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Enhanced metrics to detect and quantify micro-heterogeneity from 

microbead tracking data in soft matter. 
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Passive particle tracking of diffusive paths in soft matter, coupled with analysis of the path data, is firmly established as a

fundamental methodology for characterization of both diffusive transport properties (the focus here) and linear viscoelasticity.

For either focus, particle time series are typically analyzed by ensemble averaging over paths, a perfectly natural protocol

for homogeneous materials or for applications where mean properties are sufficient. Many biological materials, however, are

heterogeneous over length scales above the probe diameter, and the implications of heterogeneity for biologically relevant

transport properties (e.g. diffusive passage times through a complex fluid layer) motivate this paper. Our goals are three-fold: first,

to detect heterogeneity as reflected by the ensemble path data; second, to further decompose the ensemble of particle paths into

statistically distinct clusters; and third, to fit the path data in each cluster to a model for the underlying stochastic process. After

reviewing current best practices for detection and assessment of heterogeneity in diffusive processes, we introduce our strategy

toward the first two goals with methods from the statistics and machine learning literature that have not found application thus

far to passive particle tracking data. We apply an analysis based solely on the path data that detects heterogeneity and yields

a decomposition of particle paths into statistically distinct clusters. After these two goals are achieved, one can then pursue

model-fitting. We illustrate these heterogeneity metrics on diverse datasets: for numerically generated and experimental particle

paths, with tunable and unknown heterogeneity, on numerical models for simple diffusion and anomalous sub-diffusion, and

experimentally on sucrose, hyaluronic acid, agarose, and human lung culture mucus solutions.

1 Introduction

Soft materials, especially biological ones, are often hetero-

geneous on microscopic to macroscopic length scales. In

some cases, this heterogeneity is inherent, like the different

“compartments” inside of a living cell1. In other cases it

reflects a material’s multi-functionality; for instance, a het-

erogeneous mesh-size distribution in mucus barrier layers2

from lung airways may endow the material with the ability
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to simultaneously regulate and differentiate diffusive transport

of a wide range of inhaled particle sizes. Likewise, such a

heterogeneous mesh distribution may endow the material with

the ability to tune viscoelastic moduli across a wide frequency

spectrum. In response to disease conditions, biological mate-

rials such as pulmonary mucus become modified,3–5 with con-

sequences for both diffusive and viscoelastic properties,6 and

their degree of heterogeneity is likewise expected to change. It

would be valuable to have practical tools to detect and quantify

material heterogeneity, and to discern modifications in these

features as a result of disease and disease progression. Our

interest in this paper is in the development of quantitative

metrics for diffusive heterogeneity of soft matter at the mi-

cron to sub-micron scale accessible by standard microscopy

and particle tracking techniques. We illustrate these tools

on numerically generated data for normal diffusive and sub-

diffusive stochastic processes, and on experimental data for

four diverse fluids: sucrose, hyaluronic acid, agarose, and

mucus.

Microrheology7–9 has emerged as a powerful experimental

tool for transport property characterization of soft biological

materials at the microscale. For a discussion of experimen-

tal techniques encompassed by microrheology we point the

reader to the review article by Waigh7. A class of microrhe-
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ology methods, based on the analysis of thermal motion of

embedded particles, is known as passive particle tracking mi-

crorheology (PPTM). This technique uses video microscopy

to track the position time series of passive tracer particles

to estimate the viscous and elastic moduli of the medium.10

Traditionally, characterization of the sample material is based

on ensemble averaging of the path data. For a homogeneous

system, where all the beads experience the same environ-

ment, the distribution of increments (displacements between

observations of bead position) sampled by the ensemble arise

from the same stochastic process and the ensemble data is

expected to fit to a single Gaussian curve. Material parameters

are then inferred from the variance of the fitted Gaussian;

e.g., the diffusion coefficient for simple Brownian motion in

viscous fluids. In materials that exhibit micro-heterogeneity,

different particles probe different environments, and although

the step-size distributions of individual paths are described by

Gaussians, the distribution of displacements across multiple

paths will be non-Gaussian. Accordingly, the presence of het-

erogeneity is captured by deviations from Gaussian behavior.

Several standard tests of Gaussianity are cited below from

the PPTM literature. In the following sections we present

methods from the statistics and machine learning literature

that simultaneously detect heterogeneity and divide the path

data into clusters of statistically indistinguishable paths.

Finally, we are interested in predictive consequences of

heterogeneity beyond the timescales of the experimental ob-

servations, which requires a final model fitting step. In the best

case scenario, there are rigorous theoretical models derived

from detailed molecular-scale knowledge of the physical and

chemical properties of the soft matter system and the interac-

tion of the embedded probes with the molecular structure. In

such a scenario, one has candidate models to choose from, and

model selection methods can be applied11,12 to yield a best-fit

model. The classical example is simple Brownian motion for

diffusion in a viscous fluid, where there is a unique model and

model parameters.

For soft matter systems, which, unlike simple viscous flu-

ids, possess viscoelastic relaxation modes and thereby mem-

ory in the diffusive path data, there are very few systems for

which a rigorous diffusive transport theory has been derived

from first principles. The list shortens if one requires that

the MSD scaling behavior and other statistical properties are

exactly solvable. The rare model systems with these criteria

are celebrated, including the Rouse model for dilute, monodis-

perse polymer melts, and the Zimm model which couples

solvent hydrodynamic interactions to the Rouse model. The

reader is referred to the monograph of Rubinstein and Colby13

and the work of Cai et al.14 for a detailed discussion, including

additional scaling behavior associated with models for semi-

dilute and entangled polymers. These first-principles models

yield anomalous, sub-diffusive, mean-squared displacement

(MSD) scaling behavior with exponents 1/2 or 2/3 on interme-

diate timescales, followed by convergence to simple diffusion

and MSD exponent 1 for sufficiently long timescales.

Complex fluids in biology are typically mixtures of molec-

ular species of diverse molecular weights, and with attractive

and repulsive interactions between them. Electrostatic inter-

actions between the probe and soft matter sample, likewise,

can significantly alter particle diffusion (cf. MacKintosh15).

This observation has been extensively explored for drug par-

ticle delivery through mucus barriers in the lung.2 For such

biological soft matter systems, there is no rigorous theory to

guide model selection beyond the ideal systems noted above,

whereas PPTM data in biological fluids such as pulmonary

mucus (cf. Hill et al.6) yields MSD exponents that span the

entire interval (0,1].

Thus, until such time that a rigorous theory exists of dif-

fusive properties of complex biological fluids and the effects

of probe-fluid interactions, even for homogeneous complex

fluids, the analysis of the particle path data must be performed

by statistical methods with minimal assumptions of the under-

lying models to discern among different fluids and different

particles in a given fluid. That is the perspective taken in this

paper in regard to the first two goals of heterogeneity detection

among the ensemble of paths and clustering of the paths.

There are, nonetheless, ad hoc stochastic models that share

several key features of the PPTM data in biological and

biomimetic fluids. These include fractional Brownian motion

(cf. Kou and coworkers16) and generalized Langevin equa-

tions with special memory kernels (cf. Mason and Weitz10,

colloidal diffusion17,18, McKinley et al.19). The proper sta-

tistical approach, given a candidate list of potential models,

is to rank the likelihood that the observed data arises from

each candidate model. A rigorous protocol for model selection

is beyond the scope of this paper, and will be presented

elsewhere.12

Here, we will review the current best practices in PPTM,

both at the level of detection of statistically significant het-

erogeneity (without reference to a particular model) and at

the level of models and parameter fitting. We emphasize that

the techniques of data analysis discussed in this paper are

novel only in their application to PPTM data. Thus we do

not provide an historical review of these statistical techniques,

and refer the reader instead to standard publications20–23.

