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Colloidal suspensions are often argued to be an ideal model for studying phase transitions such as crystallization, as they have

the advantage of tunable interactions and experimentally tractable time and length scales. Because crystallization is assumed

to be unaffected by details of particle transport other than the bulk diffusion coefficient, findings are frequently argued to be

transferable to pure melts without solvent. In this article, we present molecular dynamics simulations of the crystallization in a

suspension of colloids with Yukawa interaction which challenge this assumption. In order to investigate the role of hydrodynamic

interactions mediated by the solvent, we model the solvent both implicitly and explicitly, using Langevin dynamics and the

fluctuating Lattice Boltzmann method, respectively. Our simulations show a significant reduction of the crystal growth velocity

due to hydrodynamic interactions even at moderate hydrodynamic coupling. This slowdown is accompanied by a reduction of

the width of the layering region in front of the growing crystal. Thus the dynamics of a colloidal suspension differ strongly from

that of a melt, making them less useful as a model for solvent-free melts than previously thought.

1 Introduction

Crystallization of metal melts is one of the most important and

oldest industrial processes, namely casting. Detailed knowl-

edge of the underlying process is necessary to improve pro-

duction and to develop new high-tech materials. However,

melt temperatures range between several hundred and sev-

eral thousand degrees Celsius, making it difficult to observe

crystallization and nucleation directly in experiments. There-

fore these processes are often studied using easier accessi-

ble model systems, in particular charged colloids in solu-

tion1–3, for example polystyrene (PS) or polymethylmethacry-

lat (PMMA) spheres suspended in water4–6. Colloidal parti-

cles can be produced with a high degree of monodispersity

and with widely tunable interactions. Moreover, colloidal par-

ticles can be tracked individually using, e.g., confocal mi-

croscopy7–9, which gives the equivalent of ‘atomic’ resolution

in metal melts. This makes them an ideal model for studying

crystallization and nucleation.

In colloidal systems the solvent mediates hydrodynamic in-

teractions (HIs) between the suspended particles. These HIs

are different compared to the interactions mediated by the

electron gas in metal melts. The influence of HIs on the dy-

namical properties of colloidal suspensions has been exten-

sively studied in recent years10,11. For example, Löwen et

al.2,12 showed that the ratio of the long-time to short-time
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self-diffusion coefficients has a universal value along the fluid

freezing line. Recent studies by Pesche13 and Nägele14 of

quasi-2D dispersions show that HIs have an impact on the self-

diffusion function in these soft-sphere suspensions. However,

since nucleation and crystal growth happen on much longer

time scales, they are commonly believed to be affected by HIs

only through the particle diffusion coefficient15, which can be

measured conveniently in the bulk liquid. In computer sim-

ulations of nucleation, under this assumption hydrodynamic

interactions can be neglected to avoid the high computational

costs that are incurred by including these. Consequently, only

a few studies have so far investigated the influence of HIs on

nucleation or crystal growth. In a recent study16, it was found

that hydrodynamic interactions dramatically speed up the nu-

cleation of hard spheres.

In the following, we will show that HIs do have a remark-

able influence on the dynamics of crystal growth in a colloidal

suspension with soft interactions as well, however slowing

down rather than accelerating the process. We have performed

molecular dynamics simulations of the crystallization of col-

loids with Yukawa interactions near a planar wall, using both

Langevin dynamics (LV), which suppresses hydrodynamics,

and Lattice Boltzmann (LB) simulations, which includes hy-

drodynamic interactions. By tracking the position of the crys-

tal front, the speed of crystallization was determined, which

we found to be significantly affected by the inclusion of HIs.

Even for moderate coupling the speed was reduced by a factor

of three. To probe the origin of this effect, the mean-squared

displacement (MSD) and distribution functions were calcu-
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lated in the vicinity of the crystal front, but the structure in

this region seems to be unaffected by hydrodynamic interac-

tions. However, we found the crystal to be preceded by a non-

crystalline, but strongly layered region of increased density,

and the width of this pre-ordered region decreases with in-

creasing hydrodynamic coupling. The reduced growth speed

is thus not an effect of reduced bulk transport, but rather of

differences in the local ordering dynamics near the crystal in-

terface.

