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Pinning of a liquid meniscus wicking a square array of pillars is investigated in numerical energy minimzations and compared to
wetting experiments. Our combined study shows that criteria for spontaneous film formation based on thermodynamic consid-
erations as well as on simple geometric modelling of the meniscus shape are insufficient to predict the onset of wicking. High
aspect ratio pillars with square cross section may display a re-entrant pinning regime as the density of the pillars is increased, a
behaviour that is captured by neither of the aforementioned models. Numerically computed energy landscapes for the advancing
meniscus allow us to explain the re-entrant behavior in terms of energy barriers between topologically different meniscus shapes.
Our numerical approach is validated in wicking experiments using circular pillars where the re-entrant behaviour is absent for
the material contact angle θ0 = 47◦ of our experiments.

1 Introduction

Wetting of physically structured and chemically heteroge-
neous solids is dominated by contact line pinning and contact
angle hysteresis1,2. At the microscopic level, i.e. on the length
scale set by the size of the heterogeneities, contact line pinning
can be related to the dense spectrum of local energy minima
and relative energy barriers that trap the interface of a partially
wetting liquid in a metastable state3. The spatial distribution
and shape of the surface heterogeneities determine the pinning
forces and dissipation, which may display an orientational de-
pendence. The resulting anisotropy of contact line pinning
on regular microstructures gives rise to the strong faceting of
static liquid shapes4–6 or uni-directional spreading7.

Under certain conditions a liquid drop placed on an uniform
array of pillars is spontaneously drawn into the microstruc-
tures, where the liquid forms a film whose thickness equals the
pillar height8,9. Conditions for spontaneous wicking are nor-
mally derived from global consideration of the interfacial en-
ergy neglecting the existence of metastable interfacial shapes.
A typical ‘wicking’ behaviour, as illustrated in Fig. 1, can be
intuitively explained by the gain of interfacial energy during
formation of the liquid film. The energy gain grows with an
increasing difference in surface energies between the dry and
the wet state relative to the interfacial tension of the liquid.
Hence, one can expect that the tendency to wick the topogra-
phies becomes stronger for smaller material contact angles θ0.

a Department Dynamics of Complex Fluids, Max-Planck Institute for Dynam-
ics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.b

Ian Wark Research Institute, University of South Australia, Mawson Lakes,
South Australia 5095, Australia. c Uppsala University, Dept. of Engineer-
ing Sciences, Sweden. d Experimental Physics, Saarland University, 66123
Saarbrücken, Germany E-mail: ciro.semprebon@ds.mpg.de

vapour

(a)

droplet

solid (pillar array)

droplet

(b)

liquid film
(wicking)

edge of
droplet

liquid film
(wicking)

Fig. 1 (a): A time series showing the progression of wicking
(spontaneous spreading of a liquid film in a pillar array). Two stages
are observed: spreading of the droplet, followed by wicking which
drains the liquid until only a film remains (see last frame). (b):
Schematic of wicking in a pillar array viewed from side and above.

Accordingly, wicking should be favoured for substrates with
a large Wenzel roughness factor r = A/A0, given by the ra-
tio of the total surface area A of the topography to the base
area A0. It is rather compelling to expect that substrates cov-
ered with dense high aspect ratio topographies strongly favour
spontaneous wicking of a liquid film. Instead the results pre-
sented in this article show that this general conclusions is not
always correct, as criteria for film formation or dewetting that
are purely based on energy consideration may fail.

In order to quantify the influence of contact line pinning on
the onset of spontaneous wicking we deployed a combined nu-
merical and experimental investigation. Equilibrium shapes of
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a straight liquid meniscus trapped in a square lattice of pillars
are numerically computed to elucidate the interplay between
pillar geometry, pillar density, material contact angle, and the
stability of static meniscus morphologies. Additional insight
into activation energies and the sensitivity of de-pinning of im-
perfections is gained using the method of energy landscapes.
The results of our numerical investigations are described in
stability diagrams illustrating the range of mechanically sta-
ble meniscus shapes. Our stability diagrams for pillars with
circular and square cross section facilitate the comparison to
wetting experiments on samples used in our experiments cov-
ering a wide range of aspect ratios and line fractions.