Many research teams have used PPTM data analysis to infer

a degree of heterogeneity in soft biological materials24–33.

These efforts include two broad categories: one based on the

“Gaussianity” of the distribution of particle displacements and

the second on the statistics of the individual particle mean-

squared-displacements (iMSD). We propose a new protocol

that combines standard Machine Learning techniques, such

as the Expectation Maximization algorithm34 and hierarchical

clustering35, to identify statistically distinct clusters based on
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the distribution of particle path statistics, without reference to

the stochastic processes that generated the paths. In using

these techniques, we rely upon two relatively weak assump-

tions: that each path has Gaussian increments, and, that the

process generating each path is stationary. The resulting semi-

parametric protocol is consistent both with a large number of

stochastic processes and with current approaches to hetero-

geneity detection in the literature.

Once the particle paths have been assigned to statistically

distinct clusters, we then consider the inverse problem of

fitting the ensemble of paths in each cluster to models for

simple diffusive and anomalous sub-diffusive processes. Un-

like simple diffusion where the mean squared displacement

(MSD) grows linearly in lagtime (τ), anomalous subdiffu-

sion is described by a power law, MSD ∼ τα , with 0 <
α < 1. Anomalous subdiffusion has been found in many

biological contexts; diffusion of 1-micron diameter particles

in HBE mucus,6 diffusion of biopolymers inside cells,36

bacteria chromosomal loci,37 movement of lipids on model

membranes,38 proteins diffusion in organellar membranes39

and in the nucleoplasm.40 Model fitting of each cluster to

candidate models for the underlying stochastic process affords

predictive power for elusive experimental properties such as

passage times, as illustrated in Hill et al.,6 and addressed in

detail in Lysy et al.12

In the next section, we start by summarizing existing

metrics for the detection and assessment of heterogeneity

in PPTM. In Section 4 we describe our metrics that have

precedent in the statistics and machine learning literature and

compare them with best practices on numerically generated

data. In Section 5 we apply our metrics to numerically gener-

ated and experimental data, beginning with systems where the

heterogeneity is controlled in order to illustrate the precision

of our tools. We close with application of these metrics to

particle data in an agarose solution, an oft-used simulant for

biological gels that is typically non-homogeneous, and finally

to particle data in human bronchial epithelial cell culture mu-

cus. In these last two experiments, the degree of heterogeneity

is not known a priori, representing the typical scenario for

application of these tools for PPTM data on a soft matter

sample and probe particle of interest.

2 Current metrics to detect heterogeneity in
PPTM data

Several groups24,28,30–32,41 use the van Hove correlation func-
tion, P(Δx(τ)), 42 which is the probability distribution func-

tion constructed from the observed increments or displace-

ments, Δx, at lag time τ , where

Δx(τ) = x(t + τ)− x(t) . (1)

For the majority of relevant stationary, stochastic increment

processes that have been used to model PPTM, including nor-

mal diffusion, fractional Brownian motion, and generalized

Langevin equations, the corresponding van Hove correlation

function is Gaussian for each fixed set of model parame-

ters. Paths generated from any of these classical stochastic

processes can be considered homogeneous if they arise from

the same set of model parameters, or within some small

neighborhood of a parameter set. The practical challenge

for experimental path data is to develop a test that does not

rely on a priori knowledge or assumptions about a model that

generated the data. In a heterogeneous environment, identical

particles diffuse in regions with different local properties. One

may also consider heterogeneity that arises from particles that

are polydisperse in some aspect, e.g., diameter (which we will

explore below) or surface chemistry.

In the scenario of identical particles in a “sufficiently het-

erogeneous sample,” a single Gaussian, according to a well-

defined statistical metric, fails to fit the ensemble-averaged

van Hove correlation function. Heterogeneity can then be

measured by the extent to which the van Hove correlation

function deviates from a Gaussian form; in other words, one

can view the statistical metric as an order parameter measuring

departure from Gaussianity. We refer to such metrics as

“Stage 1 metrics” and note that they are useful for detection
of heterogeneity, but the metric itself is not designed to make

predictions beyond the observable data.

Whereas a Stage 1 metric implies the presence of statis-

tically significant heterogeneity, one can proceed to probe

further into the underlying heterogeneity by binning the paths

into disjoint clusters, which we refer to as a “Stage 2 metric.”

We first survey Stage 1 metrics and then address existing Stage

2 metrics. Our approach is a Stage 2 metric that does not

require a preliminary Stage 1 step.

2.1 Stage 1 metrics for detection of heterogeneity in
PPTM

• Rahman43 proposed a non-Gaussianity parameter NGτ ,

which measures the departure from an exact identity

satisfied by the second and fourth moments of a Gaussian

distribution. Namely, one takes these moments of the van

Hove correlation function, and constructs the metric NGτ
defined for each lag time τ by,

NGτ =

〈
Δx4(τ)

〉
3〈Δx2(τ)〉2

−1. (2)

If the increments are Gaussian, NGτ = 0 for every lag

time τ , whereas non-zero values of NGτ denote a de-

gree of heterogeneity. This parameter was later applied

to the analysis of colloidal systems by Kegel and van

Blaaderen.31

1–18 | 3
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• In the PPTM literature, Houghton et al.32 used the excess

kurtosis (ku) of the van Hove function, defined as

ku =
∑n

i=1(xi − x̄)4

(n−1)σ4
−3, (3)

to measure heterogeneity. Here x̄ is the mean and σ is the

standard deviation of the van Hove correlation function.

For a Gaussian distribution ku = 0, and again non-zero

values denote a degree of heterogeneity.

• Savin and Doyle44 formulated estimators of the square

of the ensemble mean squared displacement M1(τ), and

of its corresponding variance, M2(τ). These estimators

are derived from a weighted average of the iMSD where

the weights are proportional to the length of the particle

trajectory. This prevents the results from being biased by

more mobile particles. Rich et al.30 used these estimators

to propose a heterogeneity ratio (HR), defined as

HR =
M2(τ)
M1(τ)2

. (4)

Numerical simulations30 showed that the maximum

value of HR for a bimodal fluid is 3. Lower and larger

values of HR are then used to quantify heterogeneity,

see for example Rich et al.30 and Aufderhorts-Roberts

et al.28

• Tseng et al.45 employed “bin partitions” of compliance

values to determine the degree of heterogeneity. The

compliance Γ(τ), is related to the MSD by,46

Γ(τ) =
πa
kBT

〈
Δr2(τ)

〉
. (5)

Bin partitions of the compliance distributions were ob-

tained by comparing the relative contributions of the

10%, 25%, and 50% highest values of the individual

compliance to the ensemble mean compliance. The rel-

ative contributions of these values to the ensemble com-

pliance should be close to 1 for a highly heterogeneous

solution and close to 0.1, 0.25, and 0.50, respectively, for

a perfectly homogeneous solution.

• Another Stage 1 metric involves the calculation of

iMSDs, defined for a particle p as

Δr2
p(τ) =

1

N − τ ∑N−τ
i=1

[
(xp(ti + τ)− xp(ti))

2

+(yp(ti + τ)− yp(ti))
2
]
. (6)

Duits et al.27 constructed auto- and cross-correlation ma-

trices of the amplitude of iMSD, Ap, to detect both path-

wise and temporal heterogeneities. Here the amplitude is

found by fitting Eqn. (6) to a power-law function,

Δr2
p(τ)∼= Apτα . (7)

The authors used normalized variances, both with respect

to time and space, to quantify the heterogeneity in the

distribution of Ap. We note that this strategy mixes pure

path analysis with a presumed model for the scaling of

iMSD with lag time τ . It is worthwhile to recognize that

the preponderance of passive microrheology applications

focuses on the power law exponent α in iMSD, rather

than the pre-factor Ap. In future publications, we will

address model-fitting methods that justify assumptions

such as the iMSD scaling in Eqn. (7), as well as the

benefit in fitting both scaling parameters Ap and α to the

iMSDs, rather than one or the other.