2 Simulation method

To investigate the influence of hydrodynamic interactions on

crystal growth, we studied the crystallization of particles inter-

acting via a Yukawa pair potential. We use molecular dynam-

ics (MD) simulations including and excluding HIs by employ-

ing a fluctuating lattice Boltzmann method17 and a Langevin

thermostat18, respectively. By introducing two parallel con-

fining walls, the nucleation barrier is lowered enough that

crystallization happens spontaneously without applying spe-

cial rare event sampling techniques.

As inter-particle pair potential we used a screened Coulomb

interaction potential

U(r) = lBkBT
Q2 exp(−λDr)

r
, (1)

where r is the distance between two particles, kB denotes the

Boltzmann constant, T the temperature and Q the valency of

the interacting particles. The range of the potential is de-

termined by the Debye-Hückel screening length λD and its

strength by the Bjerrum length lB. The static properties of

such a Yukawa system can be characterized by two indepen-

dent dimensionless parameters1

κ =
rws

λD

and Γ =
Q1Q2

4πε0rwskbT
=

Q1Q2lB

rws

, (2)

where rws = (3/(4πρ))1/3 is the Wigner-Seitz radius of the

crystal phase and ρ the particle density. Phase diagrams of

systems with Yukawa interactions have been calculated both

by Monte Carlo simulations19 and MD simulations1,20, which

consistently found three regimes: a fluid phase and two dif-

ferent solid phases with BCC or FCC structure, respectively.

For our simulations, we chose κ = 3.0 and Γ =1260, which

is slightly above the transition line between the fluid phase

and the solid BCC phase. The walls act on the particles via a

Weeks-Chandler-Andersen (WCA) potential modeling a hard

sphere repulsion21. This corresponds to the hard walls that

the solvent experiences and improves numerical stability dur-

ing equilibration. However, because our measurements are

performed at least 10 mean particle distances away from the

wall, they are not affected by the wall-particle interaction type.

In the implicit solvent simulations, we use a Langevin ther-

mostat18 that combines drag and random forces on the par-

ticles to establish the correct thermal distribution, but sup-

presses hydrodynamic interactions. The only tunable param-

eter is the friction γ LV, which is inversely proportional to the

diffusion constant D0 = kBT/γ LV of isolated particles.

In order to introduce hydrodynamic interactions, we used

the fluctuating lattice Boltzmann method17,22,23 on a three-

dimensional (3D) lattice with 19 velocity densities (D3Q19).

We treated the colloidal particles as point particles that are

coupled to the LB fluid via a friction term24 with an adjustable

friction constant γ LB. The no-slip boundaries modeling the

fluid-wall interaction were realized by the link bounce back

rule25.

In contrast to other methods of including HIs, such as dissi-

pative particle dynamics26,27, the LB method allows us to tune

the particle diffusion coefficient largely independently of the

viscosity η of the fluid. However, the isolated particle mobil-

ity is not simply the inverse of γ LB, but also depends on η and

the lattice spacing aLB of the LB grid due to feedback from the

moving fluid24,28. In fact, the diffusion constant of an isolated

particle reads

D0 =
kBT

γ LB
+

g

ηaLB
, (3)

where g is a numerical factor that depends on the details of the

applied coupling method. For the applied first order coupling

it equals 0.04828.

Identical friction parameters in implicit and explicit solvent

simulations thus do not lead to the same diffusion coefficient

for isolated particles. In the liquid phase, hydrodynamic inter-

actions will introduce further deviations between the obtained

diffusion coefficients. To rule out the possibility that this ef-

fect would dominate the crystal growth speed, we matched the

magnitude of the self-diffusion constant in the liquid phase be-

tween the two simulation methods with a procedure outlined

in Sec. 3.

