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Directed transport of active particles over asymmetric energy

barriers

N. Koumakis,a C. Maggi,b and R. Di Leonardob,a

We theoretically and numerically investigate the

transport of active colloids to target regions, de-

limited by asymmetric energy barriers. We show

that it is possible to introduce a generalized effec-

tive temperature that is related to the local vari-

ance of particle velocities. The stationary proba-

bility distributions can be derived from a simple

diffusion equation in the presence of an inhomo-

geneous effective temperature resulting from the

action of external force fields. In particular, tran-

sitions rates over asymmetric energy barriers can

be unbalanced by having different effective tem-

peratures over the two slopes of the barrier. By

varying the type of active noise, we find that equal

values of diffusivity and persistence time may pro-

duce strongly varied effective temperatures and

thus stationary distributions.

1 Introduction

Active particles are able to harness energy from the envi-
ronment to self propel along random walks1–3. Over long
timescales they diffuse like Brownian colloids having an
effective temperature that can be much higher than the
thermodynamic temperature of the environment2,4,5. In
simple situations, the same effective temperature associ-
ated with free diffusion, controls the stationary probability
distribution. For example, schematic models for swim-
ming bacteria predict a barometric density profile in weak
and uniform external fields6. Such Boltzmann-like distri-
butions have been experimentally observed in dilute sus-
pensions of chemically propelled colloids (Janus particles)
in gravitational fields7 or bacteria under centrifugation8.

On the contrary, when the persistence length of the tra-
jectories starts to be comparable with the characteristic
length scale of the external potential, strong deviations
from equilibrium are expected2,6,9 making questionable
the usefulness and physical meaning of an effective tem-
perature in active systems. This is particularly evident
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in the presence of rectification phenomena that cannot
be accounted for in an equilibrium framework with a sin-
gle effective temperature. Rectification phenomena in ac-
tive particles have been first observed in the presence of
asymmetric rigid boundaries like an array of funnel shaped
apertures6,10–12 or the sawtooth profile of microfabricated
cogs13–15. The possibility of generating currents by the
combination of broken spatial symmetry and time corre-
lations is a well established general effect in the field of
Brownian motors16,17. In the vast majority of theoretical
approaches the spatial symmetry is broken by an exter-
nal one dimensional potential. A very close situation has
been recently investigated experimentally in the context
of active particles18. In this last paper, swimming cells
have been used as tiny “cargo-carriers” capable of unidi-
rectional transport of colloidal particles across asymmetric
energy barriers created by laser-lithography.

Inspired by those recent results18, we examine the prob-
lem of transporting active colloids into specific areas de-
limited by asymmetric potential energy barriers. By nu-
merically integrating the dynamics of several different
kinds of active particles, we demonstrate that the accumu-
lation of the particles in the targeted regions is an effect
that can be generally achieved with active matter. We
theoretically show that the behaviour of all these systems
can be understood in terms of a non-homogeneous effective
temperature. In all models this local effective temperature
is related to the variance of the particle’s velocity that is
directly modified by the external force field. We find that,
in presence of an asymmetric energy barrier, the effective
temperature is considerably lower where the potential is
steeper thus determining an unbalance in the transition
rates that leads to an accumulation of active particles on
one side of the barrier.

2 Theory

We examine asymmetric barrier crossing of colloidal sized
active particles with over-damped dynamics. We consider
an ensemble of non-interacting particles that self-propel
with a stochastic velocity that fluctuates in time with zero
average and a finite persistence time over a 2D surface.
The potential barrier is asymmetric along the x dimen-
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sion and extends indefinitely along y. Since we focus on
non-equilibrium effects, we simplify our analysis by ne-
glecting Brownian fluctuations. While particles are able
to move over a two-dimensional planar surface, the trans-
lational invariance of the underlying potential along the y
axis allows us to consider their projected motion on the x
coordinate. Calling f(x) the external force field, a particle
with mobility µ will perform a random walk described by
the Langevin equation:

ẋ = µf(x) + ξ (1)

where the projected propelling velocity ξ is described
by a stationary stochastic process satisfying:

〈ξ(t)〉 = 0 〈ξ(t)ξ(0)〉 = 〈ξ2〉e−t/τ (2)

The assumed exponential form for the time correlation
function is not very restrictive and as we will see in the
following, it may be able to describe the dynamical prop-
erties of a wide class of active biological and synthetic
particles. In the absence of external fields (f(x) = 0) the
mean square displacement will have a diffusive behavior
at times larger than τ with a diffusivity D0 given by:

D0 = 〈ξ2〉 τ (3)

Generalizing the Stokes-Einstein relation we can define an
effective thermal energy kBT0 = D0/µ that can be inter-
preted as the average power dissipated by the propelling
forces in a correlation time τ .
We will assume that ξ is a Markov process governed by

the master equation19:

Π̇(ξ, t) = WΠ(ξ, t) (4)

where W is an operator acting on the variable ξ. The
joint probability distribution P (x, ξ, t) will then obey:

∂

∂t
P (x, ξ, t) = − ∂

∂x
[P (x, ξ, t)(µf(x) + ξ)] +WP (x, ξ, t)

(5)
The assumption of an exponential relaxation for ξ restricts
the possible choices for W to those that satisfy:

∫

ξWΠ(ξ, t)dξ = −τ−1

∫

ξΠ(ξ, t)dξ (6)

On the other hand there’s no restriction on the shape of
the stationary distribution Π0(ξ) that satisfies WΠ0(ξ) =
0. We will now discuss three classes of dynamics that gen-
erate a fluctuating velocity ξ with the required properties.

Generalized run and tumble. Run and tumble (RnT)
dynamics have been introduced to describe the motions
of E.coli bacteria6,20,21. The model consists of a random
walk that instantaneously alternates linear straight runs

of constant speed with Poisson distributed reorientation
events called tumbles. Here we generalize run and tum-
ble dynamics by extracting the speed modulus in each run
from a generic distribution Π0(ξ). The resulting expres-
sion for the operator W reads:

WGRT = −τ−1 + τ−1Π0(ξ)

∫

dξ (7)

with τ−1 corresponding directly to the tumbling rate. In
the following paper we differentiate between three run and
tumble models with different velocity distributions. For
motion in a single dimension, 1D RnT, uses a single speed
ξ0, that alternates between positive and negative values
with a Poissonian waiting time probability. The veloc-
ity distribution for this model is Π0(ξ) = [δ(ξ − ξ0) +
δ(ξ + ξ0)]/2. This is the simple one dimensional corre-
lated two-state noise that has been solved analytically in
many different contexts2,6,20–22. For two dimensions, 2D
RnT, again uses a single speed, but now tumbling occurs
in a random direction on the plane. Finally Gaussian Run
and Tumble (GRnT) on a 2D plane, at each tumble ad-
ditionally selects a velocity from a Gaussian distribution
seperately along the x and y axes. The implementation
of generalized run and tumble dynamics may allow for a
good approximation in the case of colloidal beads in a
dilute bacterial suspension, where the collisions with in-
dividual bacteria can transport the beads along approxi-
mately straight runs, albeit of different speeds.
Gaussian colored noise. With Gaussian Coloured Noise

(GCN) one usually refers to a velocity ξ that fluctuates as
an Ornstein-Uhlenbeck process22. This may be a good
representation of the velocity of a colloidal particle in
a dense bacterial bath, where multiple interactions with
swimmers tend to gradually change the direction and am-
plitude of a particle velocity, as long as the concentration
is not too high to give rise to collective phenomena. The
operator W for this case has the form:

WGCN = τ−1 ∂

∂ξ
ξ + τ−2D0

∂2

∂ξ2
(8)

Rotational diffusion. The last type of dynamics we con-
sider here, is that resulting from a velocity vector that
has a constant modulus ξ0 and whose orientation diffuses
freely. This type of dynamics is often encountered in the
case of self propelling Janus colloids23,24. The operator
W becomes:

WRD = τ−1 ∂

∂ξ

√

ξ20 − ξ2
∂

∂ξ

√

ξ20 − ξ2 (9)

The stationary joint distribution obeys the differential
equation:
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− ∂

∂x
[P (x, ξ)(µf(x) + ξ)] +WP (x, ξ) = 0 (10)

Integrating over ξ we obtain constant flux condition:

ρ(x)
[

µf(x) + ξ(x)
]

= J0 (11)

where we have introduced the particle density ρ(x):

ρ(x) =

∫

P (x, ξ)dξ (12)

and the marginal average over ξ:

[ · ] = 1

ρ(x)

∫

[ · ]P (x, ξ)dξ (13)

We assume the system is closed so that there’s no flux
at the boundaries and J0 = 0. By multiplying both sides
of eq. (10) by ξ and again integrating over ξ we get:

− ∂

∂x
[ρ(x)D(x)] + ρ(x)µf(x) = 0 (14)

where D(x) is a local effective diffusion coefficient :

D(x) =
[

ξ2(x)− ξ(x)2
]

τ (15)

and used that ξ(x) = −µf(x) as obtained from the zero
flux condition (11). Equation (14) holds for all types of
noise considered here and more in general for all types of
noise satisfying (6). This equation states that we can de-
fine a local effective thermal energy kBTeff(x) = D(x)/µ
that, as in the free particle case, can be still interpreted as
the average power dissipated in x by the propelling force
in a correlation time τ . More interestingly, the stationary
distribution for the active system is equivalent to that of
a Brownian system moving on the same potential energy
landscape with an imposed inhomogeneous temperature
pattern given by Teff(x). With the only exception of 1D
RnT, the effective diffusion coefficient D(x) is not known
without solving for the full joint probability P (x, ξ). How-
ever, as it will be discussed in the following, the picture
of an effective diffusion coefficient, depending on the lo-
cal variance of noise, provides interesting physical insights
in the problem and allows to formulate qualitative argu-
ments to account for the different performance of the var-
ious noise distributions.
Eq. (14) can be formally integrated to give:

ρ(x)

ρ(0)
=

D(0)

D(x)
exp

[
∫ x

0

µf(x′)

D(x′)
dx′

]

(16)

The above result was already obtained in the case of 1D
RnT dynamics22, where the effective diffusion coefficient

takes the simple form D(x) = [ξ20 − µ2f2(x)]τ , with ξ0
the run speed. Here we generalise it to a wide class of
exponentially correlated noises, including also projected
dynamics over 2D landscapes having a constant profile
along one axis. As for the case of 1D RnT, taking the
limit of vanishing persistence time (τ → 0), for fixed free
space diffusivity D0, we recover the Boltzmann limit with
a uniform effective temperature D0/µ.
We now move to the special case of external forces de-

rived from a potential that consists of two flat regions
separated by an energy barrier. In the Boltzmann limit
D(x) = D0 the integral appearing as the argument for the
exponential is just the work that the external field per-
forms on a particle that is transported from 0 to x. Since
the two points have the same energy this work is zero and
particles will be distributed with equal densities over both
sides of the barrier. In the more general case of a space
dependent diffusivity, the infinitesimal work appearing in
the integrand will be weighted by the local effective tem-
perature so that the integral becomes finite and we can
observe particles accumulating on one side.
Following reference18 we now focus on the special case

of an energy landscape composed of two flat regions that
extend for a length S in the x direction and to infinity
along y separated by an energy barrier having an asym-
metric triangular profile along the x direction. Calling ∆
the energetic height of the barrier, A and B the x pro-
jections of the two slopes, the resulting force field will be
piece-wise constant as shown in fig. 1. In the simple case
of 1D RnT dynamics the effective diffusion coefficient de-
pends only on the local value of the force and will therefore
be piece-wise constant with values:

DB

τ
= ξ20 − µ2∆2

B2
<

DA

τ
= ξ20 − µ2∆2

A2
<

D0

τ
= ξ20 (17)

Equation (16) will be valid within each piece-wise region
while by integrating (14) over a discontinuity at x we get
the matching condition ρ(x+) = ρ(x−)D(x−)/D(x+). The
final ratio between the probability density on the left side
of the barrier over the one on the right will be:

ρL
ρR

= exp

[

∆

DA/µ
− ∆

DB/µ

]

(18)

In the limit of τ → 0 and satisfying ξ20 > µ2∆2/A2 >
µ2∆2/B2, we have DA = DB the two terms in square
brackets are identical and the probability is equal. On the
other hand, for finite τ , if A < B ⇒ DA < DB and we
end up with an accumulation of particle on the side facing
the larger slope in the energy barrier. We may interpret
this result as if the slopes of the barrier are thermalised at
two different effective temperatures. Higher slopes have a
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Fig. 3: a) Particle probability densities (black solid line). b)
Space dependent effective diffusivity as defined in Eq. 15. Ver-
tical red lines correspond to the discontinuity in the applied
force field. Dashed line in a) represents the density predicted
by Eq. 16 using data in b). Parameters are D0 = 5.5µm2 s−1

and τ = 0.05s.

by a strong unbalance between effective diffusivities (or
equivalently temperatures) along the two slopes. It is also
quite remarkable that models having the same P0(ξ) be-
have very similarly even when the dynamics that govern
the time evolution of the noise ξ are very different. Quali-
tatevly we may account for this fact in the following way.
The effective diffusivity in eq. (15) contains two contribu-
tions: the first one is given by ξ2 and reflects modifications
in the local noise distribution produced by the external
field; the second one is given by −ξ(x)2 = −µ2f(x)2 and
is a property of the force field alone, lowering the effec-
tive diffusivity over the larger slopes. This last term is the
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Fig. 4: Accumulation efficiency α as a function of root mean
squared propelling speed for a) τ = 0.05s, b) τ = 0.25s and c)
τ = 2.5s. Experimental data from previous work18 are shown
as crosses in a). Analytical 1D RnT results are shown with a

green line. Vertical black lines represent vB (solid) vB/
√

(2)
(dashed).

only one that depends on x in the simple 1D RnT model.
This results in particle accumulation due to the marked
reduction of effective diffusivity on the larger slope. Previ-
ous work has shown that rectification of 1D RnT particles
can also be obtained when assuming a biased tumbling
rate25. This approach, however, is more appropriate for
reproducing the experimentally observed effects of 2D ge-
ometric constraints rather than motion over asymmetric
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Fig. 5: Contour plots of the accumulation efficiency α for
various types of noises as a function of τ and D0 for a) 2D
RnT, b) RD, c) GRnT and d) GCN. White regions indicate
parameters for which particles cannot cross the energy barrier
in either direction.

energy barriers.

The scenario is complicated in other models by the non-
trivial x dependence of the first term. In particular, when
the persistence length is comparable to the spatial extent
of a slope, the local noise distribution will deviate from
the unperturbed function P0(ξ), since only a portion of
the velocities are initially allowed access on a slope, while
additionally may decorrelate during crossing. For exam-
ple, the higher slope on the right side will act as a filter on
the noise distribution, depleting the probability of finding
particles with speed ξ < vB . When the unperturbed noise
distribution is peaked at the edges of the noise domain
the second moment ξ2 will be dominated by the position
of those peaks and thus only weakly affected by the pres-
ence of the slope. In this case the effective diffusivity will
be dominated by the negative −µ2f(x)2 term, and hence
reduced on the high slopes similarly to 1D RnT. The situ-
ation is different for Gaussian type distributions that are
peaked at zero and for which the presence of the slope may
produce strong enhancements of ξ2 that can counterbal-
ance the effects of the second term. As a result we can
argue that for experiments of particles moving over asym-
metric structures18, a stronger accumulation effect would
be observed when using Janus type colloidal particles, in-
stead of particles interacting with bacteria at equivalent
D0 and τ . Using numerical simulations we have estab-
lished that, once the local noise variance is known, the