2 Wicking criteria

Most criteria for wicking of a liquid film into topographic sub-
strates given in literature rely on energy considerations9. To
illustrate this ‘thermodynamic’ approach, let us consider a pe-
riodic lattice of ideal pillars with vertical walls and flat top
faces. Furthermore, assume that all vertical and all horizontal
parts of the surfaces exhibit the same material contact angle
θ0, identical to the one measured on a plane unstructured refer-
ence substrate made of the same material. In presence of hys-
teresis the material angle is referred to the advancing or reced-
ing angle depending whether the contact line is respectively
advancing or receding over the substrate. These conditions
are typically satisfied where a surface is etched, embossed,
or prepared using the multilayer photolithography method in
this paper, see Fig. 2. The geometry of such a substrate is
uniquely specified by the pillar height h,the width w, and the
lattice constant d.

To further simplify the problem, assume a completely dry
substrate and a large drop as the initial state, and a homoge-
neous film of thickness h filling the interstices of the pillars up
to the level of the pillar tops as the final state. Now, for the
given initial and final state it is straight forward to compute
the difference of interfacial energy per base area. If the en-
ergy difference between the film and the completely dry state
is smaller than zero, wicking of the liquid is possible but does
not necessarily need to take place. The energy difference is
negative for material contact angles, θ0, below a critical con-
tact angle, θc, given by8,10,11

cosθc =
1−φ

r−φ
, (1)

where r is the Wenzel roughness factor, and φ the projected
area fraction of the pillars, defined as the area of top faces to
the total base area. If the energy difference between the final
and the initial state is positive, the spreading of a continuous
liquid film from a liquid reservoir at zero Laplace pressure is
impossible. Strictly speaking, eqn. (1) can predict only con-

ditions under which wicking or de-wicking can be safely ex-
cluded.

Besides this rather serious shortcoming, thermodynamic ar-
guments do not permit any statement about the dynamics of
wicking. Provided that there are two or more possible final
states with a total interfacial energy lower than in the initial
state, but still above the global thermodynamic minimum. If
this is the case, details of the wicking dynamics are crucial
to determine which final state will be attained4. Also the ob-
servation that, on regular topographic patterns, the front of a
wicking film forms facets aligned with the lattice directions
that cannot be explained by global thermodynamic arguments:
the interfacial energy per projected area is a scalar quantity
and hence the energy gain is the same irrespective of the di-
rection of film propagation.

Alternatively the range of line fractions w/d and aspect ra-
tios h/w that allow a static liquid meniscus to be estimated
from a purely geometrical consideration. This criterion is
based on the somewhat strong assumption of an essentially
two-dimensional meniscus shape, i.e. the liquid film exhibits
a homogeneous cross-section perpendicular to the movement
of the film front. Furthermore, the criterion supposes that the
liquid interface in the last row in contact with the liquid is
straight and fully pinned to the top edge of the pillars, i.e.,
the pillar array is completely filled with liquid. It is clear that
such interfacial morphology can be constructed whenever the
material contact angle satisfies the inequality

h
w
≤
(

d
w
−1

)
tanθ0 (2)

The applicability and accuracy of the above criterion to pre-
dict wicking of a liquid film is limited. For material contact
angles θ0 > 45◦ it is not clear whether the liquid interface of
the meniscus will ‘coalesce’ in front of the pillars12 so that the
liquid completely surrounds the base of pillars situated at the
liquid front. Especially for values of θ0 slightly above 45◦, a
second mechanically stable morphology may be observed. In
contrast to the coalesced meniscus morphology, the outermost
contact line of the latter morphology is only partially located
on the flat regions between the pillars.

3 Experimental methods

Fig. 2 shows the surface designs chosen for this study: a
square lattice of pillars with either uniform square or circu-
lar cross section. The typical pillar width w, is 10µm and
20µm, while the lattice constant d is varied between 25µm
and 160µm and the height h between 7µm and 60µm. The
pillar arrays were prepared in SU8 photoresist using a standard
UV-lithography process2. By preparing the pillars on top of a
flat layer of hard-baked SU8 photoresist, we could ensure that
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Fig. 2 Relevant dimensions, (a), and scanning electron microscopy
images for the arrays of square (b) and cylindrical (c) pillars. Scale
bars are 50µm.

the wettability of all surfaces in the pillar array were identical.
After hard baking (200◦C, 5 min), the samples were treated
with sulphuric acid at high concentrations (60− 65% vol) to
make the SU8 more hydrophilic13. The static advancing con-
tact angle was then carefully measured on flat (unstructured)
regions of each sample using the sessile drop technique. On
each sample, contact angles were extracted from between 12
and 15 images of droplets and averaged. If the contact an-
gle was higher than our target value, the sample was treated
again with a higher concentration of acid. If the contact angle
was lower than our target value, the sample was baked again
(200◦C, 2 min) before subsequent acid treatment to achieve
the correct contact angle. In the latter case, a higher acid con-
centration was generally required to achieve the target contact
angle. Where the target material contact angle could not be
achieved with sufficient precision on a given sample, the sam-
ple was discarded. It should be noted here that the acceptable
contact angle window is very narrow, i.e., only a few degrees,
due to the sensitivity of the wicking phenomena on the mate-
rial contact angle (as discussed later). Once the desired con-
tact angle was reached on the flat portion of the sample, water
droplets were placed on the pillar arrays and observed to see
whether wicking occurred.

