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We investigate, using simultaneous rheology and confocal microscopy, the time-dependent stress response and transient single-

particle dynamics following a step change in shear rate in binary colloidal glasses with large dynamical asymmetry and different

mixing ratios. The transition from solid-like response to flow is characterised by a stress overshoot, whose magnitude is linked

to transient superdiffusive dynamics as well as cage compression effects. These and the yield strain at which the overshoot

occurs vary with the mixing ratio, and hence the prevailing caging mechanism. The yielding and stress storage are dominated by

dynamics on different time and length scales, the short-time in-cage dynamics and the long-time structural relaxation respectively.

These time scales and their relation to the characteristic time associated with the applied shear, namely the inverse shear rate,

result in two different and distinct regimes of the shear rate dependencies of the yield strain and the magnitude of the stress

overshoot.

1 Introduction

A wide range of technical applications is based on glassy

materials, including polymeric1, metallic2 and colloidal sys-

tems.3 One-component dispersions of hard-sphere like col-

loids have been intensively used as model systems to study

the glass transition.3 In this system, the volume fraction φ
is the only control parameter. The glass state is driven by

crowding: for φ > 0.58 particles are permanently localised in

cages formed by their neighbours, which they can only escape

through activated processes.4 Colloidal glasses melt and flow

under application of shear.5–13 Shear-induced melting is asso-

ciated with an irreversible deformation of the cage9,13 and the

onset of diffusive dynamics.8 It occurs via a transient regime

in which the system yields. At yielding a stress overshoot

is observed in the rheological response and reflects maximal

cage distortion in the structure and a transient super-diffusive

regime in the dynamics.9,13–15

Many glassy materials used in applications are not one-

component systems, but composed of particles with differ-

ent sizes. This raises the question whether, and if so how,

the shear-induced melting process, in particular the transient

macroscopic rheology and the microscopic structure and dy-
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namics, is affected by the presence of multiple components.

The simplest multi-component model system is a binary mix-

ture of colloidal hard spheres. The phase behavior of binary

colloidal hard spheres has been studied in experiments,16–20

simulations21–23 and theory.23–29 It depends on several pa-

rameters, namely the total volume fraction, the size ratio and

the mixing ratio of the two components. Theory predicts

that at small to moderate size disparities the glass transition

shifts to larger total volume fractions, similar to the effect

of polydispersity.24,30–32 This implies that for constant total

volume fraction, glass melting can be induced by mixing.

This is reflected in the acceleration of the dynamics measured

by light scattering16 as well as the strong reduction of the

viscosity observed by rheology.33 At large enough size dis-

parities multiple glass states are expected.30 They differ by

the mechanism driving the arrest of the large spheres, either

caging or depletion-induced bonding, and the dynamics of the

small spheres, either dynamical arrest or mobility.25,30 Some

of these states have been observed experimentally17–19 and in

molecular dynamics simulations.21

The yielding behaviour of binary glasses under oscillatory

shear was recently studied for size ratios δ = Rs/RL = 0.38

and 0.2,20 with Rs and RL the radii of the small and large

spheres respectively. At constant total volume fraction φ , a

decrease of the yield strain and stress is observed at intermedi-

ate mixing ratios, and is particularly pronounced for the larger

size disparity. This effect has been associated with the vari-

ation in the free volume due to changes in the volume frac-

tion of random close packing, which also becomes more pro-
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nounced at larger size disparities.

Here, we extend this study to explore the response after

switch-on of a constant shear rate. In particular the link be-

tween the macroscopic non-linear rheology and the transient

single-particle dynamics is investigated using confocal mi-

croscopy. A stress overshoot and super-diffusive transient dy-

namics is found to characterise yielding, similar to the be-

haviour of one-component systems.9,13–15 However, in binary

mixtures the yield strain and magnitude of the overshoot de-

pend in a complex and different way on the shear rate and

show a dependence on the composition of the mixture. The

composition determines the caging mechanism, localization

length as well as the short and long-time dynamics, including

the degree of super-diffusion.

The manuscript is structured as follows. Section 2 describes

the experimental systems and methods, namely simultaneous

rheology and confocal microscopy, as well as the simulations.

In section 3 we first present the equilibrium structure and dy-

namics of the large particles in the mixtures and a resume of

the linear viscoelastic properties of the binary mixtures. Then

we discuss the results of the non-linear rheology and the dy-

namics under shear before offering some conclusions in sec-

tion 4.

2 Methods

2.1 Rheology

Rheological measurements are performed using an ARES G2

strain controlled rheometer (TA instruments) with a cone-

plate geometry (diameter 20 mm, cone angle 2◦, truncation

gap 0.054 mm). A solvent trap minimizes solvent evapora-

tion. Rheological measurements on colloidal glasses can be

affected by loading effects, shear history and aging. There-

fore, before each test a renjuvenation procedure is performed

in order to obtain a reproducible initial state. First, after load-

ing we perform a dynamic strain sweep to estimate the yield

strain γyield of the system. Oscillatory shear at strain amplitude

γ = 300% ≫ γyield is applied to induce flow and maintained

until the viscoelastic storage, G′, and loss, G′′, moduli reach a

stationary state, typically after 200 s. Afterwards, oscillatory

shear in the linear viscoelastic regime (0.05% < γ < 0.1%,

depending on sample) is applied until G′ and G′′ become sta-

tionary, typically for times 200 s < t < 700 s, depending on

the sample. The state characterised by the stationary values of

G′ and G′′ thus represents the initial reproducible state. The

absence of wall slip is verified by comparison with measure-

ments obtained with roughened geometries (data not shown).

