3” set-up on a reference 5CB 

sample, whose values of ε∆ , 
2K  and 

3K are well known41-43. We 

can then deduce the absolute values of the DSCG elastic constant
3K

from the ratio 

[ ]
[ ]

2 2 2

3 2 33 5

2 2
3 3 35 5

( )( )( )

( ) ( )( )

DSCG CB DSCG

CB DSCG CB

K q K q G TdI

I K q G Td

θ εθ

θ θ ε
⊥   + ∆   =

   ∆   

�

�

  (5) 

and the values of 
1K  and 

2K  from similar ratios for 
1( )I θ and 

2 ( )I θ . 

From measurements of the homodyne intensity correlation function 

in time ( τ ) , we obtain the angular dependent relaxation rates 

( )α θΓ  for the director fluctuations by fitting the experimental data 

in Fig. 2 to the standard expression for overdamped modes: 

2

2 2(0, ) ( , ) ( ) ( )exp( )I I I g Iα α
α

θ τ θ θ θ τ
 

= + −Γ 
 
∑    (6) 

Here g  is the optical coherence factor 44. For geometry “1&2”, 

1,2α = , the splay and twist modes contribute separately to the total 

intensity; for geometry “3”, 3α = , from Eq. (4) only the bend mode 

should contribute to the total intensity.  From ( )α θΓ , we obtain the 

corresponding orientational viscosities as: 
2

1 1( ) / ( )splay K qη θ θ⊥= Γ  , 

2

2 2
( ) / ( )

twist
K qη θ θ⊥= Γ and

2

3 3( ) / ( )bend K qη θ θ= Γ
�

. 

  

III. RESULTS  

A. Elastic constants 

The temperature and concentration dependences of the elastic 

moduli 
1K , 

2K  and 
3K of the nematic phase of DSCG are shown in 

Fig 3. The splay constant 
1K and bend constant 

3K  are comparable 

to each other, being on the order of 10 pN, while the twist constant 

2K  is about 10 times smaller (confirming the estimate leading to 

Eq.(4)). Similar values and large anisotropy were recently reported 

for another LCLC, Sunset Yellow27. All three elastic moduli increase 

as the temperature T  decreases, but 
1K  shows a much steeper 

dependence than that of 
2K  and

3K . For example, for c=18 wt%, 
1K  

increases by a factor of 9 within a ∼10K temperature decrease, while 

2K  increases only 3 fold and 
3K  less than 2 fold. The temperature 

dependence of  
1K  follows a universal exponential law for all 

concentrations 

 
1( ) exp( )KK T Tβ∝ −  (7) 

where 
Kβ  = 0.20 ± 0.01 K−1 is independent of concentration, Fig 

3(A). 

The anisotropy of the elastic moduli is further illustrated in Fig 4 

where the ratios of elastic constants are plotted as a function of T   

for different concentrations. When T  decreases, both 
1 3/K K  and 

1 2/K K increase. 
3 2/K K remains practically constant (35± 5) over a 

wide temperature range for c = 12.5, 14, 16 wt%, whereas for c = 18 

wt%, the value slightly decreases to about 25 at T  ≈ 294K. 

 

B. Viscosities 

The concentration and temperature dependences of viscosities splayη , 

twistη and 
bendη  are shown in Fig 5. The viscosities splayη  and 

twistη  

are comparable to each other and are in the range of (1 - 500) 

kgm−1s−1, several orders of magnitude larger than 
bendη = (0.007 - 

0.03) kgm−1s−1. splayη  and 
twistη  show very strong temperature 

dependences, changing by over two orders of magnitudes when the 

temperature changes by only about 10K, Fig 5(A)(B). For the same 

temperature range, 
bendη  changes by a factor of 3 only, Fig 5(C). The 

temperature dependence of splayη  and 
twistη  are described by the 

exponential laws  
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 ( ) exp( ), ( ) exp( )splay s twist tT T T Tη β η β∝ − ∝ −   (8) 

where the concentration independent coefficients are 
sβ  = 0.41 ± 

0.02 K−1, 
tβ = 0.37 ± 0.01 K−1.  Note that 

sβ and 
tβ are roughly 

twice as large as
Kβ . 

The ratio /splay twistη η  slowly increases with T , Fig 5(D). In the 

vicinity of nematic to nematic-isotropic biphasic transition (low 

concentrations or small T∆ ), /splay twistη η remains close to 1 within 

the accuracy of experiments. Deeper into the nematic phase (and 

specifically for the highest concentration c= 18 wt% and for T∆  ≈ 

12K), /splay twistη η increases to about 2. 