4 Numerical methods

Throughout this work we performed numerical minimizations
of the interfacial energy with the public domain software Sur-
face Evolver14. In this software, the liquid-vapour interface
of the film is represented by an irregular mesh of small trian-
gles whose corners form the nodes of the mesh. Nodes which
do not belong to the boundary of the liquid-vapour interface
can take any position in three dimensional space. The partic-
ular geometry is taken into account by local constraints keep-
ing the nodes forming the three phase contact line in contact
to the substrate or the pillars. As it is uniquely defined by
the closed contact line, the liquid-substrate interface is not ex-
plicitly modelled. Hence its area As` can be obtained from
a numerical integration of suitably chosen functions over the
contact line14. Instead the area A`v of the liquid-vapour inter-
face is simply the total area of all triangles of the mesh. The
total interfacial energy

E = γ (A`v− cosθ0 As`) , (3)

is therefore a function of the Cartesian coordinates of all
nodes, where γ denotes the liquid-vapor interfacial tension.
The total interfacial energy eqn. (3) can be minimized using
standard optimizations algorithms. Repeated re-meshing of
the interface during the energy minimization guarantees a con-
stant quality of the triangulation in terms of the uniformity of
edge lengths and the distribution of angles between adjacent
edges.

For the system considered here, effects of hydrostatic pres-
sure are neglected as the vertical extension of the liquid inter-
face in the film is limited by the height of the pillars. This
height is only a few tens of microns, while the capillary length
for water/air is roughly 2.7mm under normal conditions. In
the wetting experiments, the liquid in the film is connected
to a large feeding droplet. Hence, it is justified to regard the
liquid-vapour interface a minimal surface in equilibrium, i.e.,
with vanishing mean curvature. In this case we do not need
to globally constrain the liquid volume to a fixed value during
the numerical minimizations.

We restrict our analysis to the case of a meniscus orienta-
tion parallel to the lattice directions, as observed in our exper-
iments. If the line fraction of the pillars is high or, in other
words, the gap width d−w between two neighbours is small
compared to their width w, only the first row of pillars affects
the shape of the liquid front. If the spacing is large, also the
next row of pillars behind the liquid front has a significant im-
pact on the shape of the terminal part of the interface. In our
numerical calculations we consider three pillar rows behind
of the outermost contact line. In the range of line fractions
considered the equilibrium shape of the meniscus is barely af-
fected by increasing the number of rows to more than three.
Due to the combined translational and mirror symmetry of the
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c) d)

b)a)

Fig. 3 Interfacial morphology of the liquid front between square
(a,c) and circular pillars (b,d). The aspect ratio h/w = 2 and the
material contact angle θ0 = 52◦ is the same for all the plots. In (a)
and (b), for a line fraction w/d = 0.8, the liquid interface is pinned,
while in (c) and (d), for a line fraction w/d = 0.4, the meniscus is
coalesced ahead of the pillars. Pillars ahead of the meniscus are
drawn with higher transparency to allow a better visibility of the
meniscus shape. Note how between circular pillars (b), the liquid
protrusions are more extended than between square pillars (a), due
to the strong pinning at the vertical edges.

liquid interface, only half of a unit stripe needs to be repro-
duced computed15. Examples of both pinned and coalesced
interfacial morphologies are reported in Fig. 3 for surfaces pat-
terned with both square and circular posts.

4.1 Energy landscape

Besides mechanically stable configurations of the liquid inter-
face, we determine the energy landscape of transient meniscus
shapes during an advancement or retraction of the film. The
fundamental idea behind the method of energy landscapes is
to compute local mechanical equilibrium under a subsidiary
constraint that fixes a quantity x related to the global shape
of the interface to a certain value ξ . The corresponding en-
ergy landscape E∗(ξ ) is then given by the value of the total
energy of the system in a local energy minimum on the sub-
set of states that satisfy the constraint x = ξ . If the system
is now released from this additional constraint, it will relax
into one of the proximal local minima of the energy landscape
which represent the stable states of the system. The ‘moun-
tain pass lemma’ guarantees the existence of an unstable equi-

librium state (saddle point) between two local minima of the
energy landscape∗. The analysis of the values E∗(ξ ) between
two local minima at ξ = x1 and ξ = x2 gives valuable insight
into the activation energy related to the transitions between
them. A proper choice of the constrained quantity x provid-
ing the coordinate is essential to unfold the energy landscape.
The coordinate x could be, e.g. the centre of mass of a liq-
uid droplet16–19 or any other quantity that smoothly changes
between the different local energy minima.