2.2 Confocal microscopy under shear

Confocal microscopy measurements under shear are per-

formed with a confocal rheoscope, which is a combination of

an MCR301 WSP rheometer (Anton Paar) and a fast-scanning

VT-Eye confocal scanner (Visitech), mounted on a Nikon Ti-

U inverted microscope with a Nikon Plan Apo 60× objective

(NA = 1.40). Details of the setup can be found in previous

work.34 We use a cone-plate geometry with diameter 50 mm,

cone angle 1◦ and truncation gap 0.10 mm. To minimise wall-

slip the cone is sandblasted, while the bottom plate, consisting

of a thin glass plate, is coated with PMMA particles of size

0.885 µm and 0.174 µm.35 A solvent trap is used to reduce

solvent evaporation. Images of the samples (512×512 pixels

corresponding to 51 µm ×51 µm) are acquired at a depth of

30 µm from the bottom plate and at a distance of about 6 mm

from the center. Time series of 2D images are taken at a rate of

31 or 67 frames per second, depending on the sample. Parti-

cle coordinates and trajectories are extracted from the pictures

using previously-explained routines.36

2.3 Samples

We use suspensions of polymethylmethacrylate (PMMA) col-

loids, sterically stabilized with polyhydroxystearic acid (PHS)

and dispersed in a solvent mixture of cis-decalin and cyclo-

heptyl bromide (CHB). The solvent mixture matches the den-

sity and almost the refractive index of the particles. The

charge that the particles acquire in the CHB/decalin solvent

is screened by adding 4 mM tetrabutylammoniumchloride

(TBAC).37 Under these conditions the interactions in the sys-

tem are hard-sphere-like.38 For the most sensitive rheological

measurements we use particles with radii Rrheo
L = 0.304 µm

and Rrheo
s = 0.063 µm, and polydispersities of approximately

10% and 15%, respectively. The size ratio of the mixture is

δ rheo = 0.207. The high energy density of these small par-

ticles leads to a strong rheological signal. The sample set

corresponding to these particles is referred to as RH in the

following. For measurements on the confocal rheoscope, a

mixture of PMMA particles with radii Rmic
L = 0.885 µm (6%

polydispersity) and Rmic
s = 0.174 µm (15% polydispersity) is

prepared resulting in δ mic = 0.197. The large spheres with ra-

dius Rmic
L are fluorescently labelled with nitrobenzoxadiazole

(NBD) and can be observed with the confocal microscope us-

ing a solid state laser with wavelength λ = 488 nm. This

sample set is referred to as CO in the following. The par-

ticle radii and polydispersities are determined by static and

dynamic light scattering with an uncertainty in the radius of

about 2 %.

The volume fraction of the sediment of the large spheres is

determined by imaging the sample by confocal microscopy

and using the Voronoi construction to estimate the mean

Voronoi volume per particle. The procedure of determining
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the volume fraction is described in detail in20 and leads to

the estimate φ RCP
L ≈ 0.68. A one-component sample with

φ = 0.61 is prepared by diluting the sediment. This sample

is used as a reference. The volume fractions of the sam-

ples containing the small particles are adjusted in order to

obtain comparable linear viscoelastic moduli in units of the

energy density 3kBT/4πR3, where kB is the Boltzmann con-

stant, T the temperature and R the particles’ radius, while

multiplying the frequency by the free-diffusion Brownian time

τ0 = 6πηR3/kBT , where η = 2.2 mPas is the solvent viscos-

ity. In this way we obtain samples with comparable dynamics,

according to the generalised Stokes-Einstein relation.39 Sam-

ples with constant total volume fraction φ = 0.61 and different

compositions, namely fractions of small particles xs = φs/φ ,

where φs is the volume fraction of small particles, are prepared

by mixing the stock solutions.

2.4 Simulations

Event-driven molecular dynamics simulations are performed

to investigate the dynamics of binary hard spheres with the

same size ratio δ = 0.2 as in the experiments. To render simu-

lations with this size disparity feasible, we applied the double-

cell scheme,23 which uses a combination of large cells with

a size just above 2RL and small cells with a size just above

2Rs. This allows us to compute long enough sequences of par-

ticle configurations in the following way. Due to the nature

of the hard-sphere potential, the system is conservative and

additionally the temperature is constant. Thus, its evolution

can be determined by calculating a sequence of elastic colli-

sions; the particles move in a straight line before any collision.

Given the positions, ~ri, and velocities, ~vi, of each pair (i, j)

of particles at time t, the collision time ∆t is determined by

the physical solution (real and positive) of the quadratic equa-

tion ~ri j
2(t +∆t) = [~ri j(t)+~vi j(t)∆t]2 = [(2Ri +2R j)/2]2. The

set of collision times of each particle is stored in an ordered

list to monitor its trajectory with a nonuniform time step se-

quence. In each collision, the change in the velocities of the

colliding particles is obtained by the energy and momentum

conservation laws as ∆~vi = −
2m j

(mi+m j)
(~vi j ·~ri j)r̂i j. Hence, the

next collision can be predicted. Thus, the simulations pro-

vide particle trajectories, based on which the mean squared

displacement can be determined, as well as, e.g., the mean

free path l0 and the mean time between collisions, T short
s .

With increasing volume fraction, T short
s approaches zero and

thus the rate of collisions quickly grows. With our computing

resources we can investigate volume fractions φ ≤ 0.58, i.e.

below the experimental volume fraction. Experiments with

φ = 0.61 (Fig.2) and φ = 0.5840 indicate that the qualitative

variations of the dynamics, quantified by the mean squared

displacements, as a function of mixing ratio are comparable

for the two volume fractions. We thus compare our experi-

Fig. 1 Pair distribution function g(r) of large particles Rmic
L in

mixtures with φ = 0.61,δ = 0.2 and different compositions xs = 0 (

∗), 0.1 (◭), 0.3 (�), 0.5 (◮), 0.7 (•), 0.9 (�). Data for xs > 0 are

shifted vertically. Dashed lines indicate particle-particle distances

r = 2(RL +Rs) and r = 2(RL +2Rs), corresponding to

configurations in which two large particles are separated by one or

two small particles, respectively.

mental findings to simulation results for φ = 0.58. The sim-

ulations cover 0.1 ≤ xs ≤ 0.7 and the one-component limits

xs = 0.0 and 1.0. The numbers of large particles are 125

(xs = 0.7), 250 (xs = 0.5), 500 (other xs) and according num-

bers of small particles. The large and small spheres have the

same mass density and the two populations are monodisperse.