We highlight one feature of this iMSD strategy that we

will adopt in our approach, namely that it is based on cross-
correlations among all particle paths, removing any reliance

on comparison of the ensemble with one representative path.

However, we seek a clustering strategy that does not rely

on a model for the underlying particle increment process.

We choose to defer any fitting to parametric models after

decomposing particle paths into clusters, using only statistics

of the raw data to cluster the ensemble. After clustering is

complete, we then entertain best-fit models and parameter

estimation for each cluster.

2.2 Stage 2 metrics for decomposition of paths into clus-
ters

Stage 2 metrics aim to assign particle paths to statistically

distinct clusters.

• Valentine et al.24 compared the standard deviation of

individual particle step size distributions relative to one

chosen particle in the ensemble using the F-statistic,

fl,k =
σ2

k /nk

σ2
l /nl

, (8)

where σ2
k and nk are, respectively, the variance and the

number of statistically independent time steps in the van

Hove function (degrees of freedom) of particle k, and σ2
l

and nl are the statistics of the arbitrarily chosen reference

particle l. Using a 95% certainty of difference for N
particle paths, the F-test is applied to all N(N − 1)/2

pairwise combinations of particle paths. Clusters are then

formed by merging statistically indistinguishable paths

based on the result of the F-statistic.

When designing our algorithm, we drew inspiration from

the two complementary methods proposed by Duits et al.27

4 | 1–18
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and Valentine et al.24 The former incorporates the cross-

correlation among all particles, making it robust to any in-

dividual outlier or small perturbations among non-outlying

points, but it also requires a model for the underlying particle

increment process before heterogeneity could be quantified.

In contrast, the Valentine et al.24 method does not require

a model to investigate heterogeneity and separates particles

into clusters, however it does not uniquely cluster the data.

Without a well-defined way to determine the reference particle

used at each iteration, applying this algorithm to the same

data set multiple times can produce different results, see

Section 4.5 for further discussion. Based on their work, we

sought to construct a robust and consistent semi-parametric

method to assign particles to statistically distinct clusters; for

this, we turn to techniques from the field of Machine Learning.

It is common to assume that each particle path is best

described by a stationary stochastic process, i.e. the dynamics

are non-transient and do not change over the length of the path.

While analysis of particle paths that violate this assumption

pose an additional mathematical challenge, the results can

provide insight into temporal or spatial dependencies in a

particle’s dynamics. Transient behavior has been observed in

a wide range of biological settings, including the movement

of secretory vesicles,47 viruses26 and membrane proteins,48,49

and multiple approaches exist for the identification and char-

acterization of non-stationary behavior.25,50 In this paper, we

focus on the analysis of paths exhibiting stationary dynamics.

That is, we assume that either each particle’s behavior is
stationary over the length of the path or a path segmentation
algorithm has already been applied to the data to segment
paths into stationary intervals.

3 Materials and Methods

3.1 Materials

A 2 molar sucrose solution was prepared by dissolving sucrose

(Sigma) in deionized, distilled (DI) water. We use this sucrose

solution as our experimental model for a Newtonian material.

Hyaluronic acid solutions (HA), with concentrations of 8 and

10 mg/mL, were prepared from hyaluronic acid sodium salt

from strepococcus equi (Sigma), dissolved in DI water and

allowed to mix at room temperature for 2 days while rotating

at 20 rpm. 10mg/mL HA solution is our experimental model

for a homogeneous viscoelastic solution. HA is monodisperse

in molecular weight, therefore we expect the dynamics of

embedded uniform particles to be monodisperse as well, as

shown in the work of De Smedt et al. 51 Low melting point

agarose (Fischer) samples were prepared at 0.2% by weight

(w/w) agarose mixed in PBS at 45 ◦C for 24 hours. Human

Bronchial Epithelial (HBE) cell culture 2.0 wt% mucus sam-

ples were prepared as described in Button and Hill, 52 and Hill

et al.6 One and two micron diameter carboxylated fluorescent

beads (Life Technologies) were used in sucrose, HA and

agarose experiments, and 500 nm beads were used in mucus

experiments. The beads in all experiments were added while

the solution was at 45◦C and mixed for an additional 24 hours.

Samples were then allowed to cool to room temperature.

All particles are added to stock solutions at a 0.001 volume

fraction and allowed to mixed on a 20 rpm rotator for 12 hours

prior to use to insure thorough mixing.

3.2 Particle tracking

A Nikon Eclipse TE2000-U at 40x magnification and standard

video microscopy techniques were used to collect video of

particles undergoing thermal diffusion. For all experimental

data, the total length of each video was T = 30 s and the

camera frame rate was δ = 60 fps. The number of frames

or time steps in each particle path is then given by M = T δ .

Video spot tracking software∗ extracts the position of each

particle of interest in the field of view as a function of time.

Only particles with recorded positions at each of the 1800

time steps are analyzed. While this has the potential to bias

our results toward slower moving particles that are more likely

to remain in the field of view during video acquisition,44 the

diffusivity of the particles is such that very few particles could

not be tracked over the entire length of the video.

4 Mathematical Protocol

Our Stage 2 analysis is based on the standard deviations of

the individual van Hove correlation functions. We do not

draw any inference at this stage, i.e., we skip the analog of

Stage 1 metrics described earlier, although we can easily apply

metrics from Eqns. (2)-(5) to assign a preliminary degree of

heterogeneity. Hierarchical agglomerative clustering35 is used

in our Stage 2 approach, primarily because the resulting den-

drogram (defined below) shows the hierarchical “relatedness”

between each path based on the statistic of choice.22 The issue

of partitioning the dendrogram to create a clustering of the

data is solved by employing the gap statistic.20 By comparing

the data to multiple null reference distributions, we are able to

consistently and uniquely assign particles to clusters. Finally,

a model of the underlying process is proposed for each cluster

and the relevant parameters are determined.

4.1 Calculation of displacements and standard devia-
tions of individual step size distributions

Given N particle paths of length M, the particle positions are

denoted by {x(i, j),y(i, j)}M,N
i, j=1. We calculate the van Hove

∗ http://cismm.cs.unc.edu/resources/software-manuals/video-spot-tracker-

manual/
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correlation functions for a specific lag h corresponding to a

lag time τ = h/δ , where 1/δ is the time between successive

camera frames. The displacements are given by dx(i, j) =
x(1 + ih, j)− x(1 + (i − 1)h, j) and dy(i, j) = y(1 + ih, j)−
y(1+(i−1)h, j). Fitting each column to a Gaussian gives the

1×N standard deviation vectors of particle displacements for

the N particles, sx(τ) and sy(τ).
The vectors sx(τ) and sy(τ) constitute the set of data used in

the following sections to separate particle paths into clusters.

4.2 Determining the number of clusters

In this section and without loss of generality, we consider

the distribution of standard deviations for a single lag time,

τ . The goal is to partition the two-dimensional distribution

of standard deviations into statistically distinct clusters. We

choose not to use standard clustering algorithms such as K-
means53 or K-medoids54 because these methods require prior

knowledge of the number of clusters in the data. Instead,

we use agglomerative hierarchical clustering55,56 using the

average linkage function and the standard Euclidean distance

metric; for details see Hastie et al.22

4.2.1 Hierarchical clustering. The pairwise distances be-

tween all scalar pairs (s j
x(τ),s j

y(τ)) is calculated using the

Euclidean distance metric and the distance between clusters

is determined by computing the average distance between all

points in both clusters, a metric known as the average linkage

function. In agglomerative hierarchical clustering, each data

point is initially its own cluster. The two closest clusters based

on the Euclidean distance in (s j
x(τ),s j

y(τ)) space (points 1 and

2 in Figure 1B) are then merged to form a new cluster (pink

cluster). This process is repeated (blue cluster containing

points 1, 2 and 3, Figure 1B) until all of the data points have

been merged into a single cluster (green cluster containing all

points, Figure 1B). Recording the order in which clusters are
merged allows one to construct a dendrographic representation

of the data (Figure 1C), showing the hierarchical similarity

between clusters.35 The height of each connection in the

dendrogram is equal to the average distance between the

connected clusters, encoding a hierarchical metric of cluster

similarity based on their van Hove correlation functions.