To study the energy landscape of the film meniscus in con-
tact to the surface topographies, the interfacial energy of the
liquid-vapour E`v interface is minimized under the constraint
of a fixed liquid-substrate area As`. This choice allows us to
keep the condition of a liquid interface of zero mean curva-
ture. Owing to the periodicity of the topographic pattern, the
energy energy landscape E∗`v(As`) is periodic in As` with a pe-
riod A0 given by the area of the substrate in contact to a com-
plete film per unit cell. The energy landscape E∗(As`) of the
total interfacial energy is then obtained by adding the missing
contribution of the wet substrate. Since we have chosen As` as
the constrained quantity, we simply have

E∗(As`) = E∗`v(As`)− γ cosθ0 As` (4)

and we are able to compute the energy landscape of the menis-
cus for arbitrary contact angles θ0 a posteriori. Different
values of the material contact angle θ0 result in a different
global tilts of the energy landscape E∗(As`). Interfacial shapes
that correspond to a horizontal point of the energy landscape,
i.e. which satisfy

∂E∗

∂As`
= 0 (5)

are local extrema of the total interfacial energy (3). According
to the condition of Young-Dupré, any of the constraint energy
minima must exhibit a constant contact angle on the smooth
parts of the surface which is identical to the value of θ0 speci-
fied in eqn. (4). Hence, we can conclude that every interfacial
configuration corresponding to an unconstrained minimum of
the interfacial energy forms a contact angle

θ = arccos
(

1
γ

∂E∗

∂As`

)
(6)

Further information about the stability of the extremal can be
inferred from the energy landscape E∗(As`): Any mechani-
cally stable shape must correspond to a minimum of E∗(As`)
and, hence, has to satisfy the additional condition

∂ 2E∗

∂A2
s`

> 0 , (7)

i.e. the energy landscape has to be a convex upwards function.

∗ In the context of reaction kinetics this state is termed the ‘activated complex’.
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Fig. 4 a) Energy landscape E∗`v(As`) of the row by row wicking process between circular pillars (w/d = 0.5 and h/w = 1). Red and blue lines
refer to the pinned and coalesced branches, respectively. The local slopes are related to the contact angle θ of the liquid interface through eqn.
(6). Letters (d-i) refer to the morphologies in the corresponding panels. See main text for details. The landscape E∗(As`) is reproduced for the
material angle of the thermodynamic criterion θ0 = 60.7◦, eqn. (1), and θ0 = 50◦, adopted for the stability diagram in Fig. 5. b) Magnification
of the energy landscape in proximity of the coalescence and de-coalescence instability. c) Magnification in proximity of the touching and
pinch-off instabilities.

The complete set of branches of E∗`v(As`) for given control
parameter, in our case the aspect ratio h/w and line fraction
w/d of the pillars, permits to construct a full stability diagram
for any value of θ0. An alternative choice of the constraint
quantity is the total liquid volume of the film20. In that case
the material angle on the substrate is preserved, but a finite
Laplace pressure and a non-zero mean curvature of the liquid
interface is introduced.

5 Results and Discussion

5.1 Analysis of the energy landscape

In the generic case considered in our numerical energy min-
imizations, matching the typical values of h/w and w/d of
the experiments, the energy landscape E∗(As`) of the liq-
uid meniscus forms two separate branches. An example for
the energy landscape for circular pillars with line fraction
w/d = 0.5 and aspect ration h/w is displayed in Fig. 4 for

different values of the material contact angle θ0. The menis-
cus morphologies corresponding to the black and red branches
differ in the topology of the liquid-vapour interface close to
the contact line. Both morphologies can be distinguished by
the shape of the contact line segments located in the bottom
plane of the substrate. The liquid-vapor interface of the ‘co-
alesced’ morphology is located entirely on the bottom of the
substrate in front of the outermost row of wet pillars. For the
‘non-coalesced’ morphology, the contact line on the bottom of
the substrate forms two disconnected segments. The remain-
ing segments of the contact line make excursions onto the side
walls of the pillars in the outermost wetted row. Renderings
of the two respective morphologies are shown also in Fig. 3.