The simulations start with random particle configurations. At

least 10 different runs are averaged for each xs to reduce sta-

tistical uncertainties.

3 Results and Discussion

3.1 Quiescent structure

Binary mixtures with a size ratio δ = 0.2, a total volume frac-

tion φ = 0.61 and different compositions 0 ≤ xs ≤ 1 are in-

vestigated. The pair distribution functions g(r) of the large

particles in the quiescent state were determined by confocal

microscopy (Fig. 1). They indicate an amorphous structure

for all xs. Similar data were reported and discussed in detail

in Ref.19 We thus only recall the main findings. The one-

component glass of large spheres shows a fluid-like structure

typical of a colloidal glass; a main peak corresponding to the

first shell of nearest neighbours at distance r = 2RL (the caging

particles) and additional peaks indicating the successive shells

of nearest neighbours. Upon addition of small spheres, addi-

tional particle configurations appear due to the intercalation of

small spheres between large spheres. While a small shoulder

at r = 2RL + 2Rs is already visible for xs = 0.1, peaks at this
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Fig. 2 Quiescent mean squared displacement in one direction δy2

of large particles Rmic
L in mixtures with φ = 0.61,δ = 0.2 and

different compositions xs = 0 ( ∗), 0.1 (◭), 0.3 (�), 0.5 (◮), 0.7 (•),

0.9 (�). The delay time t is normalised by the composition-averaged

short-time Brownian time 〈τshort〉. (Inset) The xs-dependence of the

localisation length L =
√

δy2(t1) in units of Rmic
L (left y-axis) and

Rmic
s (right y-axis), where t1 is the shortest delay time measured.

distance and also at r = 2RL + 4Rs are observed for xs = 0.3,

which correspond to configurations in which two large parti-

cles are separated by one or two small particles, respectively

(Fig. 1, dashed lines). This indicates a loosening of the cage of

large particles with increasing xs, which leads to a transition in

caging at xs = 0.5, as indicated by the disappearing first peak

at r = 2RL and the pronounced peak at r = 2RL +2Rs. Hence,

at xs = 0.5 the large spheres are prevalently caged by small

spheres. Upon further increasing xs the large particles, still

caged by small particles, become increasingly more dilute.

Particle configurations in which small particles intercalate be-

tween large particles were not observed in mixtures with larger

δ = 0.6741, in agreement with geometrical arguments20 pre-

dicting a limiting value δ ≤ 0.41.

3.2 Quiescent dynamics

The mean squared displacement (MSD) of the large particles

in one direction is:

δy2(t) = 〈(yi(t + t0)− yi(t0))
2〉i,t0 , (1)

where t is the delay time, t0 a selected time along the trajectory

of particle i and 〈〉i,t0 indicates the average over all particles i

in the field of view and all times t0. It is determined from time

series of 3D stacks in the quiescent state before applying shear

(Fig.2). For xs = 0.0 and 0.1 the MSDs are flat, indicating lo-

calisation of particles in cages and absence of long-time diffu-

sion within the measurement window. The localisation length

Fig. 3 Long-time structural relaxation times of large, τ
long
L (◦), and

small, τ
long
s (�), spheres as a function of composition xs, obtained

from MD simulations of binary hard sphere mixtures with size ratio

δ = 0.2 and total volume fraction φ = 0.58. The relaxation times

are normalised by the mean free time of the small spheres τshort
s .

The dashed and solid lines indicate the number-averaged, 〈τ long〉,
and dominant, τ̃ long, structural relaxation times, respectively.

L =
√

δy2(t1), with t1 the shortest delay time measured, cor-

responds to that expected for a cage of large particles. For

xs = 0.3 the large-particle dynamics become diffusive at long

times. Similarly, for xs = 0.5 mobility is observed at long

times even though no diffusive regime is visible within the ex-

perimental time window. In addition, the localisation length

L is reduced, indicating the presence of small particles around

the large particles, hindering their motions. This is consis-

tent with the pair distribution function of the large particles

(Fig. 1), which shows an increasingly more pronounced shoul-

der at a distance corresponding to the sum of a large and small

particle.19,20 For larger fractions of small particles, xs > 0.5,

the long-time dynamics again slow down and particles con-

tinue to become increasingly localised in the cage of small

particles. This transition in caging and the faster dynamics at

intermediate compositions has been observed previously for

the same δ .19 However, the acceleration of the dynamics in

the present mixtures is much more pronounced than at larger

δ .16,20,31,32,42,43 This could result from the melting of the cage

of large spheres, which accompanies the glass-glass transition

observed at xs = 0.5 in our system. This appears to affect the

particle dynamics more than the smaller cage polydispersity

in mixtures of particles with more comparable sizes. Further-

more, the dependence of the MSD on xs can be related to the

available free volume in the mixtures, which can be estimated

on the basis of the xs dependence of the volume fraction of

random close packing, φRCP.19,20

The intrinsic time scales of the samples can be obtained

from the corresponding short- and long-time diffusion coef-

ficients. The short-time Brownian time of the small parti-
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cles, τshort
s = R2

s/Dshort
s with the short-time diffusion coeffi-

cient Dshort
s = f D0,s. It is related to the free (dilute) diffu-

sion coefficient D0,s = kBT/6πηRs by the φ -dependent fac-

tor f . In a one-component system, f can be estimated by

extrapolating the data in Fig. 8 of reference44 to φ = 0.61,

yielding f ≈ 1/32. Similarly, the short-time Brownian time of

the large particles, τshort
L = τshort

s /δ 3, can be determined. For

binary mixtures, the composition-averaged short-time Brow-

nian time in the dilute limit is 〈τshort
0 〉 = 6πη〈R3〉/kBT and

at a volume fraction φ we obtain 〈τshort〉 = 〈τshort
0 〉/ f , where

〈R3〉 = R3
L/[1− xs(1−1/δ 3)] is the number-averaged cube of

the radius.