C. An additional mode in bend geometry 

As indicated by Eqs. (1) and (6), two modes, namely pure splay and 

pure twist, contribute separately to the total intensity in the “1&2” 

scattering geometry.  The corresponding correlation function should 

reveal two relaxation processes with
2

1
1

( )
( )

splay

K q θ
θ

η
⊥Γ = , 

2

2
2

( )
( )

twist

K q θ
θ

η
⊥Γ =  . This is indeed what we obtain by fitting 

experimental data, as indicated in Fig 2.  On the other hand, Eqs.(4)

and (6) predict that bend fluctuations contribute to the intensity in 

geometry “3”, and thus the correlation function should show a single 

relaxation process with

2

3

3

( )
( )

bend

K q θ
θ

η
Γ = �

.  However, fitting the 

experimental data with a single exponential decay fails to match the 

data, Fig 2. A minimum of two relaxation modes, with a stretching 

exponent 0.9b = , are needed to fit the correlation data: 

 
2

2
2 32

3 4 4
(0, ) ( , ) ( ) ( )exp( ) ( )exp( )b b

bend

K q
I I I g I Iθ τ θ θ θ τ θ τ

η

 
= + − + −Γ 

  

� (9) 

Fits of the data in geometry “3” to Eq. (9) indicate 
2

4 qΓ ∝
�

, thus the 

additional mode is hydrodynamic. The fact that b  is close to 1 

implies that the relaxation rates do not have single values but show 

narrow dispersion45. Since
4 3/ 0.1I I ≈ , the presence of the 

additional mode does not increase the uncertainty in the values 

deduced for 
3K  and 

bendη by more than 10 %; the other viscoelastic 

parameters (measured in geometry “1&2”) are unaffected. 

IV. DISCUSSION  

 

The LCLC DSCG shows some unique features as compared to 

conventional thermotropic nematics such as 5CB and to other 

nematic lyotropic LC systems, including the  LCLC SSY and 

nematic polymeric LCs such as poly(γ-benzyl 

glutamate)(PBG), Table 1, Fig 2-5. First, the anisotropy of the 

elastic constants of DSCG is the largest among all the 

representative nematics shown in Table 1. The twist constant (

2K ) is more than 10 times smaller than the splay (
1K ) and bend 

(
3K ) constants, while the latter two are comparable to each 

other, Fig. 4(A). Second, 
1K  has a much stronger (exponential) 

temperature dependence as compared to the linear dependences 

of 
2K  and

3K . Third, the DSCG viscosities associated with 

splay and twist deformation, splayη  and 
twistη , are both 

anomalously large, 3-5 orders of magnitude larger than the 

bend viscosity 
bendη  of DSCG and the viscosities measured in 

thermotropic LCs such as 5CB (which are on the order of 

0.01kgm-1s-1). Fourth, the temperature dependence of the 

parameters
1K , splayη  and 

twistη can be described by 

concentration–independent exponential laws, Eq.(7)(8) with the 

exponents 
Kβ =0.2, 

sβ  =0.41 and 
tβ =0.37, respectively.   

 

We now proceed to discuss our results in terms of relevant 

theoretical models for viscoelastic properties of lyotropic 

nematics.  

A. Elastic constants 

 

The viscoelasticity of lyotropic systems is usually described by 

the Onsager type models35, 46-48 based on the idea of excluded 

volume. In the simplest version, the building units are 

considered as long slender rods with the length-to-diameter 

ration /L D  being fixed and much larger than 1. The nematic 

ordering is caused by the increase of concentration; the rods 

sacrifice orientational freedom to maintain the ability to 

translate. The model is athermal as the behaviour is controlled 

exclusively by entropy. The excluded volume theory predicts 

the elastic constants in a system of rigid long rods47 as follows: 

1

7

8

Bk T L
K

D D
φ

π
=  , 

2 1 / 3K K=  and

3

3

3 2

4

3

Bk T L
K

D D
φ

π
 =  
 

. 

Clearly, this model does not describe our experimental findings 

for the LCLC system well.  For example, the measured 
1 2/K K

can be as high as ~30 (c=18 wt%, T ≈ 294K), Fig. 4(B), much 

larger than the expected constant value of 3.  Furthermore, to 

form a nematic phase, the system of rigid rods should be of a 

volume fraction that exceeds a critical value 4.5 /c D Lφ =  40. If 

that is the case, then one would expect

2

23

1

1
10

2

K L

K D
φ  ≈ > 

 
, 

while our experiment yields a much lower value 3

1

(1 3)
K

K
−�  in 

nematic DSCG, Fig 4(A).  

 

To explain the smallness of 
2K , one may consider  effects such 

as the electrostatic interaction of charged rods 46, since the 

dissociation of ionic groups into water from the periphery of the 

DSCG aggregates makes them charged. However this 

correction turns out to be negligible. Coulomb repulsion of 

similarly charged cylinders tends to arrange them 

perpendicularly to each other. This “twisting effect” thus 

modifies 
2K  by a factor46 (1 0.1 )h≈ − , where / ( 2 )D Dh Dλ λ= +

, D  ≈ 1.6 nm is the “bare” diameter of DSCG aggregates39 and 
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Dλ  is the Debye screening length. For the DSCG solutions 

used in this work, 
Dλ  ≈ 0.5 nm49. Therefore, the twisting effect 

might lead to a decrease of 
2K  by only a few percent, and is 

most likely not the main reason for the observed smallness of

2K . The situation is very similar to the one recently discussed 

for LCLC Sunset Yellow27.  

