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Active emulsions, i.e., emulsions whose droplets perform self-propelled motion, are of tremendous interest for mimicking col-
lective phenomena in biological populations such as phytoplankton and bacterial colonies, but also for experimentally studying
rheology, pattern formation, and phase transitions in systems far from thermal equilibrium. For fuelling such systems, molecular
processes involving the surfactants which stabilize the emulsions are a straightforward concept. We outline and compare two
different types of reactions, one which chemically modifies the surfactant molecules, the other which transfers them into a dif-
ferent colloidal state. While in the first case symmetry breaking follows a standard linear instability, the second case turns out
to be more complex. Depending on the dissolution pathway, there is either an intrinsically nonlinear instability, or no symmetry
breaking at all (and hence no locomotion).

1 Introduction

1.1 Non-equilibrium collective behaviour

Large scale patterns emerging in crowds of interacting self-
driven elements are known from a wide range of biological
systems, like a school of fish, a host of sparrows, an army
of ants, or a bacterial colony. The complexity of the active
elements thereby varies considerably, and so do their mutual
interactions. The latter can be of purely physical nature, like
hard core repulsion or hydrodynamic interaction, or genuinely
biological, like olfactory and visual signals or chemotaxis,
which are present in many microbial settings. Striking sim-
ilarities in the swarming behavior of widely different types of
active elements have spurred a significant recent increase in
research activity towards understanding the basic mechanisms
of pattern and texture formation in such systems. While theo-
retical work has been concentrating on active elements which
were greatly simplified in their shape and interactions1–10,
most experiments so far have been performed with bacterial
colonies3,11–16. This is not only due to the particular im-
portance of understanding the collective behavior of micro-
organisms, but also because these are the only relatively sim-
ple active elements which can be obtained in sufficient num-
ber. Even a bacterium, however, is much more complex than
the model elements used so far in theories and simulations.
Consequently, it is not yet clear which aspects of their collec-
tive behavior are due to physical interactions, and which trace
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down to more complex biological signalling.
The significance of understanding these processes has be-

come increasingly important over the last decades. Along with
the upsurge of concern about future climate and sustainability
on our planet, it has been recognized that the ecology, trans-
port, and biodiversity of pelagic phytoplankton plays a piv-
otal role in the transfer of energy into the biosphere. Long
standing problems like the ‘paradox of the plankton’17, i.e.,
the unexplained large biodiversity of the marine phytoplank-
ton, are thought to be intimately related to the observed inho-
mogeneous distribution of plankton species19,20 (cf. Fig. 1).
Candidate mechanisms contributing to this phenomenon in-
clude the interplay between self-propelled motion of the or-
ganisms, buoyancy, and advection. Investigations thus need to
take into account Langmuir circulation21, flotation and buoy-
ancy effects22, gyrotaxis23, impact of motility on the fluid rhe-
ology1,24–26, turbulence-induced segregation effects27,28, and
circadian cycles of the phytoplankton species29.

It is clear that a detailed understanding of these processes is
an enormous task involving many length and time scales. As
ocean currents are characterized by high Reynolds numbers,
the most demanding step is the understanding of turbulent ad-
vection and its interplay with the self-propelled motion of the
plankton organisms30,31. Large scale simulations of plankton
transport in the oceans are considering only two-dimensional
(2D) turbulence for the sake of numerical tractability. How-
ever, in order to investigate under which circumstances such
approaches are justified, a detailed understanding of the 3D
problem at smaller scales is indispensable. This must include
the swarming behavior of the plankton in the turbulent flow as
well as the back-action of the swarming plankton on the flow
due to buoyancy32. It will be extremely difficult to perform
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Fig. 1 Dominant phytoplankton types observed during the spring
bloom of November 2001 at the confluence of the Brazil and
Malvinas currents. Yellow: Prochlorococcus, Synecococcus, and
nano-eukariotes. Green: diatoms. Magenta: Phaeocystis. Cyan:
coccolithophorides. Overlaid grey levels represent the the local
Lyapunov exponents of the flow field, as derived from altimetry18

(reproduced with permission from the National Academy of
Sciences of the USA. PHYSAT image taken at 9-km resolution. The
dark grey structure to the lower left, with black outline, are the
Falkland islands).

reliable computer simulations of these systems since the hy-
drodynamic interactions between active particles decay only
algebraically away from individual swimmers. Hence there is
no reliable cut-off criterion by which the range of mutual in-
teractions can be limited, at least none which can be proven to
leave all collective effects unchanged.

Consequently, it is of vital importance to come up with
well-controlled model systems which allow the study of these
effects experimentally, and which can be used as benchmarks
for validating computer simulations. From a fundamental
point of view, it would be generally desirable to perform ex-
periments with artificial active elements the properties and in-
teractions of which can be well controlled and adequately de-
scribed by simple physical models. These might lead to novel
ideas for overarching descriptions of collective behavior far
from thermal equilibrium. Such attempts may be inspired by
phase transition concepts33, which are frequently used to de-
scribe transitions between different types of collective motion
in swarming entities34–40. Furthermore, it has been shown
that the rheological properties of dense suspensions of actively
moving objects are quite unusual and can differ pronouncedly
from those of their ‘passive’ counterparts1,24–26. We see that
there is a plethora of interesting effects and novel concepts
to explore. In the present paper, we will discuss design con-
cepts for individual active particles which lend themselves for
model experiments on the wide range of phenomena outlined
above.

1.2 Active emulsions as model systems

For the design of suitable model systems, organisms such as
cyano-bacteria, paramecium, and volvox are particularly in-
spiring. They belong to a class of swimmers referred to as
squirmers, which are characterized by tangential motion of
the cell surface5,41,42 driving their locomotion. Squirming is
particularly appealing for studying the hydrodynamics of mi-
croscale swimming, since the velocities in the near and far
field around such a swimming organism can be described ana-
lytically6,43–45, and are similar to the flow fields around mov-
ing spherical objects. Such squirming organisms may thus
possibly be modelled by self-propelling liquid droplets, which
is what we pursue in the present paper.

Before we go into the matter, let us outline what we should
expect from a suitable model squirmer. There are three im-
portant requirements. First of all, there should be no inter-
action of individual squirmers with their ‘exhaust’ materials,
neither their own or those of their interaction partners. Since
every driving mechanism must be dissipative, it is clear that
the medium is necessarily changed in some way during the lo-
comotion. The impact of this change on the locomotion itself
must be kept as small as possible, i.e., the locomotion velocity
must be independent of the local concentration of any reaction
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producs or other exhaust species. Second, the motion should
be as long lived as possible, such that non-equilibrium steady
states of collective behavior can be reached. Since the diam-
eter of a single squirmer provides the only obvious inherent
length scale of the system (there may be less obvious ones,
which are discussed below), it suggests itself to consider as
a figure of merit the total distance travelled by the squirmer
until fuel runs out, divided by its diameter. This will be re-
ferred to below as the cruising range. Third, the droplet shape
should remain spherical in order to avoid unnecessary com-
plication of the system and the involved interactions. This is
naturally taken care of by interfacial tension, if this is not too
far reduced by surfactants.