We studied the long-time dynamics using event-driven

molecular dynamics simulations of binary mixtures of hard-

spheres23 with the same size ratio δ = 0.2, but a reduced

total volume fraction φ = 0.58 to keep the simulation times

reasonable (Sec.2.4). Although the simulations do not con-

sider a solvent and thus do not include Brownian motion at

short times, an effective short-time diffusion coefficient D0
s

can be determined; D0
s = l2

0/T
short

s with the mean free path

l0 and mean free time T short
s .45 With this rescaling the ra-

tio D∗
s is equivalent to that obtained in a system with Brow-

nian dynamics; D∗
s = D

long
s /Dshort

s , with Dshort
s the short-time

Brownian diffusion coefficient.45 The same equivalence ap-

plies to the ratio of the long time relaxation time T
long

s and

the mean free time T short
s . Then D∗

s for the small (and, sim-

ilarly, the large) spheres can be extracted from the MSDs

rescaled by l2
0 with times rescaled by T short

s . To simplify

the comparison with experiments, in what follows we will

indicate the ratio T
long

s /T short
s using the equivalent ratio of

the Brownian relaxation times τ
long
s /τshort

s . From D∗
s , the

normalised long-time structural relaxation time of the small

spheres, τ
long
s /τshort

s = 1/D∗
s , and, similarly, of the large

spheres, τ
long
L /τshort

s = 1/(δ 3D∗
L), can be calculated (Fig 3).

The structural relaxation time of the small spheres, τ
long
s ,

monotonously increases with xs indicating the progressive

arrest of the small spheres. However, the structural relax-

ation time of the large spheres, τ
long
L , exhibits an intermediate

minimum (xs = 0.1) consistent with the melting of the one-

component glasses as a second species is added. While the

addition of small spheres to the glass of large spheres melts

the glass, the addition of large spheres not only melts the glass

of small spheres, but also induces obstacles.46 This leads to

the asymmetric dependence of τ
long
L on xs. We expect the

minimum to be more pronounced for the higher φ = 0.61

of the experiments, since the large and small spheres are

deeper in the glassy state at xs < 0.3 and xs ≥ 0.7 than at

φ = 0.58. Previous experimental work on binary mixtures

with the same size ratio and comparable xs = 0.7 indicates

glass states for φ > 0.57 and fluid states for φ ≤ 0.57.20 In

addition, the number-averaged long-time structural relaxation

Fig. 4 Storage modulus G′/(kBT/〈R3〉) in the linear viscoelastic

regime, extracted from dynamic strain sweep measurements at

oscillatory Péclet numbers Peω = 1.2 for two sample sets with

φ = 0.61,δ = 0.2: (•) CO (larger spheres, also used for

microscopy) and (�) RH (smaller spheres, only used for rheology).

time at a volume fraction φ = 0.58 can be calculated according

to 〈τ long〉= [(1−xs)δ
3τ

long
L +xsτ

long
s ]/[(1−xs)δ

3+xs] (Fig. 3,

dashed line). This exhibits a minimum at xs ≈ 0.3. The mini-

mum is shifted with respect to the minimum of τ
long
L (xs ≈ 0.1)

due to the increasing weight of the smaller τ
long
s . As men-

tioned above, a transition in caging is expected at xs ≈ 0.5 with

caging by large and small spheres at small and large xs, respec-

tively.20 Thus, the systems are expected to be dominated by

τ
long
L and τ

long
s for xs . 0.5 and xs & 0.5, respectively, which

we denote by τ̃
long
s (Fig. 3, solid line).

3.3 Linear viscoelasticity

The storage modulus, G′, as a function of composition xs

is extracted from the linear viscoelastic regime of dynamic

strain sweeps (0.5% < γ < 1%, depending on sample), Fig.4.

Values of G′ are determined for an oscillatory Péclet number

Peω = 1.2 with Peω = ω〈τshort〉, where ω is the oscillation

frequency. They are reported in units of the composition-

averaged energy density, kBT/〈R3〉, to remove the trivial

dependence on the particle size. The large values of G′ at

xs = 0.0 and 1.0 are consistent with their one-component

glass states. By adding a second species, G′ decreases,

indicating glass softening with the results for both sample

sets, RH (radii 0.304 µm, 0.063 µm) and CO (radii 0.885 µm,

0.174 µm) being comparable. The glass softening is thought

to result from the transition in caging and the faster long-time

dynamics at intermediate compositions (Fig. 2).19 It is

particularly pronounced for 0.1 ≤ xs ≤ 0.5, i.e. upon adding

small particles to large particles. This reflects the asymmetry

observed in the dynamics. The dependence of G′ on xs hence

appears related to changes in the microscopic dynamics.19,20
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Fig. 5 Stress σ scaled by the average energy density kBT/〈R3〉 vs.

strain γ measured in step rate experiments for samples with

compositions xs (as indicated) and Péclet numbers Peγ̇ = 0.03, 0.24,

0.64, 1.20, 2.40 and 4.70 (bottom to top).