After all the distances are calculated (Figure 1C), the num-
ber of clusters, Kτ , is determined by a cutoff value ζ that

partitions the dendrogram at resolution ζ . For instance, if

we choose any ζ < 1 in Figure 1, all particles remain in their

own cluster, and there are 4 clusters at this resolution. For

any 1 < ζ < 2.12, say ζ = 1.5 as in Figure 1C, the two

points making up the pink cluster are now indistinguishable.

Thus we declare 3 clusters for this range of ζ . Next, for

2.12 < ζ < 4.75, there are only 2 clusters, the blue cluster and

point 4, as shown in the figure for ζ = 3. Finally, for ζ > 4.75,

there is one cluster with that chosen degree of resolution, the
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Fig. 1 Example of hierarchical clustering. A) The distribution of

data points to be clustered. Each data point is assigned to a cluster

containing only itself. The pairwise distances between all clusters

are calculated and the closest two clusters are merged to form a new

cluster. B) This process is repeated until all data points are in a

single cluster. C) A dendrogram shows the distances between each

cluster and the order in which they were merged. The solid lines at 3

and 1.5 show cutoff values that produce two and three clusters,

respectively.

green cluster containing all points. In this way, the parameter

ζ solely determines the partitioning of the data, and as ζ varies

from the smallest to largest values, the number of clusters Kτ
spans 1 to N, where N is the number of observed particles.

The next critical step is to select the degree of resolution, i.e.

the value of ζ , and thus to determine the number of clusters

Kτ that best delineates the ensemble of paths at lag time τ .

4.2.2 Optimal number of clusters and the gap statistic.
To find the optimal number of clusters, K∗

τ , we use a gap

statistic.20 We start by defining the parameter WK as23

WK (Kτ) =
Kτ

∑
c=1

1

2nc
Dc, (9)

where nc is the number of elements in cluster c and Dc is

the sum of the pairwise squared distances between all the

elements of cluster c. As ζ decreases, the number of clusters,

Kτ , increases, which in turn results in a decrease of WK due to

the increasing mean intra-cluster density.

Next, we use these values of WK to compare the distribution

of standard deviations of the van Hove functions, which

may or may not contain statistically distinct clusters, to a

null reference data set containing only one cluster and with

uniform density. In order to ensure that the null reference

data set only contains a single cluster with uniform density,
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this data is generated from a uni-modal uniform distribution.

To match the input data as closely as possible (apart from the

number of clusters present), the reference data set is created

such that its cardinality and domain are the same as the input

data, i.e. the distribution of (s j
x(τ),s j

y(τ)). To remove the

variability and arbitrariness associated with the comparison

of the input data to a single reference data set, it is common

practice to compare the input data to multiple reference data

sets. We have determined that 100 reference data sets suffices

to consistently partition the data.

To illustrate this procedure, we numerically generate paths

of 150 1-μm diameter spherical particles diffusing via Brow-

nian motion in a heterogeneous medium with diffusion coef-

ficients: 1.28 (50 paths), 1.49 (50 paths), 2.72 (49 paths), and

3.10μm2/s (1 path). This data set will be referred to as the

“Numerically Generated Heterogeneous Newtonian” (NGHN)

data set. First we fit the van Hove correlation function of

each particle path to a Gaussian, doing so separately for each

coordinate, and thereby recording standard deviation of each

particle’s x and y step size distributions. For particle diffusion

in a viscous fluid, the van Hove correlation function in any

direction has mean 0 and variance s(τ) where s(τ) =
√

2Dτ,
and the diffusion coefficient is given by the Stokes-Einstein

relation,

D =
kBT

6πηa
, (10)

where a is the particle radius and η is the fluid viscosity. In

our example, the resulting distribution of standard deviations,

(s j
x(τ),s j

y(τ)), is shown in Figure 2A. We next calculate WK
for the path data and Wref, which is the mean of the WK’s

calculated using Eqn. (9) in each of the 100 reference data sets

described previously. These results are plotted in Figure 2B

as a function of the number of clusters, Kτ . A measure of

the variability introduced by the use of a finite number of

reference data sets has the form sK = sd(K)
√

1+1/B, where

sd is the standard deviation of the reference data set and B the

number of sets.20

We are interested in the change in log(WK) relative to

log(Wref) for increasing Kτ . The difference between these data

sets, known as the gap statistic, was proposed by Tibshirani

et al.,20 to formalize the observation that the point at which

the rate of change of log(WK) significantly increases is an

indicator of the “true” number of clusters in the data. We ac-

knowledge the alternative form of the gap statistic comparing

WK and Wref without the logarithm, but have opted not to use

it because of the documented decrease in performance when

analyzing overlapping clusters.23

The optimal number of clusters in the distribution of stan-

dard deviations of van Hove functions, for a given lag time, is

estimated as

K∗
τ = argmin

Kτ

{Kτ |G(Kτ)≥ G(Kτ +1)− sKτ+1 } , (11)
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Fig. 2 First clustering step on the Numerically Generated
Heterogeneous Newtonian (NGHN) data set. A) Standard

deviations of van Hove functions for particles moving in a

Newtonian, heterogeneous fluid. The heterogeneity of the fluid is

characterized by four different diffusion coefficients. B) Value of W
is given by Eqn. (9), the gap statistic is calculated based on the

differences between the reference and input data. C) Gap statistic

calculated as described in Section 4.2.2. This statistic indicates that

initially there are three clusters in the sample.
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where argmin returns the value of the input argument that

minimizes the input function. This equation chooses K∗
τ to

be the smallest number of clusters such that the value of the

gap statistic at Kτ clusters is greater than or equal to the lower

bound of the gap statistic when Kτ +1 clusters are present. In

our example, at this stage of the algorithm, three clusters are

identified (K∗
τ = 3), as shown in Figure 2C.

It is clear from these results that at this stage the algorithm

fails to distinguish between the two clusters that are closest

together. A question arises as to what is the minimal ‘sepa-

ration’ in variances of the step size distribution between two

clusters so that they appear as distinct in this step. Recall

that in our example, this is the same as asking what minimum

difference in diffusivities is distinguishable by these metrics.

To investigate this, we generated three heterogeneous New-

tonian data sets of size N = 200. Each data set contains two

clusters: particles belonging to the first cluster have diffusivity

D1 = 1.61×10−2μm2/s, while particles in the second cluster

have diffusivity D2 = D1(1+Δ). The value D1 is the diffusion

coefficient of a one-micron particle diffusing in a medium

with viscosity 27 mPa s. We choose three values of Δ: 0.05,

0.075, 0.10. Our algorithm correctly identifies the two clusters

when Δ ≥ 7.5%. We note that the NGτ (Eqn. 2) metric, the

heterogeneity ratio (Eqn. 4) and the percent contribution of

the bin partitions described by Tseng et al.45 steadily increase

as Δ increases, as expected for increasing heterogeneity. The

Stage 2 metric of Valentine et al.24 identifies two to three

clusters in each data set. These results are given in Table S1

of the Supplemental Material.