 

The next level of theoretical modelling is to take into account 

that the aggregates comprising the LCLC are not absolutely 

rigid but possess some flexibility33, 47, 48, characterized by a 

finite persistence length pλ , that should directly affect 
3K .  The 

persistence length is a measure of the length scale over which 

the unit vectors tangential to the flexible elongated object lose 

their correlations.  Flexibility of LCLC aggregates is evident in 

recent numerical simulations 50, 51 and suggested by recent 

nuclear magnetic resonance measurements, where column 

undulation within the molecular stack involving 4-8 molecules 

was observed 52 .  

 

When the aggregates are flexible, the bend deformation is no 

longer inhibited by their length; each aggregate can bend to 

follow the director pattern, Fig. 6(A). According to the well-

known result of the elastic theory 53, 54, the bending energy of 

an elastic rod is 2

3

1

2
F Lκ ρ= , where κ  is the bending stiffness 

and ρ is the curvature of the bent rod. The volumetric elastic 

energy density for a dispersion of elastic rods is then35

1

2

3 3
4

f F D L
π

φ
−

 =  
 

. Using the relationships between the 

persistence length pλ  and bending stiffness53, /p Bk Tλ κ= , and 

between the energy density of bend and 
3K , 2

3 3

1

2
f K ρ=  , one 

arrives at 

 3

4 pBk T
K

D D

λ
φ

π
=   (10) 

The last result is twice as large as the expression derived by 

Taratuta et al.35, who defined  pλ  as 
2

Bk T

κ
. Equation(10) with 

the typical experimental values 
3K =10 pN, φ  = 0.1 and D = 

1.6 nm 39 yields an estimate pλ = 50 nm. This value is close to 

the persistence length of double-stranded DNA (dsDNA)9, 

which has structural parameters similar to the aggregate of 

DSCG (diameter ~2 nm and 6 ionizable groups per 1 nm of 

length).   

 

The value of 
3K  for DSCG at φ  ≈ 0.1 is several times larger 

than the value 
3K  = 6.1 pN reported for SSY27 with φ  ≈ 0.20, 

Table 1. To discuss the difference, it is convenient to represent 

the bending stiffness of the chromonic aggregate through the 

Young’s modulus Y of a homogeneous elastic cylinder53:
4

/ 64YDκ π= . Therefore, 

 
2

3
16

YD
K

φ
=    (11) 

The aggregates in the DSCG LCLC have a larger cross 

section55 ( 2D  ~ 2.4 nm2) than those for SSY55 ( 2D  ~ 1.2 nm2), 

so that the product 2Dφ in Eq. (11) is essentially the same for 

the two LCLCs. Hence, the difference in the values of 
3K  can 

be attributed to the difference in the Young modulusY , which 

is worthy of further investigation. When 
3K  = 10 pN, Eq.(11) 

leads to Y = 6.7 × 108 N/m2, which is the same order of 

magnitude as the sequence dependent Young’s modulus for 

dsDNA56 (for example, Y ≈ 3 × 108 N/m2 for the λ -phage 

dsDNA57).  

 

The flexibility of aggregates does not affect the splay constant 

1K  much. As explained by Meyer8, splay deformations, under 

the condition of constant density, limit the freedom of 

molecular ends, which decreases the entropy, Fig. 6(B). A 

larger contour length L  implies a smaller number of molecular 

ends available to accommodate for splay and thus a higher 
1K

35: 

 1

4 Bk T L
K

D D
φ

π
=    (12) 

Here we introduced a new notation L  for the characteristic 

(average) length of aggregates. Using this expression and the 

values of 
1K = 5 pN, φ =0.1, D  =1.6 nm for c=14wt% DSCG 

at T =  297K (3K below 
niT  ), we find L ≈ 25nm, which 

compares well with a previous estimate58 L  =18nm for the 

isotropic phase of the same concentration at 305K (5K above
niT

). 