3.4 Non-linear stress response

In a step rate experiment, a constant shear rate γ̇ is applied to

the initially quiescent sample and the evolution of the stress σ
as a function of time t or, equivalently, strain γ = γ̇ t is mea-

sured. The dependence of the measured stress on strain is pre-

sented in Fig. 5 for binary mixtures with size ratio δ = 0.2,

total volume fraction φ = 0.61 and different compositions xs

as well as different shear rates γ̇ or Péclet numbers Peγ̇ =
γ̇〈τshort〉. For these values of Peγ̇ and φ , homogeneous flow,

i.e. laminar flow in the absence of shear banding, is expected

for one component systems.35,47 In order to compare differ-

ent mixing ratios, the stress σ is scaled by the composition-

averaged energy density. For all xs and Peγ̇ , at small strains

γ the stress increases almost linearly and reaches a maximum

or overshoot, σpeak, at a strain γpeak. Subsequently the stress

decreases to a constant value, σsteady, which is the steady state

value of the stress when the system flows. The noise in the

measurements is seen to decrease with increasing xs as a re-

sult of the increasingly larger energy density of the mixtures

as the fraction of small spheres increases. From the curves in

Fig. 5 we extract the value of the strain at the peak, γpeak and

the magnitude of the stress overshoot σpeak/σsteady−1 to quan-

tify the stress overshoot as a function of xs and Peγ̇ . For one-

Fig. 6 (a) Strain at the stress overshoot, γpeak, which can be taken as

the yield strain, and (b) magnitude of the stress overshoot,

σpeak/σsteady−1, as a function of composition xs for Péclet numbers

Peγ̇ = 0.03 (∗), 0.24 (�), 0.64 (◮), 1.20 (�), 2.40 (◭) and 4.70 (•).

component hard-sphere glasses (xs = 0 and 1) this stress re-

sponse, in particular the stress overshoot, has previously been

observed and studied as a function of Peγ̇ .9,13–15,48 It has been

associated with the maximal cage distortion before the cage

breaks.9,13 During cage distortion stress is stored, and is only

released when the deformation of the cage is partially relaxed

by out-of-cage motion, resulting in the overshoot. Moreover,

the overshoot is linked to super-diffusive particle motion ob-

served in experiments and simulations, and predicted by mode

coupling theory.13–15

The strain at the overshoot, γpeak, is associated with the

yield strain. It exhibits a dependence on composition xs, which

is comparable for all Peγ̇ (Fig. 6a). The yield strain γpeak ini-

tially decreases until it reaches a minimum at xs = 0.3 and

then increases again. This xs dependence reflects the xs depen-

dence of the number-averaged long-time structural relaxation

time 〈τ long〉 (Fig. 3), which is associated with the distance to

the glass transition. This suggests that the yield strain is larger

for systems which are deeper in the glass state. It might also

be related to variations in the localisation length of the caging

species.

In samples for which a broad range of Peγ̇ values is ex-

plored, namely xs = 0.5 and 0.7, two regimes in the Peγ̇ depen-

dence of the yield strain γpeak are observed (Fig. 7a). The yield

strain γpeak remains approximately constant at γpeak ≈ 10%

for Peγ̇ . 1, in agreement with MCT predictions for one-

component glasses,48 but increases for larger Peγ̇ , similar to

experimental results on one-component colloidal glasses of
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Fig. 7 (a) Strain at the stress overshoot, γpeak, and (b) magnitude of

the stress overshoot, σpeak/σsteady−1, as a function of Péclet number

Peγ̇ and (c) rescaled yield strain, γpeak/Z(xs), and (d) rescaled

magnitude of the stress overshoot,
(

σpeak/σsteady−1
)

/Y (xs), as a

function of rescaled shear rate, X(xs)γ̇ , for compositions xs = 0.1
(◭), 0.3 (�), 0.5 (◮), 0.7 (•), 0.9 (�), 1.0 (∗). The data in (c) and

(d) are the same as in (a) and (b), respectively. The inset to (a)

shows the same data as in the main plot, but superimposed along the

ordinate using the scaling factor Z′(xs). The line indicates a slope of

1. (See text for details on the rescaling.)

hard-sphere like particles.9,15 This behaviour becomes clearer

by rescaling the yield strain γpeak with a scaling factor Z′(xs)
(Fig. 7, inset), which is the average of the γpeak values obtained

for the different Peγ̇ values at a given composition xs (Fig. 6a).

As expected, the scaling factor Z′(xs) (Fig.8) follows the xs de-

pendence of γpeak and hence also 〈τ long〉, similar to the data in

Fig. 6a.

The behaviour in the two regimes can be understood by

considering the relevant time scales; the characteristic time

scale of shear, τshear = 1/γ̇ , and the inherent time scale of

the sample, namely the number-averaged short-time Brow-

nian time 〈τshort〉 (defined in Sec. 3.2). If τshear > 〈τshort〉,
i.e. Peγ̇ < 1, the shear-induced deformation is slow compared

to the Brownian dynamics. Therefore structural rearrange-

ments and yielding can occur once the shear-induced cage

deformation is sufficiently large to facilitate escape through

Brownian motion. This cage deformation is expected to be

similar to the size of the cage in a glass or dense fluid (Fig. 2,

inset), consistent with the observed γpeak ≈ 10%. At larger

shear rates γ̇ , when τshear . 〈τshort〉 or equivalently Peγ̇ & 1,

the probability of cage escape due to Brownian motion

decreases. With increasing Peγ̇ , the particle displacements

are increasingly dominated by the affine motion imposed

by shear while the contribution by (random) Brownian

motion decreases and thus particle collisions become less

probable. Therefore, before yielding occurs the cage is

deformed more, i.e. γpeak increases. The rescaled yield strain

γpeak/Z′ is found to increase linearly with Peγ̇ for Peγ̇ & 1

(Fig. 7a, inset). Thus γpeak = γ̇ tpeak = 0.1Peγ̇ = 0.1γ̇〈τshort〉
and hence tpeak = 0.1〈τshort〉. Therefore, independent of γ̇
or, equivalently, Peγ̇ , yielding occurs after the same time,