Each of the two morphologies mentioned above is described
by a branch of the constraint interfacial energy E∗`v(i, As`) with
i ∈ {c,n} for the coalesced and non-coalesced shapes, respec-
tively. The plots in Fig. 4 show the two branches for a typical
substrate geometry. From the definition, it is clear that the do-
mains of the two branches are overlapping in a certain range
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of As`. It is apparent from Fig. 4 that both branches display
regions with either positive and negative convexity. As men-
tioned in the previous subsection, a point on a branch repre-
sents either a stable or an unstable equilibrium shape for the
particular value of the material contact angle given by eqn. (6).
As expected, the non-coalesced branch in point d) in the plot
Fig. 4 a) which is excelled by the commont tangent construc-
tion becomes a horizontal point of the branch if we set θ0
to the material contact angle eqn. (1) of the theromdynamic
wicking condition.

Imagine that we could change the contact angle θ0 or the
geometry of the substrate fixed by h/w and w/d in a con-
tinuous way while following the set of equilibrium configu-
rations corresponding to the horizontal points on the branches
E∗(c,As`) and E∗(n,As`). During such a continuous change of
the control parameters we would be able to encounter several
types of interfacial instabilities, because a particular meniscus
morphology has to decay into a different morphology when
reaching one of the two end points terminating the respective
branch. These endpoints could be related to a topology change
of the interface, as for the configurations shown in Fig. 4 e)
and f), where respectively a coalescence and de-coalescence
of the interface in front of the pillars is observed. Alterna-
tively the liquid interface shown in Fig. 4 h) at the end of the
coalesced branch for larger values of As` is touching the base
of the row of pillars in front of the film and is related to an
instability that raises the interface.

Yet another type of instability occurs when an inflection
point is traversed and the convexity criterion eqn. (7) of the
branch becomes violated. Inspection of Fig. 4 c) shows that
the meniscus morphology corresponding to this case does not
display any particular feature apart from the soft mode that
drives the meniscus to the end point d) at small values of As`.
The interfacial shape in Fig. 4 d), however, is close to the final
‘pinch-off’ instability at the end of the non-coalesced branch,
has formed liquid ‘necks’ and adheres only in a small area on
the backside of the foremost row of pillars. The final break-up
of these necks during a further decrease of As` resembles the
Rayleigh Plateau instability of free-standing cylindrical inter-
face. It is reasonable to imagine that during the final pinch off
a small deposit of liquid can remain attached between the sub-
strate and the back of the pillars, similarly as it was observed
during the receding process of the contact line on a super am-
phiphobic substrate21,22.

5.2 Stability diagrams

In the previous subsection we demonstrated how the mechan-
ical stability of the two principal meniscus shapes can be in-
ferred from the method of energy landscapes. For the sake
of comparability, we chose the same material contact angle
θ0 = 50◦ in the stability diagram for pillars with circular and
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Fig. 5 Stability diagrams for pinned and coalesced morphologies on
both square (a) and circular (b) pillars with material contact angle
θ0 = 50◦. Instability lines are indicated by capital letters, stability
regions by Roman numbers. Refer to the main text for details. The
red diamond is referred to the geometry of the energy landscape in
Fig. 4. The blue squares are referred to Fig. 8 for the stability of the
the coalesced meniscus. c,d) Wicking regions for square and
circular pillars respectively for material angles of θ0 = 45◦ (black),
θ0 = 47◦ (blue), θ0 = 50◦ (red) and θ0 = 52◦ (green).

square cross section in Fig. 5 a) and b), respectively. Re-
gions of the control parameter h/w and w/d where a partic-
ular meniscus shape exists and is mechanically stable are indi-
cated with Roman numerals in the two stability diagrams, with
boundaries denoted by the same lower case letters utilized in
Fig. 4.

In both diagrams we find a boundary line (e) where the in-
terface of non-coalesced morphology coalesces in front of the
outermost row of pillars. Furthermore, we have a boundary
line (i) where the three phase contact line of the coalesced
morphology touches the outermost row of dry pillars, and a
line (f) where the interface of the coalesced morphology de-
coalesces in the front of a the outermost row of pillars. The
boundary line (h) indicates the pinch-off instability. In addi-
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tion to lines indicating instabilities, we plot the function

h
w

=
1−φ

4φ

(
1

cosθ0
−1

)
(8)

where the liquid film and the completely dry state exhibit the
same energy is plotted as a solid black line in Fig. 5 a) and b).
The expression eqn. (8) is derived from eqn. (1) and is valid
for pillars with regular polygonal shape having n sides and
inscribed by a circle of radius w/2. In this case the roughness
factor can be simply expressed in terms of the density of pillars
r = 1+ h

w 4φ , where φ = w2

d2
n tan(π/n)