The strength of the hydrodynamic interactions can be quan-

tified by the hydrodynamic radius

rH =
kBT

6πηD0
, (4)

which depends both on the viscosity η of the fluid and on

the single particle diffusion coefficient D0. The higher rH ,

the stronger hydrodynamic interactions are. We use the same

quantity also to express the friction constant used in the LV

simulations, where we assume the same viscosity as in the LB

case.

In the following, we report energies in multiples of the ther-

mal energy kBT , lengths in multiples of a = ρ−1/3 and times

in multiples of τ = a
√

kBT/mp, where ρ is the particle num-

ber density and mp the mass of the colloids. τ is the time that

an isolated particle needs to diffuse over distance a.
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Fig. 1 Snapshot of the simulation at the end of the run. The color of

the particles represents the average Steinhard order parameter q6

(blue-green: solid, yellow-red: liquid). The crystal has grown from

the wall layer (gray) into the volume, in this case mainly from the

left-hand side. On the right-hand side the crystal structure is the

same as on the left, however, the orientation of the crystal is flipped

by 90◦. The insets show details of the various phases.

If not otherwise stated, the simulations were performed with

16,384 particles in a box of size 60× 14.5× 14.5 confined

by two planar walls located at x = 0.45 and x = 59.5. The

equations of motion of the particles with Yukawa interaction

were integrated by a Velocity-Verlet integrator29 with time

step dt = 0.01. In all reported simulations with HIs, we used

the same time step also for the LB fluid. The LB fluid grid

spacing was chosen to be aLB = 0.9, the viscosity η = 0.8
and the density of the fluid ρ f l = 0.75. The friction γ varies

between 0.5 and 12.5 in case of LB and 0.5 and 6.5 for LV,

respectively. All simulations were performed using the MD

simulation package ESPResSo30,31 and its GPU-accelerated

fluctuating LB implementation32.

3 Matching the tracer diffusion

The diffusion constant in a liquid phase depends on the hydro-

dynamic interactions as well as on the particle-particle interac-

tions. In order to set up comparable simulations, we matched

the tracer diffusion coefficient, also known as self-diffusion

coefficient, in the bulk liquid. This was done by measuring

the MSD of tracer particles in a pure bulk system, both with

Langevin dynamics and with the Lattice Boltzmann method.

These measurements were performed in three-dimensional pe-

riodic systems consisting of 16,384 particles in a box of size

58× 14.5× 14.5 without confining walls. This setup ensures

that the same finite size effects are present in these simulations

as in the production runs. To estimate finite size effects on the

tracer diffusion, we also measured it in different cubic boxes

of sizes between 7.53 and 303 and found that the effects are

less than 5%.
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Fig. 2 The diffusion coefficient of the tracer particles in the bulk DT
l

as a function of the single particle diffusion coefficients D0. (in

simulation units). Red squares show results for the system without

HIs and the blue triangles for the systems with HI. The gray dashed

lines are a guide to eye. The black lines illustrate the matching of

the diffusion coefficient. Two different single particle diffusion

coefficents D0 using LV or LB coupling result in the same long-time

diffusion coefficient DT
l .

Fig. 2 shows the measured long-time diffusion coefficient

DT
l of tracer particles in the bulk as a function of the single

particle diffusion coefficient D0. The tracer diffusion coef-

ficients differ significantly between Langevin dynamics and

Lattice Boltzmann simulations due to hydrodynamic interac-

tions. In order to match the tracer particle diffusion coefficient

DT
l , we used different values for the friction coefficient for

the LV and the LB coupling and compared only those combi-

nations where the resulting diffusion coefficient in the liquid

phase was the same. The black line in Fig. 2 illustrates this

matching: in order to obtain for example the same diffusion

coefficient DT
l τ/a2 = 0.018, we have to apply γLV = 4.0 for

LV and γLB = 7.0 for LB simulations. In the following, we

only report data with matched tracer diffusion coefficients in

the bulk, where the given values of γ are always the ones that

apply to the LB coupling. The corresponding value of γLV is

smaller and can be calculated from Fig. 2.