about 0.1〈τshort〉. This suggests that for yielding to occur,

at least a shear-induced (affine) displacement of about

10% and a minimum Brownian (random) displacement

are required. The minimum mean squared displacement

δy2
peak = 2Dshear tpeak = 2Dshear 0.1〈τshort〉 . 0.2〈R2〉, where

the last relation provides an upper boundary since the diffu-

sion coefficient under shear, Dshear (Sec. 3.5), is smaller than

the one in the quiescent state, which is implicitly contained

in 〈τshort〉. The minimum displacement hence is about the

size of the cage. A more quantitative comparison needs to

consider the anisotropic structure of the sheared cages.9,13

Two regimes are also observed for the shear rate depen-

dence of the magnitude of the stress overshoot, quantified

by σpeak/σsteady−1, for xs = 0.5 and 0.7 (Fig.7b). At small

Peγ̇ , the magnitude of the stress overshoot increases with in-

creasing Peγ̇ , as already observed in experiments on ther-

mosensitive pNIPAM particles and as predicted by MCT for

one-component systems.48 It then reaches a maximum and

decreases for large Peγ̇ , similar to one-component glasses

of hard-sphere like PMMA particles.9,49 The transition be-
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Fig. 8 Composition dependence of the scaling factors of the shear

rate, X (solid line), of the strain at the stress overshoot, Y

(dashed-dotted line), and of the magnitude of the stress overshoot,

Z′ (dotted line). The scaling factor X represents a characteristic time

and is normalized by the short-time Brownian time of the small

spheres τshort
s . (For details on the scaling factors see text.)

tween the two regimes occurs at transitional Péclet numbers

which depend on xs, in contrast to the dependence of γpeak

on Peγ̇ . In particular, the σpeak/σsteady−1 dependence for

xs = 0.5 (Fig. 7b,◮) is shifted to considerably larger val-

ues of Peγ̇ compared to dependencies observed for other xs.

That the transitional Péclet number depends on xs implies that

the time at which the transition occurs does not scale with

the composition-averaged short-time Brownian time 〈τshort〉,
which determines Peγ̇ .

To determine the appropriate characteristic time of the tran-

sition in σpeak/σsteady−1 as a function of xs, the data in Fig. 7b

are rescaled as
(

σpeak/σsteady−1
)

/Y (xs) versus X(xs)γ̇ , where

the scaling factors X(xs) and Y (xs) are chosen such that the

resulting curves superimpose (Fig. 7d), that is the curves are

shifted horizontally such that the transition occurs at X(xs)γ̇ =
1 and vertically that the curves overlap. The scaling factor

X(xs) hence represents the characteristic time of the transi-

tion between the increasing and the decreasing branches of

σpeak/σsteady−1 for the different xs. It exhibits a pronounced

minimum at xs = 0.5 (Fig. 8, solid line). The xs dependence

is thus qualitatively different from the monotonously decreas-

ing 〈τshort〉. However, the dependence appears similar to the

one of the dominant structural relaxation time in the quiescent

state, τ̃ long (Fig. 3, solid line), which is the relaxation time of

the relevant caging species, i.e. the large particles for xs ≤ 0.3
and the small particles for xs > 0.3.

Therefore, the transition between the two regimes depends

on the balance between τshear and the dominant structural re-

laxation time τ̃ long. This indicates that the processes relevant

for stress transmission involve particle movements on length

scales of out-of-cage diffusion. This is consistent with the

fact that in one-component systems the overshoot has been

associated with the yielding of the cage.9,13 The out-of-cage

movements are longer than those required for cage deforma-

tion, which determine γpeak, and hence the timescale of out-of-

cage diffusion is not relevant for the transition between the two

regimes of the Péclet number dependence of γpeak. This is sup-

ported by the poor overlap of the γpeak curves if scaled by the

same X(xs) used for scaling the stresses (Fig.7c). The over-

lap is not significantly improved by also scaling γpeak by Z(xs)
such that all curves superimpose in the ordinate and on the

right branch of the curve with xs = 1.0 in the abscissa (Fig.7c).

The value of Y (xs) (Fig.8) corresponds to the average value

of σpeak/σsteady−1 for a given xs. The magnitude of the

overshoot, σpeak/σsteady−1 (Fig. 6b) increases from xs = 0.1,

attains a maximum at xs = 0.3 and reaches a minimum at

xs = 0.5. Subsequently it stays about constant for large Peγ̇

(2.40 to 4.70) or increases to an also approximately constant

value for small Peγ̇ (0.03 to 1.20). The difference between

small and large Peγ̇ is related to the two regimes of the stress

response discussed above (Fig.7a,b).

3.5 Dynamics under shear

We aim to link the effects observed in the rheological mea-

surements to the individual-particle dynamics under shear de-

termined by confocal microscopy. Confocal microscopy al-

lows us to image colloids during the step rate experiments

and hence to follow shear-induced changes in the dynamics

of the large particles, which are fluorescently labelled. Based

on the particle trajectories in the velocity-vorticity plane,

(xi(t),yi(t)), transient mean squared displacements in the vor-

ticity direction, δy2, are calculated for different waiting times

tw after application of shear:

δy2(t, tw) =
〈

(yi(t+tw)− yi(tw))
2
〉

i
, (2)

where the average runs over all large particles i in the field

of view, but not the waiting time tw (Eq.1). In the vorticity

(neutral) direction contributions of affine particle motions are

absent, and thus do not affect an investigation of the effects

of shear on the Brownian motion of the particles. The parti-

cle dynamics can only reliably be determined using particle

tracking if the particles move less than about a tenth of their

radius between two successive frames. This limits the shear

rates γ̇ or Péclet numbers Peγ̇ to 10−2 < Peγ̇ < 1, which cor-

responds to the regime where Brownian motion significantly

contributes to yielding and stress relaxation (Fig. 7a,b).

After shear is switched on, a steady-state develops. The

corresponding MSDs in the steady-state are reported in Fig. 9

(thick color lines), together with the MSDs in the quiescent

state (thick black lines). Compared to the quiescent state, the

steady-state MSDs exhibit stronger localization at short times,

but also faster long-time dynamics, namely a significantly

increased long-time diffusion coefficient D
steady
L , which in-

creases with increasing Peγ̇ for all compositions xs (Fig. 10a).
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Fig. 9 Mean squared displacement in the vorticity direction δy2 for

different compositions xs and Péclet numbers. (a) xs = 0.1,

Peγ̇ = 0.24 (red), (b) xs = 0.3, Peγ̇ = 0.24 (red), 0.08 (blue), (c)

xs = 0.5, Peγ̇ = 0.24 (red), 0.005 (blue), (d) xs = 0.7, Peγ̇ = 0.035,

and (e) xs = 0.9, Peγ̇ = 0.28 (red), 0.028 (blue), 0.003 (violet). The

black lines correspond to the MSDs in the quiescent state, thick

lines to the MSDs in the steady-state, and thin lines to transient

MSDs at different waiting times tw, increasing from bottom to top.

