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The combination of two drop makers such as flow focusing geometries or ⊤ junctions is commonly used in microfluidics to
fabricate monodisperse double emulsions and novel fluid-based materials. Here we investigate the physics of the encapsulation
of small droplets inside large drops that is at the core of such processes. The number of droplets per drop studied over time
for large sequences of consecutive drops reveals that the dynamics of these systems are complex: we find a succession of well-
defined elementary patterns and defects. We present a simple model based on a discrete approach that predicts the nature of these
patterns and their non-trivial scheme of arrangement in a sequence as a function of the ratio of the two timescales of the problem,
the production times of droplets and drops. Experiments validate our model as they concur very well with predictions.

1 Introduction

Double emulsions, that is, metastable liquid dispersions made
of small droplets encapsulated inside large drops,1 are used
in a variety of industrial applications, e.g. they serve as cap-
sules for drugs2 or nutrients3 and microreactors for chemi-
cal reactions.4 In the food industry, applications include their
use for the controlled release of flavor or aroma,5 the produc-
tion of low-fat food products,6 and the protection of sensitive
food agents.7 In material science, they are useful templates
to fabricate materials as diverse as monodisperse vesicles,8

polymersomes,9 liquid crystal shells,10 microcapsules,11 and
Janus particles.12 Double emulsions are also promising can-
didates in biology for cellular reconstitution.13 For instance,
alginate microcapsules can be employed as three-dimensional
cellular assays to study the mechanics of tumor progression
in vitro.14 All these applications require an accurate control
of the sizes and internal structure (number of encapsulated
droplets) as these features monitor the transport kinetics and
loading levels of encapsulated species as well as the stabil-
ity15 and rheology16 of double emulsions. In contrast to top-
down emulsification methods1 for which large quantities of
fluids are handled at one time, microfluidic technologies allow
one to manipulate fluid elements one by one so that periodic
trains of highly monodisperse dispersions can be produced17
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movie to illustrate the presence of defects in the internal structure of double
emulsions and a single-page document to provide the derivation some of the
properties of sequences of drops and patterns. See DOI: 10.1039/b000000x/
a IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042
Rennes, France. Fax: 33 2 23 23 67 17; Tel: 33 2 23 23 30 27
‡ E-mail: laurent.courbin@univ-rennes1.fr
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and employed to create double emulsions. This bottom-up ap-
proach offers unprecedented ways to create double, triple, and
even higher-order emulsions with a control over the sizes and
number of encapsulated droplets that is expected to be unpar-
alleled.18–22 In particular, the use of regularly-spaced trains
of droplets helps in making the probability distributions of
the encapsulated number of droplets per drop narrower than
those obtained with other methods limited to random loading
characterized by Poisson statistics.23–25 Finding strategies to
control encapsulation processes25 is particularly important in
biology for which applications often require to encapsulate a
single cell per drop, random loading techniques yielding in
this case more empty and unusable drops than loaded ones.
Yet, an understanding of the nature of the defects in the inter-
nal structure of double emulsions generated with microfluidics
has remained elusive.

Here we introduce a discrete model for the description of
the two-step formation of double emulsions in microfluidics.
Studying the number of encapsulated droplets per drop over
large sequences of consecutive drops, we uncover complex dy-
namics characterized by a succession of well-defined elemen-
tary patterns separated by defects that are intrinsic to these sys-
tems. Our model predicts the nature of the patterns and defects
as well as their occurrence in a sequence of drops as a func-
tion of the ratio of production periods of droplets and drops.
We provide experimental results which are well-described by
these predictions. Interestingly, this out-of-equilibrium prob-
lem that results from the competition between two timescales
is analog to commensurate-incommensurate transitions ob-
served in host-guest systems built up from two interpenetrat-
ing lattices.26
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Fig. 1 (a) Schematic of the modeled two-step formation of
B-in-A-in-B double emulsions defining the variables at play. (b)
Outcomes of the model for a typical sequence of drops.