A suspension of actively moving droplets in a second, im-
miscible fluid may be legitimately called an active emulsion.
We mention here that we do not distinguish between emul-
sions and inverse emulsions, by not referring specifically to
which phase is aqueous and which is not. All we require is
that both liquid phases be sufficiently immiscible. In terms
of the desired model character of the system, droplets (as op-
posed to solid particles, like colloids) are ideal in the sense
that each one provides a reservoir for carrying some kind of
‘fuel’. Hence they do not rely on energy supply from exter-
nal fields and thus have the potential of truly autonomous mo-
tion, thus resembling, e.g., self-propelling plankton species or
motile bacteria. At the same time, interfacial tension keeps
their shape close to spherical, and thus well defined.

This spatial symmetry, however, comes as well with the
inherent drawback that there is no preferred direction along
which locomotion should proceed. Hence we need a mecha-
nism of spontaneous symmetry breaking in order to obtain ac-
tively motile droplets, and hence an active emulsion46. In the
present paper, we will discuss two examples of active emul-
sions which represent different routes to symmetry breaking.
One proceeds by a linear dynamic instability, the other by a
dynamic nucleation process originating from fluctuations.

2 Interfacial stress as a driving force

2.1 The Marangoni effect

A suitable driving mechanism for active droplets is the
Marangoni effect. It can be presented easily by considering
what happens if the excess free energy of an interface, i.e., the
interfacial tension, γ , varies along this interface. Since γ has
the dimension of energy per unit area, the gradient of γ , taken
along the interface, has the dimension of a stress. If the me-
dia adjacent to the interface are viscous liquids, it is clear that
this stress can only be compensated for by viscous stress in the
liquids. Hence a lateral variation of interfacial tension is inti-
mately connected to viscous shear flow in the adjacent media.
This is called Marangoni flow, or the Marangoni effect, which

Fig. 2 The so-called ‘tears of wine’, clearly visible in the shadow of
the glass (left). They form as a result of gradients in the surface
tension of the fluid, which in turn are due to variations in
composition (i.e., alcohol concentration). The generated force is
strong enough to easily overcome gravity48.

induces a current at the interface in the direction of increasing
interfacial tension. One of its most well-known occurrences
is the thermo-capillary effect, where one exploits the temper-
ature dependence of interfacial tension. By imposing suitable
temperature gradients, gradients in γ can be induced by virtue
of the temperature dependence of the latter, and liquids can be
transported in a well-controlled manner47. Perhaps the best
known example of Marangoni flow is shown in Fig. 2. The
different rates of evaporation of alcohol and water give rise to
gradients in composition, and hence in surface tension. The
resulting stresses are large enough to exceed gravity and shift
some of the liquid several millimeters upwards along the glass
surface.

The reason why Marangoni effects are particularly promis-
ing for transport processes, in particular at small scales, be-
comes apparent if one considers the typical scales of the in-
volved quantities. For interfaces between water and oil, for
instance, interfacial tensions are on the order of several milli-
Newtons per meter, while viscosities are several milli-Pascal
seconds. Dividing both quantities with respect to each other
yields the characteristic velocity of transport, the so-called
capillary velocity, which is on the order of several meters per
second. Hence for the required locomotion velocities of just
a few microns per second, Maragnoni effects might provide
enough drive already at minute lateral variations in interfacial
tension.

2.2 Flow fields near droplets

Let us now discuss the typical flow fields we expect to deal
with. For a single spherical droplet of radius R moving at
a velocity V with respect to an infinite bath of surrounding
suspension, the velocity field is obtained as a solution to the
Stokes equation with appropriate boundary conditions. In the
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rest frame of the droplet, it can be written as49

vr =

[
1− 2+3µ

2(1+µ)

R
r
+

µ

2(1+µ)

(
R
r

)3
]

V cosθ (1)

for the radial and

vθ =

[
1− 2+3µ

4(1+µ)

R
r
− µ

4(1+µ)

(
R
r

)3
]

V sinθ (2)

for the polar component if the polar axis coincides with the
direction of motion, and µ is the ratio of the viscosity inside
the droplet, ηd , divided by the viscosity of the surrounding
liquid, ηs. The flow velocity decays algebraically away from
the droplet surface into the surrounding liquid. On the droplet
surface we have vr = 0, and the tangential velocity is

u = vθ (r = R) =−V
sinθ

2(1+µ)
(3)

This represents a flow which has maximal velocity at the equa-
tor of the droplet and two stagnation points, one at each of its
poles. The viscous drag force is given by49

Fvisc = 2πRηsV
2+3µ

1+µ
(4)

which for a solid sphere µ → ∞ reduces to the well known
result Fvisc = 6πRηsV . If the viscosities are equal, we find
Fvisc = 5πRηsV .

If the droplet of radius R moves with a velocity V , the rate
of energy dissipation due to the flow along the surface is of
order 2πRV ∆γ , where ∆γ is the total variation of interfacial
tension along the surface. If we demand this to be equal to the
dissipation from the viscous resistance, FviscV = 5πRηsV 2, we
find

Ca =
ηsV

γ
≈ 2

5
∆γ

γ
(5)

which means that a quite small relative variation of interfacial
tension is sufficient to induce locomotion velocities of many
microns per second. Note that the droplet radius cancels out.
The quantity Ca introduced in eq. (5) is called the capillary
number, and will obviously be always very small as compared
to unity in our study. Hence, since ∆γ � γ in this case, the
droplet shape remains very close to spherical due to the (al-
most) spatially constant interfacial tension.

In an emulsion, the interface will be laden with some sur-
factant, which is necessary to stabilize the emulsion against
coalescence of droplets. This interfacial layer is in equilibrium
with the number density of surfactant molecules dissolved in
the surrounding liquid, as sketched in Fig. 3a. Its binding en-
ergy leads to a reduction of the interfacial tension, γ , of the
droplet surface. It thus suggests itself to try to introduce a spa-
tial variation of the interfacial tension (and thus Marangoni

stresses) by controlling the distribution of surfactant along the
droplet surface.

If the droplet moves solely as a consequence of such
stresses, with no external force exerted upon it, the external
flow field differs from eqs. (1) and (2), which have been de-
rived for spherical objects moving due to, e.g., a gravitational
force. In order to obtain the correct flow profile, we subtract
the external force solution which vanishes at the sphere sur-
face and consider the simplest mode of tangential flow, pre-
scribing u(θ) ∝ sinθ as in eq. (3) as the boundary condition.
This may be regarded as modelling, e.g., the action of cilia on
the surface of a spherical microbe (squirmer). In this rather
simple case, we find44

vr =

[
1−
(

R
r

)3
]

V cosθ (6)

for the radial and

vθ =

[
1+

1
2

(
R
r

)3
]

V sinθ (7)

for the polar component of the velocity field. The tangential
velocity at the surface is

u =
3
2

V sinθ . (8)

As long as the areal density of surfactant molecules, c, is
constant over the droplet surface, there will be no gradient in
interfacial tension and thus no Marangoni stress. If, however,
the droplets starts to move with respect to the surrounding liq-
uid, the coverage will change according to

∂c
∂ t

= k(c0− c)+∇(Di∇c−uc) (9)

where k is the escape rate of surfactant molecules into the sur-
rounding liquid, Di is the diffusivity of the surfactant within
the surface layer, and c0 the equilibrium surfactant coverage.
The result of this process is that there will be less surfactant at
the leading end of the drop than at the trailing end. This in turn
results in a Marangoni stress pointing towards the depleted
leading end, as indicated by the grey arrows in Fig. 3b to the
left. Since this stress is opposed to the flow field, Marangoni
stress impedes the motion of droplets in surfactant solutions50.
In order to introduce locomotion, this effect must be over-
come, even reversed. Below we will discuss ways how this
can be achieved.