Fig. 10 (a) Steady-state diffusion coefficient D
steady
L of the large

spheres, (b) amount of superdiffusion D
steady
L /Dsdiff

L −1 of the large

spheres at waiting time tw = 0, and (c) magnitude of the cage

compression K = δy2
shear/δy2

rest−1, as a function of xs. Different

Peγ̇ values are indicated according to the color scale. The error bars

represent variations between repeated measurements with same xs

and Peγ̇

The increase in D
steady
L corresponds to shear thinning and

is in agreement with previous studies on one-component

glasses8,9,14,15,50 and measurements of a two-component glass

with δ = 0.2 and xs = 0.9.19 For the largest Peγ̇ values, D
steady
L

as a function of xs presents a weak maximum, and hence the

fastest shear-induced dynamics, at xs = 0.3 (Fig. 10a). The

same composition also exhibits the fastest long-time dynamics

of the large particles in the quiescent state (Figs. 2, 3). In addi-

tion, this composition shows the smallest γpeak (Fig. 6a), which

indicates a link between facilitated yielding, i.e. a smaller

yield strain, and fast dynamics in the steady-state, i.e. a larger

diffusion coefficient. This is consistent with the observation

that yielding requires a minimum mean squared displacement,

which is reached earlier for faster dynamics. For the group

of data at smaller Peγ̇ , D
steady
L slightly decreases for xs ≥ 0.3,

i.e. the steady-state dynamics slows down with increasing xs.

This seems to be consistent with the slow-down of the dynam-

ics in the quiescent state and corresponds to the increase of

γpeak (Fig. 6a), in agreement with the proposed link between

yielding and dynamics in the steady-state.

In addition to the steady-state, the transient state following

switch-on of shear is investigated (Fig. 9, thin color lines). At
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short delay times the transient MSDs moderately increase, as-

sociated with a slight expansion of the cage, but they remain

below the quiescent MSD indicating tighter localization. At

long delay times, and for all waiting times, we observe rela-

tively fast diffusion, already with the steady-state diffusion co-

efficient D
steady
L . While D

steady
L is reached already at the short-

est waiting time tw, it is reached at a relatively late delay time

t, which becomes increasingly shorter as tw increases. The

steady-state MSDs are recovered after a waiting time t∗w which

depends on the mixing ratio xs, and has apparently no relation

with τshear, different from one-component systems.13–15

At intermediate delay times a super-linear increase of the

MSDs is observed which indicates superdiffusion. The time

range with superdiffusion progressively disappears as tw
increases, but also depends on Peγ̇ and xs. The amount of

superdiffusion is quantified by D
steady
L /Dsdiff

L −1 with Dsdiff
L

the apparent diffusion coefficient at maximum superdiffusion,

estimated from the minimum of δy2/t vs. t (not shown). With

increasing xs, the amount of superdiffusion, D
steady
L /Dsdiff

L −1

increases for (almost) constant, large Peγ̇ (Peγ̇ = 0.24 for

xs = 0.1, 0.3, 0.5 and Peγ̇ = 0.28 for xs = 0.9, Fig.10b

orange/red color). As expected, this does not reflect the

dependence of the stress overshoot, σpeak/σsteady−1 (Fig. 6b),

since the large particles, whose dynamics is studied here,

dominate the rheological response only for xs . 0.5 (Sec. 3.4).

However, the increase in D
steady
L /Dsdiff

L −1 with xs might re-

flect the decrease of the localisation length at rest (Fig. 2,

inset). This suggests that a tighter localisation at rest leads to

a more abrupt and pronounced transition to flow once shear

sufficiently deforms the cage to allow particles to escape.

The increase of the degree of super-diffusion with increasing

xs seems to become more pronounced with increasing Peγ̇

(Fig. 10b). With increasing Peγ̇ , D
steady
L /Dsdiff

L −1 increases

for all xs and tw = 0 s (Fig. 10b, different colors). The Peγ̇

dependence is similar to the one of D
steady
L and the magnitude

of the stress overshoot, σpeak/σsteady−1 (Fig. 7b). This is

consistent with the idea that σpeak/σsteady−1 is related to the

probability of particle collisions, which occur more frequent

as the dynamics becomes faster. Furthermore, it suggests

that a larger stored stress results in a more pronounced

super-diffusive response, in agreement with similar findings

for one-component systems.15

At short delay times (t . 1 s, range decreasing with increas-

ing tw), the MSDs are dominated by caging (Fig. 9). At these

times, the transient MSDs under shear remain below the qui-

escent state, although they slightly increase with waiting time

tw toward the steady-state. Thus, shear results in a stronger lo-

calisation of the large particles in the vorticity direction. The

magnitude of cage compression in the vorticity direction is

quantified by K = δy2
shear/δy2

rest−1, where δy2
shear and δy2

rest

are the value of the MSD under shear and at rest, respectively,

at the same time 0.015 s ≤ t ≤ 0.030 s (Fig. 10c). The magni-

tude of the cage compression, |K| decreases from xs = 0.1 to

0.3 and 0.5 to 0.9. Increasing xs from 0.1 to 0.3, and from 0.5

to 0.9, the localization length of the large spheres at rest de-

creases (Fig. 2a, inset). This implies that the cage is tighter

and a smaller free volume is available for compressing the

cage, accordingly |K| decreases. However, at xs = 0.5, the

cage is strongly compressed although the localisation length

at xs = 0.5 is comparable to that at xs = 0.3 in the quiescent

state (Fig. 2, inset). Nevertheless, for xs = 0.5 the cage is

composed of small spheres which might easier rearrange un-

der shear and closely pack around the large spheres than large

spheres can. This supports the suggestion that a qualitative

change in caging occurs at xs ≈ 0.5.