 

The twist elastic constant 
2K in the model of flexible rods is 

predicted to be47 

 

1/3

1/3

2

pBk T
K

D D

λ
φ

 
=  

 
  (13) 

implying a rather weak dependency on pλ  and φ . The 

smallness of 
2K  and its independence of the contour length L

in LCLCs can be explained as follows8, Fig. 6(C). Consider an 

ideal arrangement of the aggregates in layers to accommodate a 

twisted director field. Within each layer, the aggregates are 

straight and closely packed; the direction of director is changed 

by a small angle only when moving between consecutive 

layers. Successive layers of aggregates simply stack on top of 

each other to form a twisted nematic distortion with n ⊥ helical 

axis. However, in reality, the aggregates cannot perfectly 

remain in the layers; for example, thermal fluctuations will 

displace the aggregates across layers and thus cause them to 

interfere with aggregates that have a different orientation. This 

interference can be relieved by bending the aggregates to 

conform to the local orientational order in the layer, instead of 

being aggravated by the extended aggregate length. Thus 
2K  is 
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independent of L and weakly dependent on pλ (as compared to 

the bend elasticity 
3K ). From Eqs.(10) and (13), for typical 

values φ =0.1, pλ =50 nm, D =1.6nm, we deduce

2/3

2

3

0.37
4

pK

K D

λπ
φ

−
 

= ≈ 
 

, which qualitatively agrees with our 

argument that 
2K  has weak dependence on pλ , but still does not 

quantitatively explain the smallness of the observed ratio (

2 3/K K in the range of  0.025-0.04 for all concentrations and 

temperatures). Clearly, an improved theory is needed. 

 

Similarly to our previous study of SSY27, 
1K  and the ratio 

1 3/K K  in DSCG decreases as the temperature increases, Fig 4. 

As follows from Eqs. (10) and (12) for the model of flexible 

aggregates, the ratio is: 

 1

3 p

K L

K λ
=   (14) 

 

The observed temperature dependence of 
1 3/K K  cannot be 

explained by the Onsager-type models either for rigid rods or 

for flexible rods, if the mean aggregate length L  remains 

constant. Instead, as we now argue, different temperature 

dependences of the aggregate contour length L  and persistence 

length pλ are responsible, a possibility which is absent in LCs 

with a fixed, temperature-independent shape of building units. 

 

Consider L  first. Theoretical works suggest that L  depends on 

volume fractionφ , temperature T  and scission energy
aE

1, 7, 8, 

27, 55. Compared to the expression for L in a dilute ( 1φ � ) 

isotropic phase,
0 exp

2

a

B

E
L L

k T
φ

 
=  

 
, the form of L  in the 

nematic state exhibits a stronger dependence on φ   due to the 

orientational  order27: 

 

1/3

5/6

0 exp
2

p a

B

E
L L

D k T

λ σφ
φ

   +
=   

   
  (14) 

Here 
2/3

0 2 zL a Dπ −=  is a length characterizing the size of a 

monomer, 
za  the period of molecular stacking along the 

aggregate, and σ  a constant describing the enhancement of 

aggregation by the excluded volume effects. (In the second 

virial approximation59, 4 Bk Tσ ≈ .) For DSCG, D  =1.6nm, 
za

=0.34nm60, 
0L = 0.7nm. Using Eq. (12) for 

1K , we estimate that 

L  is in the range of (20-270) nm, and ( , ) (8 14)a BE T k Tφ ≈ − , 

close to the estimates for SSY LCLC by Collings et al61, 

7a BE k T≈ , and by Day et al62, 11a BE k T≈ , and for DNA 

oligomers9 by Clark et al, (4 8)a BE k T≈ − . To make contact 

with the empirical expression above for 
1K  in Eq.(7), we 

expand 
( , )a

B

E T

k T

φ
 near 300niT ≈ K as follows: 

( ) ( )2( , ) ( , ) 1

ni

a a ni a a
ni ni

B B ni B B niT

E T E T E E
T T O T T

k T k T k T k T T

φ φ  ∂
= − − − + − 

∂ 
 (14) 

This gives (to lowest order in 
niT T−  ): 

 exp
2

ni

a a

B B niT

E E T
L

k T k T T

  ∂ ∝ − − 
∂   

  (14) 

Inserting this result into Eq. (12) and comparing to Eq.(7), we 

identify
1

2
ni

a a
K

ni B B T

E E

T k T k T
β

 ∂
= − 

∂ 
. Then using the experimental 

value of 0.2 0.01Kβ = ±  K-1 and the above estimates for 

( , ) / ~ 10a BE T k Tφ  we find: 

 2 0

ni

a a
K ni

B B niT

E E
T

k T k T
β

∂
= − <

∂
  (14) 

 

and therefore conclude that ( , )aE Tφ  decreases with increasing 

T .  

 

As shown by numerical simulations51, the persistence length pλ  

scales with φ and T as   
0

( , )p a

B

E T

L k T

λ φ
∝ , and thus has a much 

weaker dependence on φ  (mainly through ionic effects) andT

than does L  for chromonic aggregates formed by cylindrical 

monomers. From Eqs.(10), (12), and (14), we can deduce 

 

2/3

5/61

3

exp
2

a a

B B

K E E

K k T k T

κφ
φ

−
  +

∝   
  

  (14) 

This equation implies that 1

3

K

K
decreases when T  increases or 

φ  decreases, consistent with our measurements, Fig 4(A). Our 

experimental values of 1

3

K

K
 suggest that 

p

L

λ
 is in the range of 

(0.25-1.2), depending onT and φ  . Interestingly, the numerical 

results of Kuriabova et al51 , / pL λ ≈ 1, fall in this range. 