As Fig.3b indicates, there are mainly two distinct ways of
using the surfactant layer for the generation of Marangoni
stresses. Either one induces a gradient in the surfactant cov-
erage (left), or a spatially inhomogeneous chemical reaction
transforms the surfactant into some other surfactant with dif-
ferent efficiency (right). Combinations of both processes may
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Fig. 3 (a) The surfactant used to stabilize the emulsion adsorbs to
the liquid interface, forming a mono-molecular layer of areal density
c. This layer is in equilibrium with the surrounding surfactant
concentration, ρs, and leads to a substantial reduction of the
interfacial tension, γ . (b) Two ways of generating Marangoni
stresses along the droplet surface. Left: the surfactant density has
been made inhomogeneous. Right: the surfactant density is spatially
constant, but a chemical reaction has reduced its surface activity
(molecules labelled in black) in an inhomogeneous way. In both
cases, the result is a Marangoni stress towards the region with higher
surface tension (grey arrows). The induced motion of the droplets
point into the opposite direction. (c) Flow pattern emerging in the
situations sketched in (b). The large arrow to the right indicates the
motion of the droplet with respect to the surrounding liquid. Of the
two stagnation points A and B, only B is being supplied with fresh
surfactant by advection.

as well be discussed, but we will restrict the present treat-
ment to the two ‘pure’ cases sketched in Fig. 3b. The general
scheme can be outlined as follows. Some non-equilibrium
process is needed which consumes the (pristine) surfactant
from the surface. The corresponding flow pattern, which
arises due to Marangoni stresses and is sketched in Fig. 3c, ad-
vects fresh surfactant to the leading edge stagnation point (B)
and its vicinity. This keeps the interfacial tension low, sustain-
ing the Marangoni stress, and thereby the flow pattern. If this
is achieved, the result closely models what is commonly called
a squirmer: a body which procures a finite streaming velocity
along its surface and thereby induces locomotion with respect
to the surrounding fluid. Although this general scheme ap-
pears quite straightforward, we will see that real systems may
exhibit substantial ramifications. In what follows, we demon-
strate this by comparing two active emulsion systems, the first
of which closely follows the outlined scheme, while the sec-
ond one is more complex.

3 Schemes utilizing chemical reactions

3.1 Experimental realization

There have been numerous examples of chemical reaction
schemes inducing droplet locomotion51–53. They all have in
common that they affect the surfactant and thereby the inter-
facial tension (right panel of Fig. 3b). In our experiments, we
prepared aqueous droplets with typical diameters of few tens
of microns in a continuous liquid phase consisting of squalane,
with mono-olein (MO) as a surfactant54. The surfactant con-
centration has been chosen well above the critical concentra-
tion for micelle formation (CMC) in order to reduce the ‘ex-
haust sensitivity’ of the system (see below). As a fuel, we
added a formulation to the droplets which leads to a steady
release of bromine (50 mM sulphuric acid, 28 mM sodium
bromate, 400 mM malonic acid, and 2.7 mM ferroin). The
bromine diffuses to the droplet surface and spontaneously re-
acts with the C=C double bond in the tail group of the MO,
thus changing its properties as a surfactant54,55. While the ten-
sion of the MO-laden interface between water and squalane is
1.3 mN/m, it increases to about 3 mN/m for brominated MO
(brMO)58.

We observed that the aqueous droplets undergo spontaneous
locomotion, with a speed on the order of a few microns per
second which does not seem to depend systematically on the
droplet size. It persists for several minutes while slowly de-
caying, and finally comes to rest. In order to determine the
flow profile around a squirming drop, we added small fluores-
cent colloids to the suspension and performed particle image
velocimetry (PIV) using a standard setup (ILA GmbH, Ger-
many). The result as directly obtained in the laboratory frame
is displayed in the left panel of Fig. 4. In the right panel, the
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Fig. 4 The velocity field around a squirmer droplet as measured by
means of PIV (image taken with permission from58). The length of
the scale bar is 100 microns, the magnitude of the velocity is color
coded (cf. color scale to the right) in units of microns per second.
Left panel: Velocity field in the laboratory frame of reference, as
obtained by PIV. Right panel: Velocity field in the rest frame of the
droplet. Yellow lines are stream lines of the flow.

proper motion of the droplet has been subtracted, such that
the velocity profile in the frame of reference of the droplet be-
comes apparent. Qualitatively, we see that the flow profile in-
deed resembles a field as expected for the lowest order mode,
as expressed in eqs. (6) and (7).

3.2 Properties of squirming droplets

Fig. 5 shows the dependence of the droplet velocity as a
function of the mono-olein concentration in the oil phase.
Note that the critical micelle concentration (CMC) for MO
in squalane is about 1mM/l. Hence we are well in the range
of a micellar solution, and the overwhelming majority of the
surfactant is stored in micelles. After an initial increase, the
velocity saturates at higher surfactant concentrations. At such
high concentrations, it is likely that the process of disinte-
gration of micelles near the droplet surface becomes the rate
limiting step, which is independent of concentration and thus
leads to a constant velocity.

This latter property provides another key feature of our sys-
tem which makes it particularly suited for experimental stud-
ies of collective motion. During an experiment, the concen-
tration of brMO gradually builds up from the ‘exhaust’ of the
many squirmers in a poorly controllable and spatially inho-
mogeneous fashion. Since the majority of the brMO becomes
trapped in the MO micelles, its effect is mainly to reduce the
effective concentration of MO in the oil. Fig. 5 tells us that
by choosing a high surfactant concentration, where there is al-
most no sensitivity of the squirmer velocity on the surfactant
density, we can also minimize the sensitivity of the velocity to
the concentration of brMO, thereby minimizing any unwanted
cross talk between the squirmers.

While the velocity does not depend noticeably on the sur-
factant concentration if this is large enough, it should depend

Fig. 5 (a) Squirmer velocity as a function of surfactant
concentration (black). Each point represents an average of 50
different squirmer droplets, each of diameter 80 microns.
Superimposed in blue are the corresponding cruising ranges (total
distance travelled, in units of the droplet diameter). (b) Traces of
locomotion speed (black) and optical transmission (red) for droplets
with Belouzhov-Zhabotinskii oscillations going on in their interior.

strongly on the supply of bromine. That this is indeed the
case can be demonstrated by means of a simple modification
of the experiment. The reader may have recognized that the
formulation added to the aqueous droplets is very similar to
the Belouzhov-Zhabotinskii-solution, which is capable of ex-
hibiting oscillatory behavior56,57. We can indeed introduce
such oscillations by properly adjusting the relative concentra-
tions of the constituents. The iron ions from the ferroin pro-
vide a means for assessing the oscillations optically, since they
strongly affect the optical transmission of the droplets. Fig. 5b
shows traces of the optical transmission superimposed to the
velocity of a single droplet. We clearly see that the velocity
changes in registry with the chemical oscillations, demonstrat-
ing the close connection between the bromine release rate and
the locomotion velocity.