Moreover, K closely resembles the stress overshoot,

σpeak/σsteady−1 (Fig. 6b), with both exhibiting only a limited

dependence on Peγ̇ (within the limited range of Peγ̇ investi-

gated by confocal microscopy). In particular, a large |K| cor-

responds to a small σpeak/σsteady−1 and vice versa. This sug-

gests that stress is partially released through irreversible cage

compression, resulting in a smaller stress overshoot. In con-

trast, if stress can not to not sufficiently be released through

cage compression, it is stored in the system. This storage of

stress requires particle movements beyond the cage size and

involves several particles. These large movements are related

to the long-time diffusion of the cage particles. Hence the rel-

evant timescale is the dominant long-time structural relaxation

time τ̃long, consistent with the conclusions based on the xs de-

pendence of σpeak/σsteady−1 (Sec. 3.4). This illustrates the

importance of caging and the transition in caging. In contrast,

yielding requires many particles to move, although each parti-

cle might only move on the length scale of the cage. Moreover,

the yield strain γpeak is a relative, dimensionless quantity and

hence insensitive to whether the cage is formed by large or

small spheres.

4 Conclusions

The addition of a second species to a one-component glass

results in the loosening of the cage. The transition between

caging by small and large particles, respectively, occurs at

xs ≈ 0.5.19,20 The degree of arrest is reflected in the dynam-

ics at rest,19,20 and, as shown here, also under shear. We have

shown that under both conditions, at rest and under shear, the

mobility is maximum at xs ≈ 0.3 (Figs. 2, 10a).

The change in caging also affects the shear-induced cage

compression in vorticity direction, with the strongest compres-

sion at xs ≈ 0.5 (Fig. 10c). This is attributed to the high mobil-

ity of the small particles at xs ≈ 0.5 allowing them to realize

their higher packing ability in the mixtures. In addition to

this particular behaviour, in general the cage compression de-
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creases upon addition of small spheres, which is attributed to

an increasingly tighter cage at rest that leaves space for small

cage compressions only (Fig. 2, inset). A tight localisation

at rest results in an abrupt and pronounced transition to flow

once shear-induced cage deformations allow particles to es-

cape. This transition is characterised by transient superdiffu-

sion (Figs. 9, 10b).

Yielding appears to require Brownian motion beyond a min-

imum excursion. When this excursion is reached depends on

the composition-averaged dynamics of the samples and the

shear rate. Slow glassy dynamics thus results in larger yield

strains γpeak, which is found to increase linearly with the shear

rate as long as γ̇ 〈τshort〉 & 1 (Fig. 7a, inset). For the Brow-

nian motion to be effective, an affine shear deformation with

γpeak & 10% seems necessary, which limits yielding at small

shear rates. We therefore suggest that different processes set

a lower limit to the yield strain γpeak at small and large shear

rates, respectively.

Since stress is released during cage compression, the mag-

nitude of the stress overshoot is inversely related to the de-

gree of compression and the overshoot linked to superdiffu-

sion. Storage of stress requires rearrangements and particle

movements which, in contrast to the processes during yield-

ing, extend significantly beyond the cage and thus occur on the

structural relaxation time τ̃ long of the caging species, that is the

large spheres for xs . 0.5 and the small spheres for xs & 0.5.

In future work, the macroscopic rheological behaviour and

the microscopic single-particle dynamics need to be related to

the evolution of the microscopic structure during the applica-

tion of shear, similar to the link established in one-component

glasses.9
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30 R. Juárez-Maldonado and M. Medina-Noyola, Phys. Rev. E, 2008, 77,

051503.

31 S. R. Williams, I. K. Snook and W. van Megen, Phys. Rev. E, 2001, 64,

021506.

32 G. Foffi, W. Götze, F. Sciortino, P. Tartaglia and T. Voigtmann, Phys. Rev.

Lett., 2003, 91, 085701.

33 B. E. Rodriguez, E. W. Kaler and M. S. Wolfe, Langmuir, 1992, 8, 2382.

34 R. Besseling, L. Isa, E. R. Weeks and W. C. K. Poon, Adv Colloid Inter-

face Sci., 2009, 146, 1–17.

35 P. Ballesta, G. Petekidis, L. Isa, W. C. K. Poon and R. Besseling, J. Rheol.,

2012, 56, 1005–1037.

36 J. C. Crocker and D. G. Grier, J.Colloid Interface Sci., 1996, 179, 298–

310.

37 A. Yethiraj and A. van Blaaderen, Nature, 2003, 421, 513–517.

38 C. P. Royall, W. C. K. Poon and E. R. Weeks, Soft Matter, 2013, 9, 17–27.

39 T. G. Mason and D. A. Weitz, Phys. Rev. Lett., 1995, 75, 2770–2773.

40 T. Sentjabrskaja, M. Laurati, S. U. Egelhaaf and Th. Voigtmann, in prepa-

ration.

1–12 | 11

Page 11 of 13 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



41 R. Higler, J. Appoel and J. Sprakel, Soft Matter, 2013, 9, 5372.

42 T. Hamanaka and A. Onuki, Phys. Rev. E, 2007, 75, 041503.

43 P. Yunker, Z. Zhang and A. G. Yodh, Phys. Rev. Lett., 2010, 104, 015701.

44 W. van Megen, T. C. Mortensen, S. R. Williams and J. Müller, Phys. Rev.

E, 1998, 58, 6073–6085.
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Yield  
strain 

Overshoot 
magnitude 

1 

>1 

at rest 

tw = 0 

Cage  
compression 

Transient 
superdiffusion 

Caging Transition 

Caging transitions determine changes in the yield strain, the magnitude of the 
stress overshoots and the transient single-particle dynamics of binary glasses 
under an imposed shear rate of deformation 
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