The first step of the standard dripping technique employed
to produce double emulsions consists in generating a periodic
train of monodisperse droplets (production period τ ) with a
droplet maker such as a ⊤ junction27 or a flow focusing geom-
etry.17 The train is then directed toward a second drop maker
producing periodically large monodisperse drops (production
period T) [see Fig. 1(a)]. Each of these drops may encapsulate
droplets which creates a double emulsion over time. We use
a discrete approach to model the encapsulation dynamics over
sequences of consecutive drops. The time of the pinch-off of
the n-th drop from the nozzle is Tn=nT and we define the
time τ−t1 elapsed between the arrival at the tip of the noz-
zle of the first droplet and the creation of the first drop [see
Fig. 1(a)]; t1<T so that the first drop encapsulates at least one
droplet. Building on the description of droplet traffic in mi-
crofluidic networks,28 we neglect the physical volume of the
drops. We investigate the case T>τ so that all drops con-
tain at least one droplet. Then, one straightforwardly derives
the following set of two recursive equations that fully describe
the encapsulation dynamics as they predict Nn the number of

droplets contained in the n-th drop of a sequence:

Nn = floor (T/τ − 1 +Xn) + 1, (1a)
Xn+1 = Xn +T/τ −Nn, (1b)

where Xn=tn/τ . Xn corresponds to the time in τ units
elapsed between the arrival at the tip of the nozzle of the last
droplet encapsulated in the (n-1)-th drop and the time Tn−1.
Using eqn (1), we predict generic and important properties of
the two-step formation of double emulsions (Fig. 1(b) defines
the outcomes of the model for a typical sequence [Nn]):
(A1) Variations in the number of encapsulated droplets per

drop do not exceed one unity as Nn can take only two values:
Nmax=ceil

(
N
)

or Nmin=floor
(
N
)
.

(A2) N=T
τ is the mean number of droplets per drop. In-

deed, N= lim
n→∞

1
n

∑n
k=1 Nk and one can easily show that∑n

k=1 Nkτ=nT+τ(X1−Xn+1).
(A3)

∣∣T
τ − round

(
T
τ

)∣∣=F(N−) is the fraction of defects,
i.e. the drops denoted N− containing the less repeated num-
ber of droplets in a sequence. Conversely, N+=round(N)
denotes the variable Nmin or Nmax appearing the more often
in a sequence [see Fig. 1(b)]. This property is a direct conse-
quence of items (A1)–(A2).

In general, τ is not a multiple of T so that fluctuations of the
number of droplets are bound to occur in a sequence of drops.
Considering this general case, we next focus on the proper-
ties of defects, discussing their occurrence and the distances
between two defects:
(A4) Defects are isolated events that dot not appear con-

secutively in a sequence of drops. Assuming that Nn=N−,
we demonstrate below that Nn+1=N+. We begin by defin-
ing −1

2<ε=N − N+< 1
2 and we consider the case ε>0, i.e.

N+=Nmin and N−=Nmax. Using eqn (1), one can show
that 1 − ε ≤ Xn and Xn+1=Xn − 1 + ε. Using these two
results, one finds Nn+1=floor(N+ + 2(ε− 1) +Xn) + 1 and
consequently Nn+1=N+ since 2(ε − 1) +Xn < 0; note that
a similar demonstration can be derived when ε<0. This result
implies that the sequence [Nn] consists of a succession of one
or several consecutive N+ separated by isolated N−.

We next process the signal [Nn] into a series of patterns
[Pi], a pattern being the distance between two defects, i.e. the
number of N+ between two consecutive N− [see Fig.1(b)].
As shown below, such an analysis of the response helps to
determine the conditions for the emergence of periodicity
in the occurrence of defects. Ncyc and Npat being respec-
tively the number of drops and patterns per cycle, the num-
ber of N− per cycle corresponds to Npat [see (A4)] so that
F(N−)=

Npat

Ncyc
. Using (A1)–(A3), it is straightforward to

show that N=N++
Npat

Ncyc
(N−−N+) for any ε. Since Ncyc

and Npat are natural numbers, N=T
τ being a rational number

is a necessary condition for periodicity so that:
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(A5) The system necessarily exhibits aperiodicity whenever
τ and T are incommensurate.

As demonstrated below, the necessary condition turns out
to be a sufficient one, hence:

(A6) When τ and T are commensurate, the dynamics of the
system are periodic.

For the sake of simplicity, we next provide a demonstration
of sufficiency in the case N+=Nmin and N−=Nmax (ε>0).
We begin by indexing a sequence with N1=N− and we de-
fine ki, the index of the (i+1)-th N− found in [Nn]. Using
eqn (1), we show that Xk=X1+(k−1)ε−1 when 1<k<k1 as
X2=X1+ ε− 1 and Nk=N+. Since Nk1=N−, using eqn (1b)
and the relationship established above one finds k1=ceil( 1ε ) +
1. With a similar approach and a recursive method, one then
obtains ki=ceil( iε ) + 1 and Xki=X1 + (ki − 1)ε − (i − 1).
When τ and T are commensurate, we can express ε as the ir-
reducible fraction p

q , p and q being two integers. Using this
expression of ε and the two relationships derived previously,
one easily shows that the dynamics of the system are periodic
since kp=q and Xkp=X1. Consequently, q and p respectively
are Ncyc and Npat.