3.3 Mechanism of locomotion

In order to discuss the basic mechanism responsible for the
observed droplet locomotion, we follow a line of argument
put forward earlier54 which has meanwhile been shown to be
rather universal45. The total coverage, c, of the droplet sur-
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face with the MO, either brominated or not, is assumed to be
roughly constant and in equilibrium with the micellar phase in
the oil. The brominated fractional coverage shall be called b.
If the droplet makes a movement due to, say, a thermal fluc-
tuation, such movement will be accompanied by some tan-
gential velocity field u(θ ,φ) with non-vanishing divergence,
∇u 6= 0. Since the integral of the divergence must vanish by
virtue of Gauss’ law, There will be regions of positive and re-
gions of negative divergence. Let us consider a region with
positive divergence. The layer of adsorbed surfactant will be
diluted here, and thus be replenished from the surrounding
suspension. As this provides predominantly fresh surfactant,
it is clear that the bromination density will decrease in regions
with positive ∇u. Consequently, there will be a Marangoni
stress pointing away from this region, thus tending to further
enhance the divergent flow. We see that this situation leads
to a linear instability, which we will briefly discuss in what
follows.

Let us consider, in the rest frame of the droplet, an axisym-
metric flow field, u(θ), along the droplet surface. The equa-
tion of motion for b is

∂b
∂ t

= k(b0−b)+∇(Di∇b−ub) (10)

which is equivalent to eq. (9), but for the brominated sub-
species only. The numerical value of k will be similar as
above, and we do not introduce a new symbol here. b0 is the
equilibrium coverage with brominated mono-olein (brMO). It
is determined by the bromine supply from inside the droplet
and the rate constant, k, of escape of brMO into the oil phase.
The first term on the rhs of eq. (10) describes the balance be-
tween bromination and brMO escape. The second term de-
scribes the change in the bromination density of the surfactant
layer due to transport along the droplet surface. Di is the dif-
fusivity of the surfactant within the interface.

The droplet motion and the surface flow, u(θ), are accom-
panied by a flow pattern within the droplet as well as in the
neighboring oil, which can be calculated analytically once
u(θ) is known50,59. The corresponding viscous tangential
stress exerted on the drop surface must be balanced by the
Marangoni stress, ∇γ(θ) = M∇b(θ), where

M = dγ/db (11)

is the Marangoni coefficient of the system. Expanding the
bromination density in spherical harmonics,

b(θ) =
∞

∑
m=0

bmPm(cosθ) (12)

we can express the velocity field50,59 at the interface as

u(θ) =
M

2ηs(1+µ)sinθ

∞

∑
m=1

m(m+1)bmC−1/2
m+1 (cosθ)

2m+1
(13)

where Cα
n denote Gegenbauer polynomials. Inserting this into

eq. (10) and exploiting the orthogonality relations of Gegen-
bauer and Legendre polynomials, we obtain

dbm

dt
=

[
mMb0

2ηs(1+µ)R
−m(m+1)

Di

R2 − k
]

bm (14)

for all m > 0. We see that the different modes decouple, as
far as linear stability is concerned. As long as b0 is small
enough, the expression in brackets is negative, and the resting
state is stable against fluctuations. However, when b0 exceeds
a critical value, the resting state is unstable, and the droplet
spontaneously starts to move.

It is of interest which of the spherical harmonics becomes
unstable first when b0 is gradually increased. Instability oc-
curs when the expression in brackets in eq. (14) becomes pos-
itive. It is straightforward to see that for sufficiently small
kR2/Di, this happens first for the lowest mode at m = 1. As k
becomes larger, the system is ‘stiffer’ concerning its propen-
sity to keep the coverage close to its equilibrium value, b0. The
driving term must then be increased, and one may anticipate
that this favors the development of higher order modes. If we
ask at which value of kR2/Di the m-th and the (m+1)-st mode
become unstable at the same drive, we find that the result is
simply m(m+2). In other words, for given rate and diffusion
constants, we find that the largest mode index m obeying

m≤

√
1+

kR2

Di
−1 (15)

is the index of the mode which becomes unstable first. For
k < 3Di/R2 this is always the lowest mode (m = 1), which
corresponds to the flow field of eq. (8).

The nonlinear term ub in the equation of motion for b(θ),
eq. (10), shows that the linear stability analysis we have pur-
sued so far is not expected to reveal a complete picture of
the process. After some finite time the bromination profile
across the droplet surface will not be anymore determined by
the fastest growing mode as suggested by eq. (14). Instead,
it will acquire a complex shape which has recently been eval-
uated by means of computer simulation60. It was found that
the steady state is indeed characterized by contributions from
several spherical harmonics. The most important ones are the
two lowest order modes, i.e., the coefficients b1 and b2. They
largely determine the behavior of the squirmer, in particular
as far as its hydrodynamic interaction with other squirmers
is concerned. For sgn(b2) = sgn(b1) the droplet behaves as
a ‘puller’, the flow field of which is reminiscent to swim-
mers like Chlamydomonas reinhardtii. For sgn(b2) 6= sgn(b1),
however, it rather behaves as a ‘pusher’, similar to Escherichia
coli. At high driving, bifurcations to autonomous oscillations
are found, which lead to periodic switching between pusher
and puller behavior60.
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Fig. 6 Geometry-driven rectification as a fingerprint of
non-equilibrium. Top: the active droplets are deposited in a
micro-fluidic chamber which is divided into two compartments by a
geometrically asymmetric divide. If the droplet motion were
thermal, there would be no net flux between the lower and top
compartment. Bottom: to each particle its trajectory is attached; red
trajectories go from the lower to the upper compartment (left), blue
trajectories go from the upper to the lower compartment (right).

In most cases, the leading b1-term dominates the flow
strongly enough that the flow fields as determined by PIV look
qualitatively similar. However, the corresponding behavior of
the swimmer can differ substantially. Hence we see that this
system exhibits a quite rich behavior, which has by far not
been explored or exploited yet. It can be controlled by ad-
justment of a few parameters, which makes it well suitable
for forthcoming experiments, e.g., on collective behavior of
squirmer-type swimmers.

3.4 Fingerprints of non-equilibrium

Aside from the self-sustained motion of our active droplets,
there is some fluctuation in the direction, resulting in locomo-
tion paths resembling persistent random walks54. It is impor-
tant to show clear evidence that this random motion is fun-
damentally different from brownian thermal motion, which
would never be able to lead to collective behavior different
from what is well-known for equilibrium fluids. A straightfor-
ward demonstration of non-equilibrium is shown in Fig. 6. A
micro-fluidic device has been set up consisting of a chamber
which is divided into two compartments by a geometrically
asymmetric dividing wall with a few openings. The wall has
the shape of arrow-head wall pieces with some space in be-
tween, as shown in Fig. 6. The width of the walls is approxi-
mately 100 microns. Initially, the density of droplets is equal
in both the upper and the lower compartment, as shown in the
top figure.

If the motion of the droplets were identical to a random ther-
mal motion, there would be no net flux between the two com-
partments, by virtue of detailed balance. In the bottom figure,

the trajectories of all particles, taken during ten minutes, are
overlaid, those of particles starting in the lower compartment
in red (left), and those of particles starting in the upper com-
partment in blue (right). Clearly, there are many more droplets
moving from the lower to the upper compartment than vice
versa. This effect of geometrically driven rectification clearly
shows the strongly non-equilibrium character of this system.