4 Measuring crystal growth speed

Using the matched tracer diffusion, we investigated the freez-

ing of the undercooled fluid confined between two planar

walls. We prepared our system as an undercooled liquid and

let the system crystallize. In order to distinguish the liquid

and the different solid phases, we used the Steinhardt order
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parameter33, which for particle i reads

ql(i) =

√√√√ 4π

2l +1

l

∑
m=−l

|qlm(i)|2, (5)

where

qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(ri j) (6)

is a complex quantity based on the spherical harmonics Ylm

and order l, Nb(i) is the number of nearest neighbors of parti-

cle i and ri j the distance vector between particles i and j.

Depending on the choice of l, the Steinhardt order param-

eter is sensitive to various crystal symmetries. In the present

case of Yukawa interaction the solid phases are either FCC or

BCC crystals, which the q6 order parameter distinguishes well

from a liquid34. In order to dampen the thermal fluctuations,

we applied an averaging method introduced by Lechner35:

ql(i) =

√√√√ 4π

2l +1

l

∑
m=−l

|qlm(i)|
2, (7)

with

qlm(i) =
1

Ñb(i)

Ñb(i)

∑
k=0

qlm(k), (8)

where Ñb(i) is the number of the neighboring particles and

the particle i itself. The literature values35 are q6(BCC) =
0.408018, q6(HCP) = 0.42181 and q6(LIQ) = 0.161962.

Figure 3 shows the measured q6 of three snapshots taken

at different times during a typical simulation run. Note that

the points only represent the peaks of q6 profile, which shows

strong layering parallel to the wall. Between the peaks the

density drops nearly to zero in the crystal, and consequently

so does the order parameter. And because we report only the

peak values, the q6 in the liquid bulk is larger than the litera-

ture average value.

As expected, the crystal starts with a HCP wall layer, fol-

lowed by a BCC crystal front that grows with time. To evalu-

ate the position of the crystal front, we fitted the q6 peaks to a

function of shape

−h

[
1

π
arctan

(
(x− s)

w
−0.5

)]
+q6,bulk, (9)

where x is the x-position in the simulation box, h is the height

difference between bulk q6, and the BCC q6, w is the width of

the liquid-crystal transition region and s is the position of the

crystal front.

Figure 4 shows the evolution of the position of the front as a

function of time in the linear regime of two arbitrarily chosen

simulation runs. Clearly the slopes are linear over a range of

 0.28
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 0.32

 0.34
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 0  10  20  30  40  50  60

q-
6
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q6(t1)

q6(t2)

q6(t3)

Fig. 3 This figure shows our fitting procedure for s (position of the

crystal front), from the shape of q6 as a function of x for different

times t1 < t2 < t3. The symbols represent the peaks of the q6 order

parameter. The vertical dashed lines indicate the computed front

locations (s1 < s2 < s3), while the dashed line through the red data

points shows the fit for q6 at time t1.

 16

 18

 20
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 24

 26

 0  200  400  600  800  1000

d
(t

)/
a

t/τ

without HI

without HI

with HI

with HI

Fig. 4 Examples of the position of the crystal front as a function of

time for four different runs with (blue) and without HI (red) at

matched DT
l = 0.012. All systems show a linear trend, as illustrated

by the black dashed lines. The slope of these lines gives the front

growth velocity.
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u
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D
T l 
a
)
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without HIs

with HIs

Fig. 5 Growth velocity u normalized by the bulk diffusion

coefficient DT
l as a function of the hydrodynamic radius rH . The red

squares show the results for simulations without HIs, which are

independent of rH within error bars. The blue triangles represent the

results for simulations with HIs, which show a strong decay of the

growth velocity with increasing hydrodynamic radius. The black

dashed lines are guidelines to eye.

about 20% of the total box length, but with significantly dif-

ferent slopes depending on whether HI are taken into account

or not. Therefore, we can fit the front position to a linear func-

tion d(t) = u · (t − t0) to determine the growth speed. In order

to minimize effects due to the walls, we start only after about

15 crystal layers have grown, and stop when about 40% of the

box length are reached to avoid interactions with the crystal

possibly growing from the opposite wall.

