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We numerically investigate colloidal dimers with asymmetric interaction strengths to study how
the interplay between molecular geometry, excluded volume effects and attractive forces determines
the overall phase behavior of such systems. Specifically, our model is constituted by two rigidly-
connected tangent hard spheres interacting with other particles in the first instance via identical
square-well attractions. Then, one of the square-well interactions is progressively weakened, until
only the corresponding bare hard-core repulsion survives, giving rise to a “Janus dumbbell” model.
We investigate structure, thermodynamics and phase behavior of the model by means of successive
umbrella sampling and Monte Carlo simulations. In most of the cases, the system behaves as a stan-
dard simple fluid, characterized by a gas-liquid phase separation, for sufficiently low temperatures.
In these conditions we observe a remarkable linear scaling of the critical temperature as a function of
the interaction strength. But, as the interaction potential approaches the Janus dumbbell limit we
observe the spontaneous formation of self-assembled lamellar structures, preempting the gas-liquid
phase separation. Comparison with previous studies allows us to pinpoint the role of the interaction
range in controlling the onset of ordered structures and the competition between the formation of
these structures and gas-liquid condensation.

INTRODUCTION

Recent investigations of the phase behavior of colloidal
particles have shown that anisotropies in the molecular
geometry, as well as in the properties of interactions, give
rise to a variety of different phase equilibria and self-
assembled structures [1, 2]. With reference to the present
study, considerable attention is currently paid to colloidal
dumbbells — i.e. particles composed by two connected
colloidal spheres — especially because of the modern
ability to synthesize such molecules with a rich assort-
ment of aspect ratio, size and interaction properties, in-
cluding dumbbells with asymmetric functionalization of
the two component spheres [3–10]. As for the technolog-
ical impact, recent studies have demonstrated the use of
dumbbell colloids as building blocks for the fabrication of
new materials [11], photonic crystals [12], self-assembled
structures under the effect of electric fields [13] and other
complex structures [14].

Theoretical and simulation studies play a significant
role in understanding the collective behavior of these
colloids. In particular, recent studies of hard dumb-
bells have focused on their thermodynamic and struc-
tural properties [15–17], the stability of disordered crystal
structures [18], the nucleation processes [19], the density
profiles under confinement [20]. In the case of square-well

(SW) dumbbells, it has been shown that the phase behav-
ior sensitively depends on the aspect ratio of the molecule
and the strength of attractive interactions [21–23]; these
may be tuned to promote the development of spherical
clusters (micelles) becoming more and more structured as
the temperature is lowered [24]. For strong interaction
strengths, as compared to the thermal energy, colloidal
dumbbells may also form a gel [25, 26] or a glass [27]. All
such studies have been carried out in the more general
perspective of investigating the self-assembled structures
and phase behavior of simple colloidal models to be used
as prototypes for a variety of molecular systems whose
structural and thermodynamic properties are currently
under scrutiny.

In this work we carry out a Monte Carlo simulation
study of prototype dumbbell colloids, in order to investi-
gate how the interplay between steric effects, due to the
molecular geometry, and the asymmetries in the attrac-
tive interactions influence the overall appearance of the
fluid phase diagram. Specifically (see Fig. 1), we study
a particular class of dumbbell models, initially formed
by two identical tangent hard spheres, each surrounded
by an attractive square-well with an interaction range
fixed at half the hard-core diameter. Then, one of the
SW interaction is weakened — by progressively reducing
the corresponding well depth till nought — so to end up
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3

Parameters σ and ε entering Eqs. (2) and (3) provide,
respectively, the unit of length and energy, in which terms
we define the reduced temperature T ∗ = kBT/ε (with
kB as the Boltzmann constant), density ρ∗ = (N/V)σ3

(where N is the number of particles and V the volume)
and pressure P ∗ = Pσ3/ε. In all calculations we have
fixed λ = 0.5. At the opposite end (Janus dumbbell,
right panel of Fig. 1), the SW attraction on site 1 is
completely switched off, so that the mutual interactions
among sites on different molecules become:

V11(r) ≡ V12(r) = VHS(r)

V22(r) = VHS(r) + VSW(r) .
(4)