4 Schemes utilizing phase transformations

An obvious drawback of the system discussed above is that
due to the fuel being supplied from inside the droplets, the
cruising range in necessarily quite limited. Unless the con-
centration of chemicals in the droplets can be raised dramati-
cally, the fuel supply scales as the third power of the droplet
size. Since the dimensionless cruising range (as the figure of
merit of the system) is defined as the maximum travel dis-
tance divided by the droplet size, it scales as the square of the
droplet size. Hence it is naturally limited for systems of small
droplets, which are desirable for maximizing droplet number
and minimizing influences from , e.g., gravity. We therefore
discuss now a different scheme which derives its power sup-
ply from the suspension outside the droplet. At the same time,
it is interesting from a fundamental point of view since the
symmetry breaking process does not proceed through a linear
instability here.

4.1 Experimental realization

It is well known that droplets of oil may undergo self-
sustained locomotion or shape transformations when placed
in a solution of a suitable surfactant61. In our experiments,
we used 4-pentyl-4′-cyano-biphenyl (5CB) as the oil and
tetradecyl-trimethyl-ammonium bromide (TTAB) as the sur-
factant. The liquid crystal (LC) character of 5CB will prove
very useful for the visibilization of the velocity field. If the
surfactant concentration is well above the CMC, the stable
phase is a micro-emulsion consisting of micelles in each of
which there is a small amount of LC (swollen micelles). This
can be confirmed by neutron scattering (cf. Fig. 7a), which
shows that the micelles filled with LC are just a little larger
than the empty micelles. The overall structure of the fluid (i.e.,
suspended micelles) is not changed.

It is observed that the dissolution process, by which the LC
drop gradually shrinks until it vanishes completely in the solu-
tion, is accompanied by spontaneous locomotion of this drop.
Typical shrinking rates are about 0.1 µm/sec62 and rather in-
dependent of droplet size. Since the typical speed is of order
10 µm/sec as before, the cruising range of this system is of the
order of one hundred.

Fig. 7b shows the locomotion velocity of 50 micron diam-
eter droplets as a function of the TTAB concentration. Again,
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Fig. 7 Squirming LC droplet in a surfactant (TTAB) solution. (a)
Neutron scattering data show a pronounced peak corresponding to
the structure factor of micelles. The addition of LC leads to swelling
and a slight deformation of micelles, but no qualitative phase
change. Black, blue, green, and red curves correspond to 0, 1, 2, and
3 weight percent of 5CB, respectively. (b) Locomotion velocity sets
in at a TTAB concentration of several weight percent, well above the
CMC. It levels off at high TTAB concentrations. (c) Velocity field
around an LC squirmer (in laboratory frame) as revealed by PIV.
The yellow lines are stream lines of the flow.

we find an initial increase which at higher concentrations lev-
els off, thus providing a regime with potentially vanishing de-
pendence on exhaust concentration. Below a concentration of
5 weight percent, no locomotion is observed. This is still well
above the CMC. Fig. 7c shows that the velocity field around
the droplet, as revealed by PIV again, is qualitatively very sim-
ilar to what was observed with the chemically driven squirm-
ers (cf. Fig. 4a; yellow lines are again the stream lines of the
flow).

The fact that 5CB is in the nematic state at room temper-
ature can be exploited to study the velocity field inside the
droplets at least qualitatively. The interplay between the di-
rector field and the velocity field tends to align their axes of
symmetry with respect to each other63,64. It is interesting to
follow the ‘impact’ of two moving droplets with an optical
microscope under crossed polarizers, as shown in Fig. 8. Ini-
tially, the droplets move towards each other, and the point de-
fect associated with the director field can be discerned in each
droplet at its edge, pointed towards the other droplet (i.e., at its
leading edge of motion). As the droplets come close to each
other, they stop and turn their director fields slowly around,
turning about a horizontal axis perpendicular to the microflu-
idic channel they are confined to. After this process they with-
draw from the region of impact, and the point defects can be
seen again at the respective leading edges of motion.

In ensembles of many droplets, their hydrodynamic interac-
tion gives rise to a wealth of collective phenomena. As Fig. 9

Fig. 8 Optical micrograph of a pair of LC (5CB) squirmer droplets
approaching each other in a microfluidic channel (indicated by the
white dashed lines), taken under crossed polarizers. The numbers at
the bottom indicate the elapsed time in seconds. The director field
aligns with the velocity field, such that the latter can be directly
observed. In the vicinity of the ‘impact’ at t = 4.7 sec, the velocity
field gradually turns around in both droplets. Before the impact, the
point defects which can be discerned at the droplet perimeters are
facing each other. After the impact, they point into opposing
directions.

Fig. 9 Snapshots of collective motion of squirming LC droplets. In
the right panel, part of the raft has moved out of focus, which shows
that it propagates in three dimensions an integral structure. Such
dynamic crystalline rafts seem to be more stable when the droplets
are in the nematic state. According to our observations, the
back-action of the nematic director field onto the flow pattern is
sufficient to affect the hydrodynamic interaction, and thereby the
collective behavior. the droplet size is approximately 50 microns.
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shows, they tend to arrange into crystalline rafts (left panel),
which may take off against buoyancy into the third dimension
(right panel). This appears to be due to the convective cur-
rents induced by the superposition of individual flow fields of
the squirmers, but this needs further confirmation. What we
want to stress here is that the quasi-planar arrangement of the
raft tends to remain intact even after losing contact with the
container bottom.

It is interesting to note that the state of the LC constituting
the droplet considerably affects this behavior. If the sample is
heated above the nematic-isotropic phase transition tempera-
ture, the tendency to form crystalline rafts is strongly reduced
and the rafts start to disintegrate.

4.2 Mechanism of locomotion

Let us now elaborate possible mechanisms which may be at
the basis of this locomotion. Since there is now only one type
of surfactant involved, the only possible source of Marangoni
stresses is a lateral variation of surface coverage with surfac-
tant molecules. If the surrounding suspension contains the sur-
factant at concentrations exceeding the CMC, as is the case
in our experiments, such variations are expected to be rather
small. In order to gain some insight into the magnitude of
effects we should expect, we start with a consideration of the
surfactant concentration profiles normal to the droplet surface.
Subsequently, we will discuss how these profiles may be af-
fected by advection, and how a self-sustained lateral gradient
in surfactant density (and hence surface tension) may arise.

The fluid outside the LC drop consists of water, surfactant,
and possibly some dissolved LC molecules. If there are empty
surfactant micelles (i.e., containing no LC), whose number
density shall be called ne, the number density of the free sur-
factant molecules, ρs, is equal to the CMC in equilibrium.
If for some reason ρs falls below the CMC in some region,
micelles will disassociate until ρs is replenished to the CMC
again. There may be also micelles filled with LC (swollen
micelles), the number density of which we call n f . Because
of the presence of the internal interface between the surfac-
tant and the LC inside these micelles, there is no such direct
exchange equilibrium with the free surfactant phase: in or-
der to have surfactant molecules be dissolved from the filled
micelles, ρs would have to drop quite substantially below the
CMC.