4 . In particular we have φ =
w2

d2 for square and φ = π

4
w2

d2 for circular pillars, respectively.
The set of stability lines partitions the plane of control pa-

rameters w/d and h/w into several regions. In each of these
regions denoted by capital Roman numerals certain meniscus
shapes exist and are mechanically stable. In the red shaded
region (I) of Fig. 5 a) and b), neither the coalesced nor the
non-coalesced meniscus morphology is stable or exists. In ad-
dition, the film state has a lower energy as compared to the
dry state. In region (II), however, the coalesced morphology is
stable while the non-coalesced morphology is unstable or does
not exist. The opposite case, i.e. with the coalesced meniscus
shape being stable and the non-coalesced being unstable or
non-existing is found in region (III). Both the coalesced and
the non-coalesced morphology are stable in region (IV) while
in region (VI), shown as a blue shaded region in Fig. 5 a) and
b), we again face the situations that neither the coalesced nor
the non-coalesced morphology are stable or exist. In region
(VI) the dry state represents the state of lower interfacial en-
ergy when compared to the film state in contrast to region (I).

The stability boundaries of the coalescence instability (e)
and the de-coalescence instability (f) become asymptotically
vertical as the line fraction w/d of the pillars increased to-
wards one in both stability diagrams Fig. 5. In other words,
the criterion for an interfacial instability corresponding to line
(e) and (f) is virtually independent on h/w for pillars with a
sufficiently high aspect ratio.

The asymptotic independence of the coalescence line (e)
on h/w can be readily explained by the observation that the
shape of the interface close to the bottom of the substrate is
barely affected by the region close to the pillar tops and, hence,
must become independent on h/w for high values. Due to this
screening, we observe a flat interface spanning between the
side walls of the pillars apart from the regions in the vicinity of
the top or bottom of the pillars. This feature is clearly visible
for the non-coalesced meniscus shape displayed in Fig. 3 a).

The coalescence line (e) which is related to a topological
transition of the interface if the two tips of the liquid in the
wedge-shaped region formed by the side wall and the bottom
of the substrate touch. The de-coalescence line (f), however,
is linked to the appearance of a soft mode as it was discussed

in the previous subsection on the energy landscape. A dis-
placement of the contact line is related to only small changes
of the interfacial energy. The resulting restoring force driving
the contact line away or toward the pillars will become zero
for infinitely high pillars.

For square pillars such geometry is close to the soft mode
instability to a non coalesced morphology, while for circular
pillars it represents a stable coalesced meniscus. Clearly the
soft mode is accompanied by a variation of the wet area of
the substrate, As`. Hence, it must be related to a horizon-
tal region on the branch E∗(c,As`) of the energy landscape.
This ‘straight’ region close to the left end point of the coa-
lesced branch is clearly visible in the energy landscape plotted
in Fig. 4 for θ = 50◦. The corresponding point in Fig. 5 b)
defined by the aspect ratio h/w and line fraction w/d of Fig. 4
is indicated by the diamond shaped symbol. While approach-
ing the transition line (f) the slight tilt of the energy landscape
towards higher values of As` will disappear. The instability
line (i) in Fig. 5 a) and b) corresponds to the right endpoint of
the coalesced branch and is linked to the touching next row of
pillars ahead. Consequently, the instability line (i) must ter-
minate on (f) once the touching condition is already met for
values As` in the region of the soft mode.

The appearance of a soft mode as the underlying mecha-
nism for the de-coalescence instability in the limit of high as-
pect ratio pillars also explains the qualitative difference of line
(f) between square and circular pillars for the particular value
θ0 = 50◦ chosen here. For square pillars, the instability line (f)
exhibits a vertical asymptote approaching w/d = 0.655 from
below. For the case of circular pillars, however, the line (f) ap-
proaches the value w/d = 1 at a finite aspect ratio h/w = 0.65.
Further considerations based on energy balance allowed us
to derive an exact expression f (θ0) for the line fraction w/d
where the line (f) becomes asymptotically vertical. A vertical
asymptote for (f) is missing whenever f (θ0) > 1. Details of
the derivation and the particular form of f (θ0) for circular and
square pillars are outlined in the appendix.