Given these results from other methods in the literature, we

now apply our method. Figure 3A shows values of log(WK) vs

Kτ for each of the four data sets. As Δ increases, the ‘bend’

in the plot at Kτ = 2 becomes more pronounced. Figure 3B

shows the gap statistic as a function of Kτ . The optimal

number of clusters K∗
τ is indicated by a black X. We see that

for a Newtonian fluid in this range of diffusivities, the distri-

bution of the standard deviations of the van Hove correlation

functions of two data sets with diffusivities that vary by only

5% are indistinguishable. However as the difference in the

diffusivities increases to 7.5% and beyond, the distributions

become distinguishable by our metrics and the correct number

of clusters is successfully recovered. It is important to point

out that this 7.5% threshold may not hold for different data

sets and its value depends on, among other variables, the total

number of clusters, presence of outliers, distribution of points

within each cluster, and experimental error.

4.2.3 Optimization of initial clustering based on dif-
ferent lag times. In Section 4.2.2 we showed how to select

the optimal number of clusters for a given lag time, τ . In

this section, we address the fact that the optimal number of

clusters might change as the lag time is varied. For this, the
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Fig. 3 Test of the gap statistic test: numerical data with
controlled degrees of heterogeneity in the diffusion coefficients.
Four heterogeneous Newtonian data sets are generated, where each

data set consists of 200 paths of particles of diameter 1 μm. For

each data set, the first 100 paths have diffusion coefficient

D1 = 1.61×10−2μm2/s while the next 50 paths have diffusion

coefficient DΔ = D1(1+Δ) for Δ = 5%,7.5%, and 10%. A) As Δ
increases, the ‘bend’ in the log(W ) vs. Kτ plot at Kτ = 2 becomes

more pronounced. B) The gap statistic correctly indicates two

clusters for Δ ≥ 0.075. The number of clusters selected by the gap

statistic is indicated by a black ×.

clustering process introduced in Section 4.2.2 is applied to

each distribution of standard deviations, (s j
x(τ),s j

y(τ)), for a

selected number of lag times. Each set of lag times is obtained

as a linear distribution from τ1 to τ10 = 100/δ s, in increments

of 10/δ s. Here, τ1 is the smallest lag time on a given data set

and δ the frame rate (fps).

As τ changes, the optimal number K∗
τ of clusters at a

particular lag time varies, and the cluster assignment of each

particle may therefore change as well. To choose among these

partitions of the data, we select the clustering with the smallest

value of τ that maximizes K∗
τ . This value will be referred to

as K†. Recall that as τ increases, the number of data points

used in the van Hove correlation decreases. By selecting the

smallest value of τ that maximizes the heterogeneity, we are
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maximizing our confidence in each data point (s j
x(τ),s j

y(τ))
and therefore our confidence in the accuracy of the clustering.

Figure 4A shows the value of the gap statistic at K∗
τ for each

lag time τ , while Figure 4B shows the number of clusters

K∗
τ found at each lag time. In these figures, K† is indicated

by a red circle and corresponds to a lag time of 0.067 s.

From this point forward, any further division of the data

will be performed using the van Hove correlation function

corresponding to τ† = 0.067 s.
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Fig. 4 Optimization of initial clustering based on different lag
times for the Numerically Generated Heterogeneous Newtonian
data set. (Section 4.2.3) A) The value of the gap statistic at K∗

τ is

shown for each lag time. B) The optimal number of clusters is

determined from the smallest lag time that gives the largest number

of clusters (red dot).

4.2.4 Cluster refining. After the main clusters are iden-

tified, we repeat the hierarchical clustering and gap statistic

steps for each cluster c = 1, ..,K†. The first clustering steps

(Sections 4.2.1-4.2.3) serve to identify well-separated clusters

while the second round of clustering, introduced here, inspects

each previously identified cluster for the presence of sub-

clusters. The final number of clusters Kfinal is the total number

of clusters found after applying the clustering algorithm to

each of the previously identified K† clusters. This two-pass

clustering is robust to outliers that normally causes single-

pass clustering to fail. Figure 5A shows the three clusters

previously identified (K† = 3). The clustering steps described

in Sections 4.2.1-4.2.3 are repeated for each individual cluster

with size nc > 3 and the resulting gap statistics are shown in

Figure 5B.
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Fig. 5 Cluster refining on the Numerically Generated
Heterogeneous Newtonian data set. (Section 4.2.4) A) Resulting

clusters from initial clustering step. B) The clustering algorithm is

applied to each individual cluster to identify any sub clusters. In this

example, Cluster 3 is subdivided into two groups, while Cluster 2

remains a single group. Cluster 1 contained a single point, therefore

no further analysis is needed.

From Figure 5B it is clear that Cluster 3 is composed of two

sub-clusters giving a total of four clusters (Kfinal = 4), shown

in Figure 6A. Figure 6B shows the resulting division of cluster

3 into two sub-clusters.

4.3 Cluster distribution fitting

Once the data has been fully partitioned, i.e., we have Kfinal,

we assume that the distribution of standard deviations of the

van Hove correlation functions, (s j
x(τ†),s j

y(τ†)) can be de-

scribed by a Gaussian mixture model21 where the data points

within each cluster are normally distributed. To ascertain the

statistical significance of each cluster, i.e., the probability that

each point is a member of a given cluster and the parameters
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Fig. 6 Final number of clusters for the Numerically Generated
Heterogeneous Newtonian data set. A) Total number of clusters

identified by the algorithm described in Section 4.2. Note that

Cluster 1 is identified as an outlier, since it contains less than 3

points. B) Detailed view of Cluster 3 and 4. Since the data is

simulated, it is easy to check whether points are placed in the wrong

cluster. These points are indicated in the figure by a black ×. Six

points out of 150 were misclassified.

that describe the Gaussian mixture model, we employ an it-

erative machine learning algorithm known as an Expectation-

Maximization (EM) algorithm.34 The EM algorithm is chosen

because it is numerically stable and the computation time per

iteration is relatively small. We initialize the EM algorithm by

calculating a vector of means μ and a covariance matrix Γ for

each cluster. Each component of the Gaussian mixture is of

the form,

f (s |μ,Γ ) ∝ exp

[
−1

2
(s−μ)′ Γ−1 (s−μ)

]
, (12)

where s is shorthand for the N × 2 vector of standard devia-

tions of the van Hove distribution
[
s j

x(τ†),s j
y(τ†)

]
. The EM

algorithm determines the parameters of the Gaussian mixture

that best fits the data by maximizing the log likelihood of

generating the data given a set of parameters. For further

description of the EM algorithm the reader is referred to

the works of Hastie et al.22 and Bishop.21 In addition, any

cluster with fewer than three points is not considered during

the EM phase. In our extended example on the NGHN

data, this means we only apply the EM algorithm to the

ensemble of clusters 2, 3 and 4, omitting the single point

which forms Cluster 1. Figure 7A shows the three-component

2D probability distribution resulting from the EM algorithm.

Given the location of the center of each cluster, the Gaussian

parameters for each component can be used to measure the

relative strength of each particle’s cluster assignment, i.e., the

probability that any given point is a member of each cluster.
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Fig. 7 Gaussian mixture fitting on the Numerically Generated
Heterogeneous Newtonian data set. A) 2-D probability

distribution of the center of each cluster. B) Isoclines of each

Gaussian component and cluster centers (black ×) overlaid on 2D

distribution of standard deviations of individual van Hove functions.

While two points may be assigned to the same cluster, the

probability that such an assignment is correct depends on the

location of that point relative to the cluster center. This is

illustrated in Figure 8 for two points. Given the stochastic

nature of particle diffusion, it is possible to erroneously assign

particles to a cluster (see for example Figure 6B). Therefore,

determining these probabilities is an important step to evaluate

the use of a given particle path in the analysis of a specific

10 | 1–18

Page 12 of 20Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0.25 0.3 0.35
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

s
x
, [μm]

s y, [
μ

m
]

Probability of being in
− Green cluster :   1.00
− Red cluster    :   0.00

Probability of being in
− Green cluster :   0.83
− Red cluster    :   0.17

Fig. 8 Detail of Cluster 3 and Cluster 4 from Figure 7 and the
Numerically Generated Heterogeneous Newtonian data set.
With the EM algorithm explained in Section 4.3, the probability that

each point is a member of each cluster is calculated by evaluating all

Gaussian components of the Gaussian mixture model at each point,

(s j
x(τ†),s j

y(τ†)).

cluster’s properties. Certainly, the level of refinement required

depends on the particulars of the application.