In order to understand the properties of our systems on
moving between these two models, we have studied a
sequence of intermediate cases (central panel of Fig. 1)
obtained by progressively reducing the square-well depth
of site 1 from ε1 = 1 (in unit of ε) to ε1 = 0, corre-
sponding, respectively, to the SW and Janus dumbbell
models. Such intermediate models are again described
by Eqs. (1)-(3), but for the replacement of ε with ε1 in
the V11(r) and V12(r) interactions. In particular, we have
investigated the cases ε1 = 1, 0.70, 0.50, 0.30, 0.20, 0.15,
0.10, 0.05, 0.025, 0.
To determine the gas-liquid coexistence conditions, we

have calculated for each model the coexisting densities
at several different temperatures by means of SUS simu-
lations [49] in the grand canonical ensemble. According
to this technique, the number of particles in the system,
ranging from zero to Nmax, is divided into many small
windows of size ∆N . For each window i in the interval
N ∈ [Ni, Ni+∆N ], we have carried out a grand-canonical
MC simulation, avoiding the insertion or deletion of par-
ticles outside the range of the window [51]. This proce-
dure allows one to calculate the histogram Hi monitoring
how often a state with N particles is visited in window i.
The full probability density is then given by the following
product:

P (N)

P (0)
=

H0(1)

H0(0)
×

H0(2)

H0(1)
× · · ·

×
H0(∆N)

H0(∆N − 1)
× · · · ×

Hi(N)

Hi(N − 1)
(5)

The advantage of using such a method relies both in the
possibility to sample all microstates without any bias-
ing function and in the relative simplicity to parallelize
the run, with the speed gain scaling linearly with the
number of processors. Once P (N) is obtained at fixed
temperature, we have applied the histogram reweight-
ing technique [50], that emulates the effect of adjusting
the chemical potential, to eventually obtain the coexis-
tence points. This is done by reweighting the densities
histogram until the regions below the two peaks (in the
low- and high-density phases) attain the same area. Fi-
nally, we have fitted the calculated gas-liquid coexistence

points by means of the scaling law for the densities and
the law of rectilinear diameters, with an effective non-
classical exponent β = 0.32 [52], in order to determine
the full gas-liquid coexistence curves together with the
corresponding critical points.
The peculiar case ε1 = 0.1 has been investigated also

by NPT Monte Carlo simulations. We have employed to
this purpose 343 molecules enclosed in a cubic box with
standard periodic boundary conditions. For each state
point, twenty million Monte Carlo sweeps, each consist-
ing of one trial move per particle, have been equally di-
vided in order to first equilibrate the system and then to
collect data.

RESULTS AND DISCUSSION

Selected density distribution probabilities P (ρ), as ob-
tained by SUS simulations, are reported in Fig. 2a for all
values of ε1 investigated in this work. Specifically, such
probabilities correspond to the temperatures whereby
P (ρ) first displays a double-peak behavior, providing in-
dication on the position of critical points. In all simu-
lations we have employed a box length Lbox = 13.57σ
but for ε1 = 0.1, for which Lbox = 20σ. The gas-liquid
coexistence curves are reported in panel (b) of the same
figure.
Critical temperatures, T ∗

c , and densities, ρ∗c , as func-
tions of ε1, are shown in Fig. 3. Numerical values are
reported in Table I. As visible, the critical temperature
decreases almost linearly with ε1; on the other hand, the
critical density stays almost constant (ρ∗c ≈ 0.15) for high
values of the interaction strength, with a drastic decrease
for lower values, as signaled by the “knee” at ε1 ≈ 0.5.
Figure 2b documents how the observed decrease of ρ∗c for
ε1 < 0.5 is due to a progressive shift of the gas branch
of the coexistence curve towards lower densities. Such a
trend is not accompanied by a corresponding shift in the
liquid branch; as a consequence, the binodal curve ap-
pears “stretched”, loosing the rather symmetrical shape

TABLE I. Critical parameters of different models investigated
in this work. Uncertainties correspond to the accuracy we
have ascertained the first occurrence of a double peak in P (ρ).