 

The exponential dependence of 
1K on a

B

E

k T
 and the weak 

dependence of 
2K  on pλ , Eq.(13), predict that 

3/21

2

2
exp a

B

K E

K k T

κφ
φ

 +
∝  

 
 increases when T  decreases or φ  

decreases, again consistent with our measurements, Fig. 4(B). 

Regarding 3

2

K

K
, Eqs. (10) and (13) indicate
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2/32/3

2/3 2/33

2

p a

B

K E

K D k T

λ
φ φ

  
∝ ∝   

   
. As temperature T  decreases (

T∆  increases), pλ  and a

B

E

k T
 increase, thus 3

2

K

K
 should increase. 

However, experiments show that 3

2

K

K
 remains practically 

constant over a wide range of temperature for all studiedφ , and 

that in fact it decreases at T ≈294K for the highest volume 

fraction φ =0.129 (c=18 wt%), Fig 4(C). Apparently, some 

additional factor must account for this behaviour. One 

possibility is the following. For the c =18 wt% sample atT ≈ 

291K (3K below our experimental range), the system 

transforms into a columnar phase39. In this phase, twist 

deformations are severely inhibited by the hexagonal packing 

of the long aggregates, and consequently 
2K →∞ is expected. 

A pretransitional increase of  
2K  would explain the decrease in

3

2

K

K
seen at low temperatures in Fig 4(C). 

 

B. Viscosities 

 

The large values of the splay and twist viscosities measured in 

the DSCG LCLC, and the relatively small value of the bend 

viscosity, can be understood following the arguments put 

forward by de Gennes 63  and Meyer  8, 33, 34, 36 for nematic LC 

polymers in the “infinite” chain limit, /L D→∞ . In this limit, 

twisting the director field is associated with mass displacement 

of single chains, which produces flows perpendicular to the 

director with a gradient along the director. If the chains are not 

allowed to break, twist deformation, even though conceptually 

possible as a static state as we argued earlier, is forbidden as a 

dynamic process since it induces flows that tend to cut the 

chains; as a result 
1twistη γ= → ∞ , where 

1γ  is the rotation 

viscosity of the director field40. In a practical system with a 

finite (but still large) / 1L D � , 
twistη  must increase as L  

increases. A simple geometric argument due to Meyer 8, 36 

shows that 
2

1twist Lη γ= ∝ , Fig 6(D). Consider a twist 

deformation that induces shear flow .
v

const
z

∂
=

∂
 The power 

dissipated per monomer along the aggregates is

2

2 v
P

z
µδ

∂ =  ∂ 
, 

where µ is a friction coefficient and δ  is the distance of the 

monomer to the rotation centre. The mean power dissipation

22
/ 2

/2

1

12

L

L

L v
P Pdz

L z
µ

−

∂ = =  ∂ ∫ ; thus the effective viscosity for the 

twist process is 
2

twist Lη ∝  . A similar analysis applies to splay 

deformation, giving 
2

splay Lη ∝ . These predictions are consistent 

with our experimental results for the η ’s and with the linear 

dependence 1K L∝ . Namely, as indicated in Fig. 3(A) and Fig. 

5(A)(B): 
1 exp( T)KK β∝ −  with 0.20 0.01Kβ = ± K-1; 

exp( T)twist tη β∝ − with 0.37 0.01tβ = ±  K-1; and

exp( T)splay sη β∝ − with 0.41 0.02tβ = ±  K-1. The result

2t s Kβ β β≈ ≈ agrees with the theoretical scaling relations, 

1/ 2 1/ 2

1, ,splay twistK Lη η ∝ , and the temperature dependence of the 

viscoelastic parameters predicted by Eq. (14) in the vicinity of 

niT is also confirmed.  

 

The viscosity associated with bend deformation, 
bendη  is 

comparable to values for thermotropic LCs, Table 1, and is 

several orders of magnitude smaller than splayη and
twistη . This is 

explained by the fact that bend deformation is associated with 

“sliding” the aggregates parallel to each other8, 34-36, which is 

not inhibited even if /L D  becomes very large.  

 

An important difference in the hydrodynamic properties of 

LCLCs relative to those of low-molecular LCs is illustrated in 

Fig. 5(D), which shows the temperature dependence of

/splay twistη η . In DSCG, this ratio is close to but still somewhat 

larger than 1.  The result is unusual from the point of view of 

the Ericksen-Leslie model40, in which the twist viscosity 

1twistη γ=  is always larger than splay viscosity 
2

3
1splay

b

α
η γ

η
= − . 