4.4 Algorithm to simulate numerical data

For the purpose of validating the protocol described in Sec-

tions 4.1-4.3, we perform simulations of particles moving

both by regular Brownian motion and by fractional Brownian

motion (fBm). fBm57,58 is a self-similar Gaussian process

with stationary increments and mean squared displacement

given by, 〈
Δr2(τ)

〉
= 2d DfBm τα , (13)

where α is the power law exponent 0 ≤ α ≤ 2, DfBm is the

generalized diffusion coefficient with dimensions L2/tα and d
is the dimensionality of the data. In the probability literature,

the exponent α is replaced by H = 2α and called the Hurst

parameter. The autocorrelation function for fBm has long-

range correlations,

〈ξα(0)ξα(t)〉 ≈ α(α −1)tα−2, (14)

where ξα is the fractional Brownian noise. This class of

processes generalizes regular Brownian motion, which corre-

sponds to α = 1, the only value for which the motion is uncor-

related. For 0 < α < 1 the pre-factor in Eqn. (14) is negative

so that the increments are negatively correlated, rendering the

associated process sub-diffusive. Conversely, when α > 1 the

motion is persistent (positively correlated), resulting in super-

diffusion in which successive steps are biased toward follow in

the same direction. Subdiffusive fBm has been used to model a

variety of processes including diffusion of 1-micron diameter

particles in HBE mucus,6 diffusion of biopolymers inside

cells,36 monomer diffusion in a polymer chain,59 bacteria

chromosomal loci,37 polymer translocation,60 and diffusion

in crowded fluids.61 We have selected fBm as a model based

on its ability to describe the autocovariance observed in the

displacements of particles undergoing passive thermal diffu-

sion in a wide range of both simple and complex fluids (See

for example supplemental Figure 1).

4.4.1 Generating particle paths Given the covariance

matrix

Λi, j =
1

2

(
tα
i + tα

j −|ti − t j|α
)
,

for i, j = 1, ...,M, define R2 = Λ. A particle path is generated

as X =
√

2DfBm(uR), where u is a 1×M vector of normally

distributed random numbers with zero mean and unit vari-

ance.62,63 The distribution of step sizes dxi = x(1+ iτ)−x(1+
(i−1)τ) has standard deviation, στ , explicitly given by

στ =
√

2DfBmτα . (15)

Note that in simulations for regular Brownian motion, we only

need to calculate the vector u, since Λ becomes the identity

matrix.

The mean fBm parameters, DfBm and α , are calculated on

a per-cluster basis for each of the Kfinal clusters. A built-

in MATLAB solver for constrained nonlinear optimization is

used to estimate DfBm and α using Eqn. (15). It is important to

emphasize that while Kfinal is determined at a particular value

of τ , the fitting procedure must be carried out over multiple

values of τ . This is due to the fact that for a given τ and

στ , there is a one-dimensional curve of (DfBm,α) pairs which

satisfies Eqn. (15).

4.5 Metric Comparison

When our algorithm is applied to the numerically generated

heterogeneous Newtonian (NGHN) data set (Figures 2-8), we

find three main clusters corresponding to the three clusters

generated with mean diffusivities 1.28, 1.49, and 2.72 μm2/s.

The outlying point, generated with D = 3.10μm2/s, was also

correctly identified. Following Section 4.4 we assume fBm as

the underlying process, and fit DfBm and α for the three main

clusters. The mean error in the predicted value of DfBm across

all clusters is 2.8%. The mean error in the predicted value of

α across all clusters is 0.96%. To compare the performance

of our algorithm with the metrics described in Section 2, we

applied those metrics to this same set of data.

All Stage 1 metrics presented in Section 2.1 correctly indi-

cated that the simulated data set was heterogeneous. The non-

Gaussianity parameter (Eqn. 2), excess kurtosis (Eqn. 3), and
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heterogeneity ratio (Eqn. 4), are 0.19, 0.58 and 13.0, respec-

tively. The relative contributions of the 10%, 25% and 50%

highest values of the individual compliance to the ensemble

mean compliance were 17%, 38% and 64%, respectively.

Finally, the mean spatial relative standard deviation in the

iMSD amplitudes was 1.02.

The Stage 2 metric of Valentine et al.24 described in Sec-

tion 2.2 was applied to the simulated data set multiple times.

Clusters were formed by randomly selecting “representative”

particle paths of the particles not yet clustered and assigning

all particle paths to a cluster based on the results of an F-

test. In each instance, the data was correctly determined to

be heterogeneous while the number of statistically distinct

clusters within the data predicted by the algorithm varied

between 6 and 7. However, particle assignments to these

clusters varied (Figure 9), demonstrating sensitivity to the

choice of the representative particle path. We note that this

is one of the main advantages of our algorithm, in our case

particles are uniquely assigned to a cluster.
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Fig. 9 Sample results of the metric proposed by Valentine et
al. 24 for the Numerically Generated Heterogeneous Newtonian
dataset. The choice of order in which the particles are compared

results in different numbers of clusters and cluster distributions. For

example, six clusters were found in A, while in B seven clusters

were identified.

5 Results and Discussion

We set out to test our methods on a variety of simulated and

experimental data sets exhibiting various degrees of hetero-

geneity. In each instance, the simulated data was generated

with parameter values comparable to the measured values

for the corresponding experimental data set. This provides

a way to distinguish the error inherent in our algorithm from

experimental error.64

5.1 Homogeneous data: Numerical and Experimental

5.1.1 Newtonian Paths and Data Analysis

(a) Numerical. 100 particle paths were generated with α =
1 and DfBm = 1.61× 10−2μm2/s. These values of DfBm

and α were chosen to match the expected values for the

experimental homogeneous sucrose data. See Table S2

for the resulting best fit values of α and DfBm and their

corresponding 95% confidence intervals.

(b) Experimental. Position time series were collected for

100 1-μm diameter particles undergoing passive thermal

diffusion in a 2 molar sucrose solution. The viscosity of

the 2 molar sucrose solution was calculated to be 0.027

Pa s based on the MSD of embedded tracer particles. See

Table S3 for the resulting best fit values of α and DfBm

and their corresponding 95% confidence intervals.

The results from our clustering algorithm and subsequent

fitting to Eqn. (15) for the homogeneous numerical and exper-

imental Newtonian data sets are shown in Figure 10A and B

for α and DfBm, respectively.

The 95% confidence intervals (CI95) for α in the x direc-

tion was (0.933,0.998) for the simulated data compared to

(0.961,1.00) for the experimental data. Similarly, the CI95

for the x component of DfBm is (1.59× 10−2,1.62× 10−2),
while the experimental CI95 is (1.36 × 10−2,1.38 × 10−2).
Confidence intervals for all other data sets can be found in

the supplemental materials.

For the data presented here, as well as in Section 5.2.1, a

modified fitting procedure for DfBm was implemented. Once

α was determined to be sufficiently close to 1, that is the

process is indistinguishable from simple Brownian motion,

DfBm was calculated with α fixed at exactly 1. The resulting

diffusion coefficients yield the viscosity of the fluid through

the Stokes-Einstein relation, Eqn. (10). For the homogeneous

data, the expected values of DfBm were comparable, DfBm,x =
1.37×10−2μm2/sα and DfBm,x = 1.36×10−2μm2/s for non-

fixed and fixed α cases, respectively. However, because of the

decrease in the degrees of freedom in the fitting process that

occurs when α is fixed, the 95% confidence interval is larger

when α is fixed (Table S4).