5.3 Comparison to experimental results

It is reasonable to assume that spontaneous wicking can be ob-
served in experiments on samples with pillars of aspect ratios
h/w and line fractions w/d that fall into the respective regions
(I) of the stability diagrams Fig. 5 a) and b). In this region of
control parameters h/w and w/d, no stable meniscus shapes
are found while the film state has a lower interfacial energy
than the completely dry state.

From the construction of the energy landscapes it is clear
that the shape of region (I) varies with the material contact an-
gle θ0. The plots in Fig. 5 c) and d) illustrate the sensitivity
of region (I) with respect to small variations of θ0 in the nar-
row range between 45◦ and 60◦. Comparing the shape of the
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Fig. 6 Comparison of experimental data for square and circular
pillars with the thermodynamic criterion (red dashed line) eqn. (8)
and the straight wedge approximation (blue dashed line) eqn. (2),
for the onset of wicking. Triangle and circle symbols represent
experiments where wicking and non-wicking was observed,
respectively.

boundary curves for θ0 = 47◦ and 50◦ shows that also the co-
alescence line (e) may lack a vertical asymptote for large line
fractions. For values slightly above θ0 = 45◦ the two pointed
parts of the liquid meniscus protruding into the wedge formed
by the bottom substrate and side walls will always coalesce. A
comparison of the boundary lines at θ0 = 45◦ in Fig. 5 c) and
d) shows that the tendency to coalescence is less pronounced
for square pillars owing to the sharp vertical edges impeding
coalescence of the liquid tips.

The main results of our experiments are summarized in the
diagrams shown Fig. 6. Samples that showed wicking are dis-
played by a triangular symbol at their respective values of line
fraction w/d and aspect ratio h/w. Correspondingly, circular
symbols represent samples where no wicking was observed.
The material contact angle as measured on a plane part of the
substrate is θ0 = (47±1)◦ throughout all experiments.

As an example for circular pillars with aspect ratio h/w =
0.82, wicking was observed only for line fractions w/d ∼ 0.3
larger than the value predicted by the thermodynamic criterion
eqn. (8). The difference between the experimentally observed
transition between wicking and non-wicking corresponds to a
decrease in the lattice spacing, d, from 50µm to 30µm for pil-
lars of width w = 20µm, representing a significant difference
in the surface structure. This difference is reduced for taller
circular pillars but is still evident until at least h/w≈ 3.

Even more striking are the results for square pillars, where
a transition from non-wicking to wicking and back to non-
wicking is observed in our experiments during an increase of

w/d at fixed h/w. Consider, for example, square pillars with
aspect ratio h/w = 1. While increasing w/d, wicking first oc-
curs at w/d ≈ 0.59 (compared with the value 0.33 predicted
by eqn. (2), and persists only until w/d ≈ 0.74. Increasing
the height of the square pillars, the first transition is shifted
to lower values of the line fraction w/d, e.g. w/d ≈ 0.38 for
h/w = 2. The point of the transition from spontaneous wick-
ing back to non-wicking instead remains unchanged, within
the uncertainty of our measurements. The straight wedge ap-
proximation given by eqn. (2) predicts values of the line frac-
tion w/d for the onset of wicking closer to our experimental
results, but does not capture the re-entrant behaviour observed
for square pillars.

A striking coincidence between the experimental results
and the numerically computed region (I) is found for the mate-
rial contact angle θ0 = 47◦. Apart from a single experimental
data point for square pillars, the full boundary line is repro-
duced by our numerical calculations, including the re-entrant
transition from wicking to non-wicking at high line fractions
in the case of square pillars.

5.4 Discussion

The method of energy landscape employed to infer the sta-
bility of the liquid morphologies can be applied in a variety
of problems. Applications range from conformational transi-
tions and pore formation in lipid membranes23,24 to droplets
moving over wettability patterns25. In this context the analy-
sis of the energy landscape is a first step toward understanding
dynamic phenomena in complex geometries. Consider for ex-
ample wicking of a viscous liquid, such that inertial effects
become negligible: it is plausible that the dynamic contact
angle will follow the sequence of unstable morphologies de-
scribed by the energy landscape. In this case its global tilt
will be related to the apparent dynamic contact angle of the
meniscus through eqn. (6). Hence it would be possible to
use this information to calculate the dissipation rate through a
suitable model1 for dynamic wetting. Such assumption could
be verified by implementing an effective law for the motion
of the contact line, where the velocity is given for example
by a power law of the dynamic angles. A similar approach
has been recently adopted to investigate the onset of motion
of drops driven by a body force26.