Similarly to the predicted features of the sequences [Nn],
our model predicts four properties for the sequences of pat-
terns [Pi] (we provide their derivations in the ESI†):

(A7) Variations in the number of drops per pattern do
not exceed one unity since Pi can take only two values:
Pmin=floor

(
1
|ε|

)
− 1 and Pmax=ceil

(
1
|ε|

)
− 1.

(A8) P= 1
|ε| − 1 is the mean number of drops per pattern.

(A9)
∣∣∣ 1
|ε| − round

(
1
|ε|

)∣∣∣=F(P−) is the fraction of the

pattern defects, i.e. the patterns denoted P− containing the
less repeated number of N+ in a sequence of patterns. Con-
versely, P+=round(P ).

(A10) Defects are not consecutive in a sequence of patterns.
The predicted features do not depend on initial conditions,

i.e. the time t1, but are fully described by the value of T
τ .

This important property will allow us to validate our model
by comparing predictions with experiments for which initial
conditions cannot be controlled.

3 Experiments

We use two coaxial drop makers to fabricate oil-in-water-in-
oil double emulsions with a two-step formation (see Fig. 2).29

First, using two syringe pumps, an oil 1 (DC 200, Fluka) and
an aqueous phase (a mixture of 90 wt.% glycerol and dis-
tilled water) are respectively injected through a needle cen-
tered in a cylindrical tube and inside this tube. Periodic trains
of monodisperse oil droplets flowing at a constant velocity are
then created. Variations of q1 and q2, the respective flow rates
of oil 1 and aqueous phases, allow for the control of the droplet

production period τ and droplet volume Ωin=q1τ .

T

¿

(b)

dilution

formation

q
q

q3

q4

2mm

(a)

1

2

flow

oil 1

oil 2

aqueous phase

Ωout

Ωin

Fig. 2 (Color online) (a) Schematic of the set-up used to create
double emulsions defining experimental parameters. (b) Photograph
showing that the number of droplets per drop is not constant over
time. The parameters are q1=0.01 mL min−1, q2=0.1 mL min−1,
q3=−0.02 mL min−1 (the minus sign indicates that the aqueous
phase is withdrawn), q4=0.38 mL min−1, τ=3.6 s, and T=9.03 s.

We use a dilution module30 to either dilute or concentrate
the train with an additional injection or withdrawal of the
aqueous phase at a constant flow rate q3 (Fig. 2). The train
is then directed towards the second drop maker where, inject-
ing a sunflower oil 2 (Lidl, France) through the maker’s tube
at a constant flow rate q4, monodisperse aqueous drops (vol-
ume Ωout) are periodically created with a production period
T. When these drops form, they may encapsulate one or sev-
eral oil droplets which create a double emulsion (see Fig. 2(b)
and Movie S1 in the ESI†). Images of the flow are recorded
with a camera (EO-1312C, Edmund Optics) and processed to
determine Ωin, Ωout, τ , T, and Nn over large sequences of
consecutive drops. For each set of experiments, q1 and q2 are
set to obtain a desired value of τ and Ωin. We then adjust T
by either varying q3 or q4 while maintaining τ , thus Ωin, un-
changed. For each experiment, a sequence [Nn] consists of
100 consecutive drops that are analyzed

Figure 3 shows the evolution with Nn of the probability
distribution of the number of encapsulated droplets P(Nn)
for different values of T/τ and a given droplet volume Ωin.
As predicted in (A1), experiments show that Nn never varies
by more than one unity in a sequence of drops for any ratio
T/τ (see Fig. 3). Additionally, when we compare the mea-
sured P(Nn) in our case of regularly-spaced trains of droplets
with the probability distribution that would be expected for a
random loading process, i.e. N

Nn
e−N/Nn!, we find that the

former is much narrower than the latter (Fig. 3). Microflu-
idics indeed offers unique possibilities for droplet ordering
that allows one to controllably load discrete fluid elements
(e.g. droplets, cells or particles) into drops and to overcome
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Fig. 3 Experimental probability distributions (grey rectangles)
P(Nn) of the number of droplets per drop measured for
Ωin=530 nL and four values of T/τ as shown in the figure. The
expected probability distributions (black rectangles)
P(Nn) = N

Nn
e−N/Nn! for a random loading process described

by Poisson statistics are provided for comparison.

the limitations introduced by Poisson statistics on the load-
ing distributions.23–25 Performing systematic experiments as
a function of T/τ for different droplet volumes Ωin, we find
that the measurements of Nmin, Nmax, N, and F(N−) mir-
ror the predictions (A1)–(A3) (see Fig. 4).