12 | 1–18

Page 14 of 20Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0

0.2

0.4

0.6

0.8

1

1.2

1.4

α

Simulated Experimental
 

 

X
Expected
Y

A

0

0.005

0.01

0.015

0.02

0.025

D
fB

m
, (

μ
 m

2 /s
α
)

Simulated Experimental
 

 

X
Expected
Y

B

0.02 0.022 0.024 0.026 0.028 0.03
0.02

0.022

0.024

0.026

0.028

0.03

s
x
, [μm]

s y, [
μ

m
]

C

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

s
x
, [μm]

s y, [
μ

m
]

D

Fig. 10 Simulated and experimental (sucrose) homogeneous Newtonian data. Panels A and B show the expected and inferred fBm

parameters, α and D f Bm. The distribution of standard deviations of the van Hove correlation functions for the simulated and experimental data

are shown in panels C and D, respectively. The squares in panel D indicate points that have been classified as outliers.

0

0.2

0.4

0.6

0.8

1

α

Simulated Exp. C1 Exp. C2
 

 

X
Expected
Y

A

0

1

2

x 10−4

D
fB

m
, (

μ 
m

s /s
α )

Simulated Exp. C1 Exp. C2

X
Expected
Y

B

0.025 0.03 0.035
0.025

0.03

0.035

s
x
, [μm]

s y, [
μ

m
]

C

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.01

0.02

0.03

s
x
, [μm]

s y, [
μ

m
]

D

Fig. 11 Simulated and experimental (hyaluronic acid) homogeneous viscoelastic data. A) Power law exponent and B) fractional diffusion

coefficient distributions. C) Standard deviations of simulated data. D) Standard deviations of experimental data. For the experimental

hyaluronic acid data, the main cluster (denoted Exp. C1) contains 161 data points and is shown in blue (open circles). The second cluster

(Exp. C2) contains 14 data points and is shown in green (open squares). One statistically distinct outlier was also found (gray circle).
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Fig. 12 Simulated (Sim.) and experimental (sucrose) (Exp.) heterogeneous Newtonian data arising in both datasets from bi-disperse
particle diameters of 1 and 2 microns as a proxy for bi-disperse fluid viscosities. A) Distributions of power law exponent and B) fractional

diffusion coefficient. C) Standard deviations for the simulated data. D) Standard deviations for the experimental data. The data points that

have been assigned to the wrong cluster are indicated with an orange star. One statistically distinct outlier was also found (triangle).
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Fig. 13 Simulated and experimental (hyaluronic acid) heterogeneous viscoelastic data, where heterogeneity is controlled by use of
identical 1 micron particles in two different concentrations, 8 and 10 mg/ml, hyaluronic acid. A) Power law exponent and B) fractional

diffusion coefficient distributions. C) Standard deviations of simulated data. D) Standard deviations of experimental data. The data points that

have been assigned to the wrong cluster are indicated with an orange star. Two statistically distinct outliers were found (triangles).
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5.1.2 Viscoelastic Paths and Data Analysis

(a) Numerical. 175 particle paths were generated with α =
0.576 and DfBm = 9.30× 10−5μm2/sα . These values of

DfBm and α were chosen to match the inferred experimen-

tal values of DfBm and α for homogeneous HA path data.

See Table S5 for the resulting best fit values of α and DfBm

and their corresponding 95% confidence intervals.

(b) Experimental. Position time series were collected for

175 1-μm particles undergoing passive thermal diffusion

in a 10mg/ml HA solution. See Table S6 for the resulting

best fit values of α and DfBm and their corresponding 95%

confidence intervals.

The results for the experimental viscoelastic data (Fig-

ures 11A-B) indicate the presence of two clusters, even though

only one cluster was expected. Further inspection shows that

the second cluster in the experimental data (Exp. C2) contains

14 data points representing 18% of the particles. Figure 11D

shows the standard deviations sx, sy of the x and y components

of these paths. Whereas the protocol for preparation of the HA

solution is expected to yield a homogeneous mixture, the data

analysis reveals a likelihood of imperfect mixing and therefore

a mildly heterogeneous fluid.

5.2 Heterogeneous data: Numerical and Experimental

5.2.1 Newtonian Paths and Data Analysis

(a) Numerical. 90 particle paths were generated with α =
1 and DfBm = 8.05 × 10−3μm2/s and combined with

100 particles generated with α = 1 and DfBm = 1.61×
10−2μm2/s. These values of DfBm and α were chosen to

match the expected values for the heterogeneous experi-

mental sucrose data containing 1-μm and 2-μm diameter

beads. See Table S7 for the resulting best fit values

of α and DfBm and their corresponding 95% confidence

intervals.

(b) Experimental. Position time series were collected for 90

2-μm diameter particles in 2 molar sucrose solution and

combined with the 1-μm experimental data presented in

Section 5.1.1. See Table S8 for the resulting best fit values

of α and DfBm and their corresponding 95% confidence

intervals.

For both the simulated and experimental Newtonian data,

the correct number of clusters (2) was found. After the

experimental data were processed, by cross referencing the

cluster assignments with the file that the data came from,

we were able to determine that 7 out of the 190 data points

(Figure 12D) were assigned to the wrong cluster.

5.2.2 Viscoelastic Paths and Data Analysis

(a) Numerical. 180 particle paths were generated with

α = 0.64 and DfBm = 1.00×10−4μm2/sα and combined

with 180 particle paths generated with α = 0.72 and

DfBm = 4.20× 10−4μm2/sα . These values of DfBm and

α represent the best-fit values for the two experimental

data sets on HA just below, taken from Table S11. Table

S10 provides the resulting best fit values of α and DfBm

after clustering for these numerically generated paths, and

their corresponding 95% confidence intervals.

(b1) Experimental (HA solutions). The 175 1-μm diameter

particles in 10mg/ml HA solution presented in Sec-

tion 5.1.2 were combined with data for 188 1-μm par-

ticles undergoing passive thermal diffusion in a 8mg/ml

HA solution. Table S11 provides the resulting best fit

values of α and DfBm after clustering these experimental

paths, and their corresponding 95% confidence intervals.

The algorithm correctly resolved the number of clusters

in each data set. All paths were correctly classified in the

simulated data while 11 out of 363 experimental paths were

misclassified, including two outlier paths, Figure 13D. Com-

parison of the best-fit fBm parameters in this experimental-

numerical exercise with hyaluronic acid solutions reveals the

uncertainty associated with experimental noise or outliers, and

with choosing an ad hoc model to fit to the data.

We now apply our clustering algorithm to path data from

two putatively heterogeneous complex fluids with unknown

heterogeneity. To our knowledge, there is no guidance in the

literature for a quantitative heterogeneous characterization of

agarose solutions or HBE cell culture mucus.

(b2) Experimental (0.2% w/w agarose). Position time series

were collected for 38 1-μm particles undergoing passive

thermal diffusion in a 0.2% agarose solution. See Table

S12 for the resulting best fit values of α and DfBm and

their corresponding 95% confidence intervals.

The results from a 0.2% w/w agarose solution are shown

in Figure 14. It is clear from Figure 14A that the en-

semble of particles exhibit a range of diffusive behavior,

from relatively mobile to nearly immobile. These dis-

parities in diffusive behavior are resolved with our clus-

tering methods into four distinct clusters, Figure 14B.

The path data for each cluster is then fit to fractional

Brownian motion, with the results shown in Table S12

in Supplemental Material. The highest percentage of

paths belong to cluster one (18 paths) while clusters

two, three, and four have 7, 5, and 8 paths, respectively.