Information on the dissipation rate, related to the details of
the geometry of the system, could be important to include dy-
namic effects in the stability diagrams presented here. Con-
sider, for example, region (III) in Fig. 5. If the energy released
after touching the next row of pillars is not dissipated quickly
enough, it might be sufficient to overcome the small energy
barrier required to coalesce ahead of the posts. In this case the
spreading process could be dynamically self-sustained beyond
the region where spontaneous spreading is predicted.
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Fig. 7 Example of numerically minimized interface with a kink. If a
sufficient number of kinks is created, kink propagation can be
regarded as an additional wicking mechanism.

Our analysis is based on the assumption that the front of the
liquid film is aligned parallel with the rows of pillars. Conse-
quently, all interfacial instabilities predicted using the method
of energy landscapes were derived from the same assumption.
Experimental observations, however, evidenced another pos-
sible mechanism, which is related to the nucleation and lateral
propagation of a kink in the liquid front4. As the nucleation of
a kink can be triggered by surface defects, in the presence of
a sufficient number of them, the kink propagation could rep-
resent an additional wicking mechanism. In Fig. 7 we report
a numerical example of such a kink in the liquid meniscus be-
tween circular pillars.

Kink propagation can also play an important role in the dy-
namic process and has been also investigated in the context of
superhydrophobicity27 and its breakdown28,29. For our scope
however a more complete analysis of the conditions for the
kink propagation is rather involved, because the number of
topologies that must be accounted for, rapidly increases with
the number of pillars in proximity of the kink. Wicking cri-
teria could also be significantly different when considering
different pillar geometries, i.e. triangular30 or polygonal20.
Directional wicking can instead occur in presence of slanted
pillars31.

6 Conclusion

In this paper we experimentally investigated the onset of wick-
ing of a liquid film on a regular pattern of square and circular
pillars. Numerical energy minimizations allowed us to cal-
culate the energy landscape of the process and determine the
stability diagram. In particular, spontaneous wicking is pre-
dicted in regions where both the detected liquid morphologies,
pinned and coalesced, do not present energy minima in the
landscape. If at least one of the two exhibits a local mini-
mum, it is necessary to overcome an energy barrier, also de-
termined. As instabilities can occur both while increasing and
decreasing the total wet area, we could determine also the re-

a) b)dx dx

Fig. 8 Meniscus shape close to the soft mode prior to
decoalescence.

gion where spontaneous de-wicking of an already present liq-
uid film should occur. The region where wicking is observed
is often characterized by a re-entrant behaviour, which cannot
be captured by thermodynamic arguments or by a simplified
model based on a straight wedge ahead of the pillars.
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Appendix

The variation of the interfacial energy E of the meniscus per
period d can be written as the sum of the energy contribution
Evert related to the wet side walls of the first row of pillars
and the interface spanning between the pillars, the interfacial
energy of the liquid-solid contact on the bottom, Es`, and the
slated liquid-vapour interface E`v. A typical interfacial con-
figuration is illustrated in Fig.8.

A soft mode occurs if the total interfacial energy E does not
change in linear order under a displacement of the contact line
by a length dx:

dE = dEvert +dEsl +dE`v = 0 . (9)

The variation of the interfacial energy of the vertical walls of
the pillars and the liquid meniscus filling the interstices be-
comes

dEvert =
[
γ(d−w)+(γ`v− γsl)w

]
tanθ0dx (10)
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while the variation of the interfacial energy related to the bot-
tom part of the substrate can be written as

dEsl = (γvs− γs`)dx . (11)

Finally, the variation of the interfacial energy of the slanted
liquid-vapor interface is given by

dE`v =
γ

cosθ0
dx . (12)

Using the condition of Young-Dupré γ cosθ0 = γsv − γsl in
eqns. (10) and (11), we finally arrive at the condition

w/d = fs(θ0) =
sinθ0−1
cosθ0−1

(13)

for the occurrence of the soft mode. It is straight forward to
see that dE < 0 for dx < 0 whenever w/d > fs(θ0), i.e. at
line fractions above this values the meniscus spontaneously
decoalesces.

In case of circular pillars the energy contribution dEvert
reads

dEvert =
[
(d−wsinθ0)+wθ0 cosθ0

]
tanθ0dx (14)

and we obtain

f (θ0) =
sinθ0−1

θ0 cosθ0− sinθ0
(15)

Note that for circular pillars, we have f (θ0) > 1 already for
θ0 & 51.32◦, while fc(50◦) = 1.14, consistent with the ab-
sence of vertical asymptotes in for the de-coalescence insta-
bility in the stability diagram in Fig. 5.
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