(Here 
3α  is one of the Ericksen-Leslie coefficients40, and 

0bη >  is one of the Miezowicz viscosities40.) Our experimental 

results, Fig 5(D), however, show that / 1splay twistη η ≈  holds only 

in the vicinity of the transition to the isotropic phase. When 

T∆  increases and the system moves deeper into nematic phase, 

/splay twistη η can be as larger as 2.  This finding suggests that the 

explanation of the anomalous behaviour seen in Fig. 5(D) is 

again rooted in the strong temperature and concentration 

dependencies of the mean aggregate length L .  

 

 

 

C. Origin of the additional fluctuation mode in the bend 

geometry 

 

 

Finally, we discuss the origin of the additional fluctuation mode 

(
4
I ,

4Γ ) detected in the bend scattering geometry. The key 

features of this mode are: (1) it is hydrodynamic (
2

4 qΓ ∝
�

); (2) 

it couples weakly to light (
4
I  is ∼ 10 times smaller than 

3
I  for 

the director bend mode); and (3) it is ∼ 10 times slower than the 

bend fluctuations but ∼ 102 − 103 times faster than splay or 

twist. 
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We propose that the additional mode is associated with the 

thermal diffusion of structural defects in the chromonic 

aggregates. To establish this conjecture, we point out the 

following. The plank-like chromonic molecules tend to 

aggregate face-to-face, to shield the exposure of extended 

aromatic cores to water. The scission energy 
aE  of this non-

covalent association is about 10kBT as shown in our analysis 

above and references9, 61, 62.  The molecular association might 

therefore form metastable configurations that do not correspond 

to the absolute minimum of the interaction potential. For 

example, the association might happen with a lateral shift or 

rotation of the molecular planes. Some of these defects or their 

combinations alter the aggregate structure so significantly that 

they impose deformations on the surrounding director field. As 

illustrated in Fig. 7, a pair of lateral shifts, which we call a “C” 

defect, tends to impose a bend deformation ( n̂ ×curl n̂ ) on the 

director n̂ . A sequence of such “C” defects can be pictured as a 

crankshaft. On the other hand, a junction of three aggregates, 

with the symmetry of the letter “Y”, creates a different type of 

defect that imposes a splay distortion ( n̂  div n̂ ) on the director 

field, Fig. 7. The presence of both defect types has already been 

suggested to explain a discrepancy between the length of 

chromonic aggregates expected from the point of view of the 

Onsager model of lyotropic mesomorphism and the length 

inferred from X ray scattering data60. Interestingly, recent 

structural studies of sunset yellow support the existence of 

stacking features in the form of lateral shifts 64.  

 

The stacking defects illustrated in Fig. 7 are polar. To 

incorporate their thermal diffusion into a description of the 

orientational fluctuation modes, we let the j-th type of polar 

defect be described by the vector density ( )v rj  . For example, j 

= 1 for “C” type, and j = 2 for “Y” type, Fig. 7. The effect of 

the defect dynamics on the light scattering is caused by their 

interaction with director distortions. This interaction, which 

may be termed flexopolarity, results in additional symmetry-

allowed cross terms in the Frank elastic free energy. These 

terms couple the distortion vector ˆ ˆ ˆ ˆ( ) ( )G r n n n ns bg div g curl= + ×

, where 
sg  and 

bg  are splay and bend flexopolar coefficients, 

respectively, to the vector density v j . Additionally, in the free 

energy we must consider an interaction between defects that 

penalizes fluctuations in their concentration. Generally, this 

may be expressed by a tensor coupling of the form v h v⋅ ⋅  , 

where the tensor core ( )r-rjkh ′  defines the energy penalty for 

the polar defect densities and also ensures positivity of the free 

energy. To simplify the analysis, we neglect the interaction 

between different defect types and thus take ( ) ( )r-r r-rjk j jkh h δ′ ′=

. Based on these considerations, the free energy becomes: 

 1
( ) ( ) ( ) ( ) ( )

2
v r G r r v r r-r v r r rFO j j j j

j j

F f d h d d
 

′ ′ ′= + ⋅ + ⋅ ⋅ 
 

∑ ∑∫ ∫  (15) 

where 2 2 2

1 2 3

1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

2
n n n n nFOf K div K curl K curl = + ⋅ + ×   is the 

standard Frank-Oseen bulk elastic energy40.  

 

Using the Fourier transform 
1( ) ( )exp( )
q

v r v q q rj jV i−= ⋅∑  and 

the standard quadratic representation for director fluctuation 

modes around the equilibrium director
0n̂ ,

1

0

1,2

ˆ ˆ ˆ( ) ( ) exp( )
q

n n e q rr V n q iα α
α

−

=

= + ⋅∑∑  in the frame { }ˆ ˆ ˆ
1 2 0e ,e ,n  , 

where ˆ ˆ
1 0q e nq q⊥= +

�
 , we obtain 

 ( ) 22 2 *

3 1

1
{ ( ) 2 ( ) ( )

2 q

q q qs jF K q K q n ig q v n
V

α α⊥ ⊥= + + −∑ � �
  

 
2 2

*2 ( ) ( ) ( ) ( ) ( ) ( ) }q q q q q q
b j j j j j

ig q v n h v h vα α α
⊥+ +�

� �
  (15) 