This is in line with the fact that already well below the CMC
there is an almost complete monolayer of surfactant molecules
at the interface between the LC drop and the aqueous phase.
This was shown experimentally65 for a quite similar system,
namely the interface between 8CB (4-octyl-4’-cyanobiphenyl)
and water with CTAB (hexadecyltrimethylammonium bro-
mide) as surfactant. The CMC of CTAB in water is about
1 mM, but already at CTAB concentrations around 0.001 mM,

Fig. 10 Closeup view of the droplet surface, showing the micellar
and molecular pathways of solubilizing the liquid crystal (LC) in the
micellar suspension surrounding the droplet. In the micellar
pathway, micelles are filled with LC when they impinge on the
LC/water interface. In the molecular pathway, freely diffusing LC
molecules are trapped in the suspended micelles.

the anchoring of the LC at the LC/water interface is strongly
affected, which suggests that a large fraction of the interface
is already covered with CTAB molecules. Above about 0.05
mM, no change in anchoring strength is anymore observed.
These findings underpin the strong affinity of the surfactant to
the LC/water interface, and suggest that the surfactant density
which would be in equilibrium with LC-filled micelles is far
below the CMC, due to the internal LC interface present in the
filled micelles. It is to be expected that this is qualitatively the
case as well in all similar systems.

In what follows, we will consider the densities of surfactant
molecules either free in solution (ρs), bound in empty micelles
(ρe), or bound in LC-filled micelles (ρ f ). These can be ex-
pressed using the average number of surfactant molecules in
an empty micelle, Ne, and the average number of surfactant
molecules in an LC-filled (swollen) micelle, N f . The number
densities of surfactant molecules bound in micelles are then
ρe = Nene and ρ f = N f n f , respectively.

There are mainly two mechanisms to be considered for sol-
ubilization into a micellar phase66–70, which are sketched in
Fig. 10. Either the micelles are filled directly at the droplet
interface, via a local process in which the micelle and the in-
terface interact. This is called the micellar pathway. Or the
solute is present in some small concentration in the bulk aque-
ous phase, and enters the micelles from there. This is called
the molecular pathway.

4.2.1 Micellar pathway. Let us assume for a moment
that the solubility of the LC in the aqueous phase is negligi-
ble. Hence the solubilization must take place directly at the
interface, and the molecular pathway is excluded. Empty mi-
celles impinging on the interface are spontaneously filled with
a few LC molecules. Their (average) number per filled micelle
shall be called q below. Assuming that micelles may become
filled, but are neither destroyed nor generated at the interface,

10 | 1–16

Page 10 of 16Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 11 Concentration profiles in the diffusive steady state for the
two cases discussed. (a) Micellar pathway. The intersection of the
(thin dotted) tangent to the free surfactant concentration profile at
z = 0 defines the thickness of the diffusive boundary layer, λ . (b)
Molecular pathway. The zone where the formation of filled micelles
takes place extends over the ’reactive’ boundary layer with thickness
Λ.

we have
De∂zne(z)|z=0 =−D f ∂zn f (z)|z=0 (16)

or, in terms of the surfactant molecule number densities,

De

Ne
∂zρe|z=0 =−

D f

N f
∂zρ f |z=0. (17)

De and D f denote the diffusivities of the empty and filled mi-
celles, respectively.

It is important to appreciate that since N f >Ne, there will be
additional surfactant molecules needed to fill a micelle. Since
these need to come from the immediate vicinity of the inter-
face, the surfactant layer at this interface will be depleted. As
a consequence, the equilibrium between this surfactant layer
and the surrounding free surfactant molecules is disturbed.
Hence there will be surfactant molecules from the surrounding
liquid adsorbing at the interface in order to replenish the sur-
factant layer. This leads to a dynamic equilibrium between the
surfactant flowing diffusively towards the interface and excess
surfactant bound in filled micelles which diffuse away from
the interface. The current of free surfactant molecules towards
the interface must be accompanied by a density gradient, such
that the density of free surfactant will be less than the CMC

close to the interface. This is sketched in Fig. 11a. Conse-
quently, empty micelles, which are at equilibrium only with
surfactant at the CMC, will disassociate in this domain, trying
to replenish the free surfactant phase.

We will now discuss to what density profiles these processes
give rise, considering stationary quantities throughout. If the
current of free surfactant molecules towards the interface is js,
it must be accompanied by a gradient in the density according
to

js(z = 0) =−Ds∂zρs(z)|z=0, (18)

where Ds is the diffusivity of free surfactant molecules. Far
away from the interface, ρs is equal to the CMC, and its gradi-
ent vanishes. Hence there must be a zone of surfactant sources
close to the interface to compensate for the non-zero second
derivative of the density. These sources are just the empty mi-
celles which dissolve due to the reduced surfactant density in
their immediate vicinity. Since the equilibrium between the
empty micelles and the surfactant at the CMC is a dynamic
one, we can assume that the rate of micelle dissolution is just
proportional to the deviation of the surfactant concentration
from the CMC. Denoting the latter by ρM , we have

De∂zzρe =−Ds∂zzρs =
1
τ

(
1− ρs

ρM

)
ρe, (19)

where τ is the life time of an empty micelle in distilled
water(ρs = 0), which is in the millisecond range72,73. We also
can extract a natural length scale of the system,

l =
√

τDs (20)

which corresponds to the distance over which a free micelle
would be able to diffuse in pure water before it is dissolved.
We expect this to be well below one micron.

Let us consider the deviation of the surfactant density from
the CMC in the form

f (z) = 1− ρs

ρM
(21)

such that f (z) ∈ [0,1]∀z≥ 0. The first equality in eq. (19) can
be integrated twice, which by combination with eq. (21) yields

ρe

ρM
= α +β z+κ f (z), (22)

where α , β , and κ = Ds/De are constants. The second equal-
ity in eq. (19) then leads to a differential equation for f (z),

f ′′ =
1
l2 f (α +β z+κ f ) (23)

where the prime denotes differentiation with respect to z. The
form of eq. (21) shows that we will have to find asymptotically
vanishing solutions, f (z→+∞) = 0.
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Inspection of eq. (22) shows that far from the interface
( f (z) ≈ 0), the density of empty micelles (and hence of the
surfactant bound in them) follows a linear profile with slope
β . If C+ is the surfactant concentration in excess of the CMC
(in other words, the total surfactant concentration is ρM +C+)
far away from the interface, we simply have

β =
C+

ρM
L−1 (24)

where L is a macroscopic length determined from the system
geometry. For a spherical drop with radius R at rest in an
infinite bath of suspension, we have L = R.

In order to find an expression for β , we note that there is
no net current of surfactant wherever ρs = ρM = const, which
is the case far away from the interface. Hence all surfactant
transport towards the interface region is carried by the empty
micelles, and all transport of surfactant away from the inter-
face region is carried by the filled micelles. Far away from the
interface, we therefore have

De

ρM
∂zρe = Deβ =−

D f

ρM
∂zρ f . (25)

Since there is no source nor sink for filled micelles away from
the interface, ρ f must be strictly linear everywhere. Hence its
gradient is the same immediately at the interface. We can then
combine eqs. (17), (22), and (25) to find

Deβ

(
1−

N f

Ne

)
=

N f

Ne
Ds f ′(0), (26)

and hence
f ′(0) =

Ne−N f

κN f
β , (27)

which is negative since N f > Ne. Together with the solutions
of eq. (23), eq. (27) provides a relation between β (which can
be taken as a measure for the overall rate of the dissolution
process), and f (0), which determines the coverage, c, of the
interface with surfactant.