Figure 5 shows the measured velocities u as a function of

the hydrodynamic radius rH , which we varied by changing

the friction coefficient γ and applying the matching procedure

described above. Every measurement represents the mean

growth velocity sampled from 24 independent runs. Using

Langevin dynamics, the normalized growth velocity is virtu-

ally constant as one would expect, where the rate is propor-

tional to the long-time diffusion coefficient DT
l . Using a Lat-

tice Boltzmann fluid, this picture however changes. For very

small hydrodynamic radii rH < 0.025, the influence of HI is

almost negligible as one would expect. But already in case of

moderate ratios 0.1 < rH < 0.25, hydrodynamic interactions

reduce the crystal growth velocity significantly, up to a factor

of 3 at rH = 0.5.

 0.01

 0.1

 0.1  1  10

<
x
(t

)-
x
(0

)>
2
/a

2

t/τ

I

II

III

IV

 0.1  1  10

I

II

III

IV

Fig. 6 Right: MSDs far away from the crystal front in the bulk

liquid. The first two cases (I: LV, II: LB) have rH = 0.06, cases III

(LV) and case IV (LB) rH = 0.44. The MSDs with and without

hydrodynamic interactions agree well on all time and length scales,

reflecting the matched long time diffusion coefficient. Left: MSDs

at the crystal front for the same four cases. At rH = 0.06, the

simulations with and without hydrodynamic interactions mostly

coincide. For rH = 0.44, however, case III with LV differs notably at

intermediate times from case IV with LB, despite the short time

behavior being the same for both. At long times, the MSD becomes

quadratic due to the material transport across the crystal front.
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5 Transport to the crystal front

In this section we investigate the transport of particles to the

crystal front. To this aim we divided our system along the di-

rection of growth in bins of size ∆x = 2, so that there are two

layers per bin in the crystal phase. We then determined the

bin in which the crystal front is located using the q6 order pa-

rameter and averaged the mean square particle displacement

(MSD) in the direction of growth in a frame co-moving with

the front position. Fig. 6 shows the measured MSD of par-

ticles in the fluid far from the crystal as well as right at the

front for weak and strong HIs. While the MSDs in the bulk

fluid show no significant dependence on the strength of HIs

over all length and time scales, the MSDs close to the growing

crystal front show a considerable difference in the mobility of

the particles at strong HIs. At long time scales, the MSDs

are quadratic due to the continuous material transport across

the moving crystal front. Hence, their magnitudes directly re-

flect the different growth speeds observed. However, also on

intermediate time scales the particles are significantly more

mobile if HIs are strong. The magnitude of this increased mo-

bility cannot be explained by the much slower long-term mass

transport. Thus, when including hydrodynamic interactions,

mobility is increased on the intermediate regime, but reduced

on longer time scales.

6 Structure of radial distribution function and

extent of pre-ordering region

In order to further study the ordering process, we concentrate

on the region in front of the growing crystal. As shown in

Fig. 7, there is a notable pre-ordering region in front of the

crystal, where the density and layering already correspond to

the final crystal structure, but the local order as measured by

q6 is still disturbed.

In order to obtain a deeper insight into the ordering process,

we analyzed the two dimensional radial distribution function

(RDF) g(r) = ρ(r)/〈ρ〉 in slices perpendicular to the growth

direction. To that aim we binned our system such that each bin

contains a single crystal layer and compute the RDF once deep

in the crystal and at the position of the density front as shown

in Fig. 8. As expected, the (static) crystal structures are un-

affected by hydrodynamic interactions. However, even at the

position of the density front, which is between one and three

particle layers in front of the actual crystal, the RDFs hardly

show any difference to the crystal phase. While RDFs in the

fluid phase have only one significant peak and quickly decay

to 1, here strong correlations extend over several particle di-

ameters. Thus, the long-range order of the crystal is already

well established in the pre-ordering region, independent of the

strength of hydrodynamic interactions.
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Fig. 7 Peaks of density (ρ) and q6 order parameter during a

simulation for a case with strong HIs (rH = 0.44). This (arbitrarily

chosen) snapshot illustrates the lag between the density front and the

q6 order parameter front. The dashed black lines show the location

of the front determined from fitting Eq. (9) for density and q6,

respectively.