To compare more quantitatively random loading processes
and our experiments using regularly-spaced trains of droplets,
we report in Fig. 5 the standard deviation σ of N for both
flow configurations. In our case, using the predicted proper-
ties of the sequences [Nn] it is straightforward to show that
σ=

√
|ε| (1− |ε|). As shown in Fig. 5, this predicted stan-

dard deviation which concurs well with experimental findings
is a periodic function of T/τ that is equal to 0 when N ∈ N
and is always smaller than 0.5. Hence, the standard deviation
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Fig. 4 Experimental variations of Nmin, Nmax, N, and F(N−)
with T

τ
. The six shapes stand for different values of

Ωin=224–565 nL. The continuous lines are predictions that are
calculated using the expressions given in items (A1)–(A3).

of N for ordered droplets is always smaller than the standard
deviation (

√
N) that would be obtained in the case of purely

random loading (see Fig. 5).
We now compare experimental results with the predicted

dynamical properties of the sequences. The predicted period
of the system is a non-analytic function of T/τ . Consequently,
validating predictions (A5)–(A6) is not feasible as it would
require to carry out experiments with an infinite number of
drops. Nevertheless, we successfully compare below experi-
ments and the predicted properties (A4) and (A7)–(A10). As
stated in item (A4), two consecutive N− never appear in ex-
perimental sequences [Nn] and we then process this signal
into series of patterns [Pi]. Figure 6 shows that the variations
of Pmin, Pmax, and F(P−) with T/τ concur very well with
the predictions (A7)–(A9). Additionally, experiments show
that two P− are never observed consecutively in a series [Pi]
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Fig. 5 Variations the standard deviation σ of N with T
τ

: the
experimental data points whose shapes are identical to those of
Fig. 4 are described by σ=

√
|ε| (1− |ε|) (grey line). The standard

deviation in our experiment is compared with that of random
loading governed by Poisson statistics, that is, σ=

√
N (black line).

as predicted [see (A10)]. The evolution of F(P−) with T/τ
in Fig. 6(a) indicates the non-trivial and complex nature of the
response; for better readability, we also provide its variations
with 1/|ε| in Fig. 6(b).

4 Conclusions

Introducing a discrete model to describe the two-step forma-
tion of double emulsions in microfluidics using periodic trains
of droplets, we observe a complex droplet-in-drop encapsula-
tion dynamics characterized by sequences of patterns and de-
fects that are functions of the ratio of the production periods
of drops and droplets. Despite its simplicity, our model which
neglects the physical volumes of the dispersed fluid elements
captures remarkably well both structural and dynamical fea-
tures of our experiments carried out at constant flow rates for
different volumes of droplets.

Our results provide a rationale for the structural defects
that are intrinsic to double emulsions produced with microflu-
idics. The predicted generic properties of the sequences of
patterns and defects in these fluid systems should offer ro-
bust ways to engineer double emulsions with the standard
two-step microfluidic method. The discrete approach used
in this work can be easily extended to describe the multi-
step formation of more complex fluid systems such as higher-
order multiple emulsions and double emulsions having multi-
ple compartments.31 In addition, it is worthwhile mentioning
that for experiments performed at constant pressures, hydro-
dynamic feedbacks should come into play and result in cou-
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Fig. 6 (a) Variations of Pmin, Pmax, and F(P−) with T
τ

. (b)
Evolution of F(P−) with 1/|ε|. The lines are predictions of the
model. The shapes of the experimental data points are identical to
those of Fig. 4.

plings between the production periods; it is likely that such
a situation would require a more complicated theoretical de-
scription. Finally, the similarities between this problem and
commensurate-incommensurate transitions observed in one-
dimensional (1D) systems also illustrate 1D microfluidic ar-
rays of double emulsions as simple mimetic systems of 1D
modulated host-guest structures.26
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