 

where 1 1 2 2
ˆ ˆ ˆ( ) 0q e e nj j j jv v v v= + +

�
, summation is performed in 

Eq. (15) over indices j, and α =1, 2 in the terms where they 

appear. Due to uniaxial anisotropy with respect to ˆ
0n , the 

tensors ( ) ( )exp( )q r r-r q r rj jh h i d′= = − ⋅∫  are diagonal with 

components ( )qjh
�

 and ( )qjh
⊥

being parallel and perpendicular 

to ˆ
0n , respectively. We consider the polar defect mode ( jβ ),

1,2,β = � , as a ’fast’ or ’slow’ mode, depending on the 

magnitude of its relaxation rate jβΓ  compared to the relaxation 

rate n

αΓ  of the director distortions ( )qan .    

 

 Fast defect regime ( jβΓ ≫
n

αΓ ): When the director 

fluctuations are slow compared to the defect modes, their effect 

on the defect densities jv α   results in quasi-equilibrium values, 

( ) ( ) / ( )q q qj b jv ig q n hα α
⊥=

�
%  and 1( ) ( ) / ( )q q qj s jv ig q n h⊥= �

�
% , 

determined by the minimization of F, Eq. (15), over
* ( )qjv α  and

* ( )qjv �
. This “instantaneous” response effectively renormalizes 

the elastic constants for ‘spontaneous’ director fluctuations 

 

 
2

1 1 / ( )qs j

j

K K g h→ −∑ �
, 

2

3 3 / ( )qb j

j

K K g h⊥→ −∑  (16) 

where the summation is over the fast defect modes. Except for 

this effect on the elastic moduli, “fast” defect modes are almost 

invisible in the DLS experiment probing director fluctuations. 

This fact is consistent with the lack of evidence for an 

additional, defect mode in the splay+twist scattering geometry, 

where the observed director fluctuations are much slower than 

either of the modes detected in the bend geometry. 

 

 Slow defect regime ( jβΓ ≪
n

αΓ ): Here the defect diffusion 

modes serve as a slowly changing random force field, that 

creates the quasi-equilibrium, defect-induced director 

distortions, obtained by minimizing F, Eq. (15), over ( )qnα : 

 

 
( )

2 2

3

( ) ( )
( ) ( )

q q
q

b j s jj

j j

g q v g q v
n q n i

K q K q

α
α α

α

⊥

⊥

−
= =

+∑ ∑ � �

�

% %   (17) 

 

Page 9 of 16 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 9  

where the summation is over slow defect modes. 

 

The bend scattering geometry, where the director mode is 

relatively fast, is the most favourable situation for directly 

observing fluctuations of jv β , and is indeed the case where we 

do detect an extra mode. With 2α = (corresponding to the 

twist-bend director mode) and q q⊥�
�  (corresponding to nearly 

pure bend), we see from Eq. (17) that the diffusive modes 2jv  

couple to the director mode with coupling strength controlled 

by the parameter
bg  . Even if 2jv  fluctuations are slower than 

the bend fluctuations, their contribution to scattering can be 

weak, provided 
bg  is small, and thus agree with the behaviour 

observed experimentally for the additional mode (
4
I  ,

4Γ ).  

 

In principle, both translational and rotational diffusion of the 

polar defects could explicitly contribute to temporal variations 

of the defect density 2 /jv t∂ ∂ . However, when q⊥ = 0, the 

directions
1ê and

2ê  in the plane perpendicular to 
0n̂  are 

equivalent, 2jv  and 1jv  are degenerate, and rotational diffusion 

does not directly change the defect density that couples to the 

director mode. However, translational diffusion along 
0n̂  can 

modulate 2jv  (or 1jv ) in regions of high or low bend distortion 

of the director. For q q=
�
 (as is essentially the case in the bend 

scattering geometry studied), we therefore expect a 

hydrodynamic mode with
2

2j qΓ ∝
�

 , consistent with the 

experimental q  dependence of
4Γ .  

 

The fact that the stretching parameter b  used in stretched 

exponential fits of the correlation functions in the bend 

geometry (Eq.(9)) is ~0.9  rather than 1 (pure exponential) 

indicates that both bend deformation and thermal diffusion of 

the configuration defects are associated with slightly dispersed 

instead of single valued relaxation rates 
3Γ and

4Γ . This could 

result from a geometric dispersion of stacking defects. Since the 

stacking of the DSCG molecules into aggregates is isodesmic1, 

61, there is no obvious preference for certain geometrical 

parameters, such as the length of the arms of the “C” or “Y” 

defects, to prevail over others. As a result of dispersed 

geometric parameters of the stacking defects, we would expect 

some dispersion in relaxation rates jβΓ  and n

αΓ  (Eq. (9) and 

Fig. 2). 