stationary probability distribution obtained from eq. (16)
falls exactly on top of the histograms obtained by direct
integration of the equations of motion.
As seen in fig. 3 all models realize the non-equilibrium

scenario in which particles have a larger probability on
one side of the barrier. In order to quantitatively com-
pare these results we introduce the efficiency factor α to
describe the probability to find particles on the right hand
side of the barrier in comparison to the left:

α =
ρR

(ρL + ρR)
(19)

where ρL and ρR are the plateau values of the probability
density function at the left and the right extrema of the
simulation box respectively. The α factor, for all the noises
previously defined, is shown in figure 4 for varying root
mean squared propelling speeds, V =

√

D0/τ , at three
fixed values of the persistence time τ = 0.05, 0.25 and 2.5s.
For all models, when V is much larger than the applied
drift speeds, the particles are basically unperturbed by the
potential. Like in the τ → 0 case, the effective diffusivity
is again uniform and equal to D0 leading to α = 0.5. Upon
lowering the diffusivity an accumulation effect (α > 0.5) is
observed for all models although with a much faster rate
for the active noises characterized by a constant speed (1D
RnT, 2D RnT and RD). A sharp transition to α = 1 must
occur for 1D RnT when the propelling speed V falls be-
low the speed imposed by the larger slope vB and particles
start to get trapped on the right side. A similar transi-
tion is observed for 2D RnT and RD but at the lower value
V = vB/

√
2 corresponding to the maximum particle speed

falling below the larger slope. On the contrary, no such
sharp transition is observed for the Gaussian distributed
noises, GRnT and GCN, since particles always have a fi-
nite probability overcome the barrier, due to their velocity
probability distribution that, although rapidly vanishing,
is always non-zero at large speeds. As an overview of the
various noises, in figure 5 we show contour plots of the
probability factor α, as a function of τ and D0. Again we
find that the largest differences occur between noises with
different speed distributions. We also find that the RnT
and the RD models are characterized by high accumula-
tion efficiency (α ≃ 1) in a wider region of the parameter
space with respect to the GRnT and GCN models.
Although the parameters describing the energy barrier

have been chosen according to the estimated physical val-
ues in the experiment, our description of active dynamics
is probably an oversimplification of the actual experiment,
which is, moreover, a fully three-dimensional problem. It
is however interesting to compare simulation results to the
two values of α that have been measured at the two diffu-
sivities D0 = 0.45 and 1.0µm2 s−1 corresponding to two
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different bacterial concentrations18. Fig. 4 shows that we
find an effect of comparable amplitude to GRnT in a cor-
responding parameter range and that a similar reduction
of efficiency with diffusivity is observed in experiments.

4 Conclusions

We examined the problem of asymmetric barrier crossing
for particles under the influence of time correlated noise.
With simulations, we studied the steady state probabil-
ity functions using noise dynamics that may describe a
wide class of biological and synthetic active particle sys-
tems. We found that the stationary probability densi-
ties show an accumulation of particles on the side of the
barrier facing the higher slope. We show that, for ex-
ponentially correlated noise, this effect is tied to a local
temperature. This effective temperature is proportional
to the variance of particle velocities that is spatially mod-
ulated by the external forces. Each noise type produced
a specific particle distribution, even for equal diffusivities
and correlation times. The differences between noises be-
come more evident at shorter correlation times, however
we found that the unperturbed noise distribution was the
main factor determining the efficiency of accumulation. It
would be interesting to extend this work to include in-
teractions, possibly by considering continuum theoretical
approaches21,26.
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We investigate the transport of multiple types of active colloids to target regions and find that transition rates over
asymmetric energy barriers can be unbalanced by the variation of a local effective temperature over the barrier sides.
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