We can gain an upper estimate for f (0) from inspection of
eq. (23). Since empty micelles are converted into filled ones at
the interface, we have ρe(0) = 0, and therefore α = −κ f (0).
Expanding ρe(z) in a Taylor series and neglecting terms higher
than linear, we find

ρe

ρM
≈ [β +κ f ′(0)]z =

Ne

N f
β z. (28)

Rewriting now eq. (23) in terms of the auxiliary variable

y =
(

Neβ

N f l2

)1/3

z (29)

we obtain
d2

dy2 f = y f (30)

which is of Airy type and has the solution74 f (y) ∝ Ai(y). For
non-negative argument, Ai(y) is positive, starts at y = 0 with
a negative slope, and decays monotonically to zero for large
y. Using74 Ai(0) = 0.3550 and Ai′(0) = −0.2588, we can
directly derive the thickness of the boundary layer, λ . We find

λ

l
= 1.372

(
N f

Ne

)1/3

(β l)−1/3 (31)

(−Ai(0)/Ai′(0) = 1.372). For the depletion of free surfactant
close to the interface, we have f (0) = λ f ′(0), and therefore
with (27)

f (0) = 1.372
N f −Ne

κN f

(
N f

Ne

)1/3

(β l)2/3 . (32)

Inserting numbers, we realize that f (0) will be small as com-
pared to unity.

In order to estimate the consequences such depletion will
have on the coverage of the interface with surfactant, we as-
sume that the surfactant density at the interface follows a
Langmuir isotherm71, such that

c(ρs) = cML
ρs

ρL +ρs
, (33)

where cML corresponds to a completely filled monolayer. ρL
denotes the ‘Langmuir’ surfactant density which is in equilib-
rium with a half-filled surfactant monolayer at the interface,
c/cML = 0.5. We have seen above in section 4.2 that ρL� ρM .
Since ρs(0) = ρM[1− f (0)] and f (0) is small, we can expand
c and find c

cML
≈ 1− ρL

ρM
− ρL

ρM
f (0). (34)

Qualitatively, we see from eqs. (32) and (34) that increasing β

results in a decrease of surfactant coverage and hence in an in-
crease of the interfacial tension. It is quite counter-intuitive
that the surfactant coverage should decrease when the rate
of advection of fresh surfactant (i.e., of empty micelles) in-
creases. The obvious reason is that the filling of the micelles
itself consumes surfactant, thus providing a sink, not a source.
We conclude that the micellar pathway cannot give rise to lo-
comotion in this system.

4.2.2 Molecular pathway. If there is appreciable solu-
bility of the LC in the aqueous phase, empty micelles may be
filled from dissolved LC while they are freely suspended in
the solution, away from the interface. This process is particu-
larly interesting to consider for ionic surfactants (such as ours,
see section 4.1), since the charge of the surfactant monolayer
adsorbed at the interface repels the empty micelles and thus
makes a micellar process quite unlikely. The situation is then
roughly as sketched in Fig. 11b. If we assume for simplicity
that micelles are filled within some more or less narrow region
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away from the interface, the density of empty micelles is zero
within a boundary layer of finite thickness close to the inter-
face. In this case, we may expect that the density of free sur-
factant can be considerably smaller close to the interface than
in the case of micellar solubilization. Hence the depletion of
the surfactant layer may be substantially stronger.

If we now define the plane of zero z not to be at the inter-
face but within the region where the first LC molecules enter
the micelles, we can use all equations derived above for the
domain of positive z. We estimate the profiles for z < 0 by as-
suming that micelles keep absorbing LC molecules and, con-
comitantly, free surfactant molecules, throughout the bound-
ary layer left of the z-axis at a roughly constant rate. The den-
sity profile of the LC molecules, ρLC, acquires then a parabolic
shape, with the boundary conditions

∂zρLC|z=0 =−
De

DLC
∂zρe|z=0 (35)

and
∂zρLC|z=−Λ = q∂zρLC|z=0 (36)

q is the number of LC molecules in a filled micelle and DLC is
their diffusivity in the aqueous phase. The rate of dissolution
of LC can be written as69

DLC∂zρLC|z=−Λ =−h [ρ0−ρLC(−Λ)] (37)

where ρ0 is the equilibrium solubility of the LC in water, and
h is the corresponding rate constant of dissolution. It is then
straightforward to derive

Λ =
2

1+q

[
DLC

De
N f

ρ0

ρM
β
−1− qDLC

h

]
. (38)

For small β , Λ � λ , since the latter scales as β−1/3 (cf.
eq. (31)) while Λ ∝ β−1. With increasing β , Λ becomes
smaller and finally vanishes at a finite dissolution rate.

For the depletion of surfactant close to the interface, we use
the boundary condition that ∂zρs = 0 at the interface (z=−Λ),
and that

Ds∂zz =
N f −Ne

q
DLC∂zzρLC (39)

everywhere within the boundary layer for negative z. This fi-
nally yields for the depletion of surfactant with respect to ρM
(i.e., the CMC) at the interface, ∆ρs = ρM−ρs(−Λ). We ob-
tain, using eq. (32),

∆ρs

ρM
=

N f −Ne

κN f

[
1.372

(
N f

Ne

)1/3

(β l)2/3 +P
(

lhρ0

Deρeq
−β l

)]
(40)

with

P =
DLC

lh
(q−1)
(q+1)

. (41)

The latter represents the ‘background’ depletion which is ob-
tained when β = 0, i.e., when the surfactant concentration in
the suspension equals the CMC. The first term on the rhs of
eq. (40) stems from the profile for positive z, while the second
term represents the region of negative z. The main difference
with respect to our findings for the micellar pathway is that
we have now, under certain conditions, a decrease of the de-
pletion, and hence of surface tension, with increasing driving
parameter, β . As opposed to the simple picture outlined at
the end of section 2, this is not due to the balance of advected
‘fresh’ surfactant, but entirely due to the change in the bound-
ary layer thickness, Λ.

4.3 The role of advection

So far we have not identified the mechanism which breaks the
symmetry of the homogeneous surfactant distribution on the
droplet surface. What we have learned, however, is that the
concentration profiles of the diffusing species exhibit strong
non-trivial spatial variations only within a boundary layer with
a thickness very small as compared to the size of the droplet.
We will see how we can exploit this knowledge in what fol-
lows. As opposed to the chemically reactive scheme discussed
in section 3, we have now to include advection in the model in
an explicit way. It is clear that a combination of diffusion and
advection leads to equations one can never hope to solve an-
alytically. However, we may try nevertheless to envisage the
principal processes which are expected to be relevant. We will
consider a droplet moving at a certain velocity, V , and estimate
the effect of the corresponding distortion of the concentration
profiles on the surfactant depletion at the droplet surface. We
will then use the results obtained above to see whether this
gives rise to Marangoni stresses which are sufficient to main-
tain the droplet motion.