 

Conclusions 

We have measured the temperature and concentration 

dependences of the orientational elastic moduli and 

corresponding viscosities for the lyotropic nematic phase of a 

self-assembled LCLC system. Over the (3-10) K nematic 

temperature range of c = (12.5 - 18) wt% DSCG LCLCs, 

3 1K K≈ ∼ 10pN, 
2K ∼ 1pN, twist splayη η≈ ~ (1 - 500) kgm−1s−1 

and 
bendη ≈ 0.01 kgm−1s−1. Of the three elastic constants, the 

splay constant (
1K ) has the strongest temperature dependence, 

which is described by an exponential function of T  . The twist 

and splay viscosities, 
twistη  and splayη show similar exponential 

temperature dependences. We qualitatively explained these 

results by using the viscoelastic theory developed for LC 

systems formed by semi-flexible long chain particles with 

aspect ratio / 1L D � and by specifically confirming the 

predicted scaling of parameters, 
1/ 2 1/ 2

1, ,splay twistK Lη η ∝ , with the 

strongly temperature-dependent average contour length L . Our 

results demonstrating weak temperature dependence of the 

other parameters (
2K ,

3K , and 
bendη ) also agree with theory. We 

detect an additional fluctuation mode in the bend geometry, 

which we attributed to the thermal diffusion of structural 

defects of the chromonic aggregates. These features, absent in 

conventional thermotropic LCs and lyotropic polymer LCs, 

highlight the fact that in LCLC system, the building units are 

non-covalently bound aggregates rather than molecules of fixed 

size.  
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FIG. 1: (A) Structure of the DSCG molecule and generic 

representation of LCLC aggregates formed in aqueous solution. 

(Each disk in the aggregate stack may represent single or paired 

DSCG molecules.) (B)(C) Schematic of experimental light 

scattering geometries used in our measurements: (B) “1&2”, 

splay+twist (pure splay shown) geometry and (C) “3” bend-

twist (pure bend shown) geometry. 

 

 

FIG. 2: Correlation functions (open circles) collected at T = 294 K 

for q
�
 = 1.64 × 106 m−1 in a bend (left) and for q⊥ = 1.00 × 107 m−1 

in splay + twist geometries (right) for the nematic LCLC formed by 

14 wt % DSCG in water. Solid lines represent fits of the correlation 

functions (double exponential in the splay + twist geometry, 

stretched double exponential in bend geometry) to obtain relative 

normalized amplitudes Iα  and relaxation rates αΓ  (α = 1 − 3), of the 

fluctuation modes. In the bend geometry, the analysis reveals an 

additional, weak mode
4Γ . In this case, the best single-exponential 

fit (the dashed line) clearly misses the data in the (10−4 − 10−3) s 

region (left insert). The right inset shows the relaxation time 

spectrum obtained by the regularization method 65 for the bend 

geometry correlation function; the small secondary peak confirms 

the presence of the additional mode. 
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FIG. 3: (Colour online) Temperature and concentration 

dependences of elastic constants of (A)splay
1K  ,(B)bend 

3K

and (C)twist 
2K in nematic phase. Dashed vertical lines on the 

horizontal axes indicate the transition temperature from nematic 

to nematic-isotropic coexistence phase. The insert shows 
1K  

has an exponential dependence of temperature T . 
3K  and 

2K  

fit well with linear functions of temperature T . 

 

 

FIG. 4: (Colour online) Temperature and concentration dependences 

of the ratios between elastic constants. (A)
1 3/K K , (B) 

1 2/K K both 

increase as T decreases or φ  increases; (C) 
3 2/K K  remains 

practically constant for a wide range of T , but decreases at T ≈ 

294K for 18 wt %. 
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FIG. 5: Temperature and concentration dependences of viscosities 

and their ratios: (A) splayη , (B) 
twistη (C) 

bendη and (D) /splay twistη η  

over the nematic range. Dashed lines in the horizontal axis indicate

niT  . 

 

TAB. 1: Viscoelastic parameters of different liquid crystals. 

LCLC DSCG: 16 wt%, φ = 0.115, T∆  =4.3K; LCLC SSY: 29 

wt%, φ = 0.20, T∆ =2K; lyotropic polymeric LC PBG: /L D

=32, φ = 0.16; thermotropic LC 5CB: T∆ =4 K. 
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FIG. 6: Mechanism of viscoelastic processes in LCLC, following 

Meyer et al.8. (A) Flexible rods accommodate bend deformation be 

deforming the rods. (B) Splay deformation tends to create vacancies 

that require free ends (marked by dashed lines) to fill in. (C) Twist 

deformation causes minimum inter-aggregates interference by 

arranging aggregates in layers. (D) Shear flow associated with twist 

deformation. 

  

FIG. 7: “C”- (left) and “Y”-type (right) stacking defects in 

chromonic aggregates. 

 

 

  

(A) (B)

(C) (D)

v

z
n̂

z
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