 0
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g
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with HIs

 1  2  3  4  5  6
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Fig. 8 Left: radial distribution function (RDF) parallel to the

confining walls at the density front with and without HIs at

rH = 0.44. The density front is located 2.5 after the q6 front for the

LV simulations and 1.6 for the LB simulations. Right: RDF deep in

the crystal phase for the same parameters. Two features are

remarkable: first, the long-range order is already established far in

front of the q6 front. Second, the long-range order does not seem to

be affected by HIs.
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Fig. 9 The width of the pre-ordering region ∆h(t) over the time t/τ ,

exemplary shown for two cases of Fig. 4 in the regime of linear

growth. The red curve shows the results in case of no HIs, while the

blue case is with HIs. The width ∆h(t) is virtually constant and

clearly reduced in case of mediate HIs.

However, Fig. 8 hides one remarkable difference. The q6

and density fronts grow virtually equally fast as shown in

Figure 9, so that we can define and measure the width ∆h

of the pre-ordering region. Figure 10 shows that this width

decreases with the strength of the hydrodynamic interactions

if hydrodynamic interactions are taken into account, while it

is constant with implicit solvent. Only at very low hydrody-

namic radii, LV and LB simulations lead to the same width.

The decrease seems to follow a linear trend similar to the

decrease of the crystal growth speed, compare Fig. 5. This

shows two things: first, HI seem to hinder the pre-ordering,

so that the local arrangement can catch up, while the overall

growth is slower. However, as we have shown before, long

time transport properties are not responsible for this slower

pre-ordering, but rather processes on intermediate time scales.

Second, and more importantly, this HI dependent width of the

pre-ordering region shows that the system is out of equilib-

rium, because otherwise the width would not be affected by

the underlying dynamics. The fact that the Langevin simu-

lations do not show this behavior underlines that this is not

just a bulk transport effect. Thus, the mechanism of crystal

growth in colloidal suspensions cannot be fully described as

purely diffusive process, where all other degrees of freedom

relax much faster than the particles order at the crystal sur-

face.
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Fig. 10 The difference ∆h between the position of the front detected

by the density profile and by the q6 order parameter. While ∆h is

virtually constant in the absence of HIs, it decreases practically

linearly with increasing rH if HIs are taken into account. The dashed

lines are guides to the eye highlighting the respective constant and

linear trends.

7 Conclusions

We have performed molecular dynamics simulations of the

crystallization of particles with Yukawa interaction from a pla-

nar wall, modeling the solvent either implicitly by Langevin

dynamics or explicitly using a Lattice Boltzmann fluid. Us-

ing the implicit solvent, both the crystal growth speed and

the width of the pre-ordering region are independent of the

friction coefficient. However, using the Lattice Boltzmann

fluid we observe that hydrodynamic interactions slow down

the crystallization notably even for moderate hydrodynamic

radii. This slow down is accompanied by narrowing of the pre-

ordering region. Thus, the attachment of particles to a growing

crystal is not a purely diffusive process as often assumed.

Our findings are not a specific feature of soft particles or

the LB method. For hard spheres embedded in a multi-particle

collision fluid, it has recently be shown that hydrodynamic in-

teractions speed up nucleation16. This might seem surprising

at first, but our studies indicate that the main effects are on the

length and time scales where the different inter-particle poten-

tials come into play. Unlike soft particles, hard spheres cannot

overlap and thus probe longer length scales during attachment.

Since hydrodynamic interactions are omnipresent in sus-

pensions of charged colloids, crystallization and nucleation

in these systems cannot be described well as purely diffu-

sive processes. Thus, the often drawn analogy between metal

melts and colloidal suspensions should be taken with a sizable
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grain of salt. On the other hand, colloidal suspensions can of-

fer valuable input to the development of an out-of-equilibrium

theory of nucleation and crystal growth.
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