The flow field around the moving droplet has been given in
eq. (8). On the axis of symmetry and close to the surface, we
can write down the advective flow velocity outside the droplet
quite generally from the local divergence of the tangential flow
field at the surface. Since the three dimensional flow must be
source free, we have divv = ∂rvr +∇u = 0, and hence

∇u =
V
3R

. (42)

which is readily seen from eq. (6) at θ = 0. For any such spot
on the drop where the tangential field is divergent (∇u > 0),
the velocity along the radial axis above the divergent spot (z)
is given to linear order in z by

vz =−z∇u =
−V z
3R

. (43)

Let us now explore the consequences of this radial flow on
the distribution of empty micelles along the symmetry axis.
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For the rate of change of their density, we have

∂tρe = De∂zzρe +
V z
3R

∂zρe. (44)

We consider the stationary situation, hence

∂zzρe =
−V z
3DeR

∂zρe. (45)

This is straightforward to solve, with boundary conditions
ρe(0) = 0 and ρe(z→ ∞) =C+. The result is

ρe(z) =C+erf
[

z

√
V

6DeR

]
(46)

where for erf(x) we use the definition

erf(x) =
2√
π

x∫
0

e−z2
dz. (47)

Close to the surface, this gives rise to an extra normal current
of empty micelles, which can be treated as an increment to the
driving parameter β . By combining eq. (24) with the deriva-
tive of eq. (46), this increment can be derived to be

δβ =
C+

ρM

√
2V

3πDeR
. (48)

Hence we have infinite ‘sensitivity’ of β to small drift veloci-
ties, V . In other words, any small drift will induce a divergent
tangential velocity field on the droplet surface (∇u 6= 0) which
is sufficient to maintain this motion, even to accelerate it. This
instability is not linear, and different modes in terms of spher-
ical harmonics will not decouple as in eq. (14). Nevertheless,
we can conclude that the system is unstable with respect to
fluctuations whenever the slope of ∆ρs(β ) is negative.

In order to discuss this in some detail, we plot the deple-
tion according to eq. (40) qualitatively as a function of the
driving parameter, β . This is shown in Fig. 12. For small
β , the depletion increases, similar to what we found for the
micellar pathway. This leads to an increase of the local inter-
facial tension, and thus to a Marangoni stress pointing towards
the considered area. Consequently, the system is dynamically
stable under these conditions, and there will be no symmetry
breaking and hence no locomotion.

If, however, the surfactant concentration is sufficient to lo-
cate the system to the right of the maximum (β > βc), any
fluctuation leading to a divergent tangential velocity field (i.e.,
∇u > 0) will decrease the depletion and hence decrease the in-
terfacial tension in that area. This results in a Marangoni stress
pointing away from this area, thus further enhancing the flow
velocity. The first result we can note down is that there must
be a minimum concentration of surfactant, corresponding to

Fig. 12 Qualitative variation of the depletion of free surfactant close
to the interface, as a function of driving parameter for the molecular
pathway. Depending on the slope of the curve, we have either a
stable or an unstable situation. For large driving (β > β ∗), the
surface is saturated with surfactant, such that there is no depletion.

the maximum of ∆ρs, below which there will be no locomo-
tion. We find βc by demanding the derivative of (40) to vanish.
This yields

Ccrit
+

ρM
= Rβc = 0.765

N f

Ne

[
hl(q+1)

DLC(q−1)

]3 R
l
. (49)

This corresponds to a surfactant concentration which is above
the CMC, as the latter corresponds to β = 0 (cf. eq. (24)).
This is indeed in accordance with the sharp threshold we ob-
serve for the onset of locomotion, well beyond the CMC (cf.
Fig. 7b).

The spot where the divergent velocity field has developed
will take the role of the leading edge of motion, and the deple-
tion decreases further while the droplet velocity increases. The
latter will saturate when it has reached a value corresponding
to the total variation in surface tension, as we have estimated
above (cf. eq. (5)). This value will be independent of surfac-
tant concentration. If the latter is increased well beyond the
maximum at βc, the total variation of interfacial tension along
the droplet surface will decrease, since there is no depletion
anymore for β > β ∗. Hence the droplet velocity will as well
decrease again. All this is in accordance with the data shown
in Fig. 7b.

At all stages of the symmetry breaking process, the spa-
tial variation of the surface tension should be represented by a
quite sharp kink rather than a simple spherical harmonic. This
is in stark contrast to the system discussed in section 3, where
the symmetry breaking proceeds via linear instability of low-
order spherical harmonics.
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5 Conclusions

Active emulsions, i.e., emulsions the droplets of which per-
form autonomous locomotion, are promising model systems
for the study of collective behavior far from thermal equilib-
rium. However, although the individual droplet is consider-
ably simpler than the active species it may model, such as
a bacterium or plancton cell, understanding and controlling
its mechanism of locomotion sometimes poses a considerable
task. In the case of chemically driven droplets, the emergence
of locomotion seems to be largely understood. We have dis-
cussed that experiments, analytical theory, and numerical sim-
ulations have reached good agreement. In contrast, in the con-
ceptually much simpler class of systems which are driven by
physico-chemical dissolution processes (formation of a mi-
croemulsion), the details of the mechanism are still far from
being understood. We have tried here to outline what we be-
lieve is the first sketch of a theory of locomotion in such sys-
tems. It is worthwhile to note that according to this model, a
molecular pathway is required for locomotion to occur, while
a purely micellar pathway of dissolution does not lead to any
such process. Experiments and simulations will be necessary
to corroborate the picture put forward here.

What is of practical interest for simulations is that nontriv-
ial spatial density variations of the involved species (surfac-
tant molecules and micelles) are to be expected only within a
very narrow region close to the interface. Hence in simula-
tions one only needs to consider the densities of the involved
species outside this boundary layer, where they behave as pas-
sive scalars. Furthermore, it seems that only a single such
field, namely the density of empty micelles, needs to be con-
sidered. As opposed to locomotion of droplets containing re-
actants affecting the surfactant directly54, one needs to discuss
the full advection dynamics to reproduce the dynamic instabil-
ity leading to symmetry breaking and locomotion.
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List of Symbols

b fraction of brominated surfactant at the interface
bm m-th order spherical harmonic of b
C+ surfactant concentration in excess of the CMC
Ccrit
+ critical value of C+ at which locomotion sets in

Ca capillary number, eq. (5)
c surfactant density at the droplet surface, eq. (9)
D j diffusivity of species j
h rate constant of dissolution of LC into water, eq. (37)
k rate constant of dissolution of surfactant, eq. (9)
l intrinsic length scale, eq. (20)
m mode index of spherical harmonics
M Marangoni coefficient, eq, (11)
Ne number of surfactant molecules in an empty micelle
N f number of surfactant molecules in a filled micelle
q number of LC molecules per filled micelle
r radial coordinate
R radius of droplet
u tangential flow velocity along droplet surface
v 3D flow velocity field, eqs. (6) and (7)
V velocity of the droplet in the laboratory frame
β normalized surfactant micelle concentration, eq. (24)
γ interfacial tension
η j viscosity of fluid j
θ polar angle in spherical coordinates
κ ratio of diffusivities, eq. (22)
λ thickness of ‘micellar’ boundary layer, eq. (31)
Λ thickness of ‘molecular’ boundary layer, eq. (38)
µ ratio of viscosities, eqs. (1) and (2)
ρs density of free surfactant
ρe density of surfactant bound in empty micelles
ρ f density of surfactant bound in filled micelles
ρL ‘Langmuir’ surfactant density, eq. (33)
ρM critical micelle concentration (CMC)
∆ρs surfactant depletion at interface
ρm density of surfactant bound in micelles
τ lifetime of empty micelle in pure water
∂y partial derivative with respect to the variable y
∇ nabla operator
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