We note that cluster 4 has α ≈ 1 which indicates those

beads are moving in a Newtonian environment, and

DfBm ≈ 0.1μm2/s indicates that this environment has

1–18 | 15

Page 17 of 20 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0 50 100 150
0

50

100

150

X position [μm]

Y
 p

os
iti

on
 [μ

m
]

A

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

s
x
, [μm]

s y, [
μ

m
]

 

 

Cluster 1
Cluster 2
Cluster 3
Cluster 4

B

Fig. 14 Experimental Agarose data: position time series in
physical space and results of cluster analysis. 1μm diameter

beads diffusing in 0.2% w/w agarose. A) Particle paths in two space

dimensions of the microscope focal plane, with color coding inserted

after cluster analysis. B) Results from the clustering algorithm,

revealing four clusters. Cluster assignments are then carried back to

the physical locations in the focal plane in Figure 14A

.

an effective viscosity of 4.4 mPa s. Clusters 1-3 reflect

sub-diffusion with α < 1; in particular, cluster 1 has an

fBm exponent α = 0.1 indicating that these beads are

effectively immobilized.

(b3) Experimental (2.0% w/w HBE cell culture mucus). Po-

sition time series were collected for 282 0.5-μm particles

undergoing passive thermal diffusion in a 2.0% HBE

mucus. See Table S13 for the resulting best fit values

of α and DfBm and their corresponding 95% confidence

intervals. The resulting clusters are shown in Figure 15.

The protocol reveals three clusters. The resulting power

law exponents and pre-factors are given in Table S13 of

the Supplemental Material. These results reveal that all

probes exhibit sub-diffusive motion with the majority of

beads (215 in cluster 3) having α ≈ 0.6 and DfBm ≈ 2.4×
10−4μm2/s

0.6
. Clusters 2-3 have, respectively, 13 and

59 paths each.
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Fig. 15 Clustering of experimental HBE mucus data. 0.5 μm

diameter beads diffusing in 2% w/w HBE mucus.

6 Conclusions

A protocol for analysis of path data from passive particle

tracking microrheology, is presented that yields a quantitative

characterization of diffusive heterogeneity in complex fluids.

This protocol is based on methods adapted from the statistics

and machine learning literature. The first goal is to design

an algorithm to quantify the observed heterogeneity based on

the primitive path data, without reliance on a presumed model

of the underlying stochastic process, beyond the minimal

assumption that the increments of single paths are stationary

and Gaussian. The second goal is to have a technique that

yields unique, reproducible clustering of the given ensemble

of paths. Similar to other approaches discussed in Section 2,

our algorithm is applied to the position time series of passive

particles in simple or complex fluids. Specifically, we parti-

tion the paths into clusters whose step-size distributions are

statistically distinct, which may arise either due to differences

in particle characteristics or complex fluid characteristics, or

both. Using the standard deviation of the van Hove correlation

function as our metric of interest and two-pass hierarchical

clustering with the gap statistic to partition the data, our algo-

rithm yields a robust and consistent method for the detection

and quantification of heterogeneity in complex fluids. The

method to this point is weakly parametric, only relying on

the assumption that each path is stationary and the increments

are Gaussian. After the clustering step is complete, our

protocol fits the parameters of a proposed model on a per-

cluster basis, which we have illustrated for simple Brownian

motion and fractional Brownian motion, on both numerical

and experimental data.

To benchmark our algorithm, we created data sets contain-

ing known, discrete levels of heterogeneity. We analyzed

experimental data with “artificial” heterogeneity using two

methods. For analysis of heterogeneity in Newtonian fluids,

we embedded particles of two different diameters in a homo-
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geneous solution (Section 5.2.1). For analysis of heterogene-

ity in viscoelastic fluids, identical particles were embedded

in two hyaluronic acid solutions of different concentrations

and then the path data was combined into one dataset (Sec-

tion 5.2.2). For Newtonian fluids, doubling particle diameter

is a proxy for doubling viscosity, or equivalently halving the

diffusion coefficient. In addition to controlling the degree

of heterogeneity in the paths, combining dissimilar data sets

provides us with a way to test the accuracy of our particle-

cluster assignments. Finally, we applied our protocol to

monodisperse particles in two putative heterogeneous com-

plex fluids, an agarose gel and mucus derived from human

bronchial epithelial cell cultures. The data analysis reveals

that both fluids are heterogeneous, and indicates a quantitative

variability in sub-diffusive behavior that would have strong

implications for passage times through mucus barriers.

The accuracy of our method, the small necessary volume

of fluid, and the short collection times required to quantify

the heterogeneous composition of viscous and viscoelastic

samples, combine to make our methods promising for a wide

range of applications in PPTM.
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38 G. J. Schütz, H. Schindler and T. Schmidt, Biophys J, 1997, 73, 1073–

1080.

39 M. Weiss, H. Hashimoto and T. Nilsson, Biophys J, 2003, 84, 4043–4052.

40 M. Wachsmuth, W. Waldeck and J. Langowski, J Mol Biol, 2000, 298,

677–689.

41 P. Oelschlaeger, J Inorg Biochem, 2008, 102, 2043–2051.

42 L. Van Hove, Phys Rev, 1954, 95, 249–262.

43 A. Rahman, Phys Rev, 1964, 136, A405.

1–18 | 17

Page 19 of 20 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



44 T. Savin and P. S. Doyle, Phys Rev E, 2007, 76, 021501.

45 Y. Tseng, T. P. Kole and D. Wirtz, Biophys J, 2002, 83, 3162–3176.

46 J. Xu, V. Viasnoff and D. Wirtz, Rheol Acta, 1998, 37, 387–398.

47 S. Huet, E. Karatekin, V. S. Tran, I. Fanget, S. Cribier and J. P. Henry,

Biophys J, 2006, 91, 3542–3559.

48 N. Meilhac, L. Le Guyader, L. Salome and N. Destainville, Phys Rev E,

2006, 73, 011915.

49 F. Pinaud, X. Michalet, G. Iyer, E. Margeat, H. P. Moore and S. Weiss,

Traffic, 2009, 10, 691–712.

50 R. Simson, E. D. Sheets and K. Jacobson, Biophys J, 1995, 69, 989–93.

51 S. C. De Smedt, A. Lauwers, J. Demeester, Y. Engelborghs, G. De Mey

and M. Du, Macromolecules, 1994, 27, 141–146.

52 D. B. Hill and B. Button, Mucins, Springer, 2012, pp. 245–258.

53 J. MacQueen, Proceedings of the Fifth Berkeley symposium on mathemat-
ical statistics and probability, 1967, I, 281–297.

54 T. Velmurugan and T. Santhanam, J Comput Sci, 2010, 6, 363–368.

55 J. H. Ward Jr, J Am Statist Assoc, 1963, 58, 236–244.

56 S. C. Johnson, Psychometrika, 1967, 32, 241–254.

57 A. N. Kolmogorov, Dokl Acad Sci USSR, 1940, 26, 115–118.

58 B. B. Mandelbrot and J. W. van Ness, SIAM Rev, 1968, 10, 422–437.

59 D. Panja, J Stat Mech-Theory E, 2010, 2, L02001.

60 J. L. A. Dubbeldam, V. G. Rostiashvili, A. Milchev and T. A. Vilgis, Phys
Rev E, 2011, 83, 011802.

61 D. Ernst, M. Hellmann, J. Kohler and M. Weiss, Soft Matter, 2012, 8,

4886–4889.

62 M. W. Davis, Math Geol, 1987, 19, 91–98.

63 C. R. Dietrich and G. N. Newsam, SIAM J Sci Comput, 1997, 18, 1088–

1107.

64 T. Savin and P. S. Doyle, Biophys J, 2005, 88, 623–638.

18 | 1–18

Page 20 of 20Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t