ε1 T ∗

c ρ∗c

1.00 1.56±0.01 0.146±0.001

0.70 1.21±0.01 0.146±0.002

0.50 0.98±0.01 0.143±0.002

0.30 0.74±0.01 0.125±0.004

0.20 0.61±0.01 0.10 ± 0.01

0.15 0.55±0.02 0.09 ± 0.01

0.10 0.47±0.02 0.07 ± 0.02
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FIG. 2. Panel (a): density probability distribution P (ρ) for different ε1; data are reported at reduced temperatures and
chemical potentials (in unit of ε) whereby P (ρ) first displays a double-peak behavior. Panel (b): SUS gas-liquid coexistence
points (symbols) for different ε1, with corresponding critical points (crosses). Lines are the interpolations of simulation points
obtained by the scaling law for the densities and the law of rectilinear diameters; color convention for ε1 as in panel (a).

FIG. 3. Critical temperatures (panel a, circles, scale on the left, blue) and densities (panel b) as functions of ε1; dashed lines
are guides to the eye. In panel (a) we also show the comparison between results obtained from simulations (squares) and
mean-field scaling (full line) for T ∗

c (ε1)/T
∗

c (ε) (scale on the right, green).

observed for ε1 ≥ 0.5.

The observed linear trend of T ∗
c is suggestive of a

mean-field behavior that can be rationalized as follows.
The interaction between two dumbbells labeled a and b
can be alternatively described by an anisotropic potential
V (ab) = V (rab, ûa, ûb), where rab = rb − ra, and where
ûa and ûb are unit vectors indicating the dumbbells ori-
entation in space, as directed from the 1 to the 2 spheres,
associated with solid angles ωa and ωb respectively. Upon
introducing the angular average 〈. . .〉ω = (1/4π)

∫
dω . . .,

the exact second virial coefficient, reading

B2 (T
∗) = −

1

2

∫
drab

〈
exp

[
−
V (ab)

T ∗

]
− 1

〉

ωa,ωb

, (6)

becomes, within a mean-field approximation,

BMF

2 (T ∗) = −
1

2

∫
drab exp

[
−
〈V (ab)〉ωa,ωb

T ∗

]
− 1 . (7)

Finally, within the interaction-site approach, we can
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FIG. 4. Progressive schematic modification of the fluid phase
diagram as estimated by SUS simulations lowering ε1 from
(a) 0.5 to (b) 0.1 till (c) 0.025. Circles are gas-liquid coexis-
tence points whereas crosses mark the relative critical points.
Squares in panel (b) are coexistence points estimated by NPT
simulations.

make the replacement

〈V (ab)〉ωa,ωb
=

1

4

∑

i 6=j

Vij (rab) = V MF (rab) (8)

where rab = |rab|, and V MF (rab) is a square-well po-
tential akin to Eq. (3) but associated with a mean-field
energy given by εMF = (3ε1 + ε)/4 (note that out of
the four site-site interactions, one is a square well with
energy ε and three have energy ε1). As for fixed λ the
critical temperature only depends upon the energy scale,
this leads to the relation

T ∗
c (ε1)

T ∗
c (ε)

=
3ε1 + ε

4ε
=

1

4

(
1 + 3

ε1
ε

)
, (9)

The accuracy of a mean-field hypothesis is documented in
Fig. 3a, where we show how Eq. (9) positively reproduces
SUS data, but for the small discrepancy visible around
ε1 = 0.1. On the other hand, the observed behavior of
ρ∗c vs ε1 prevents the possibility to extend such a mean-
field treatment also to the critical density. Our previous
study [24] concerned a similar sequence of square-well
dumbbells with an attractive range λ = 0.1, shorter than
that employed here (i.e. λ = 0.5). A comparison shows
that in both cases the critical temperatures scale almost
linearly with ε1, apart from the expected shift toward
lower values observed for λ = 0.1, due to the shorter
range of interactions. On the other hand, the critical
density for λ = 0.1 keeps an almost constant value (ρ∗c ≃
0.21), at variance with the drastic changes reported in
Fig. 3b.
Overall, on a relatively large interval of ε1 values (ε1 >

0.1) the system behaves as a standard “simple fluid”,
with a supercritical state at high temperatures making
way to a gas-liquid phase separation as the temperature is
lowered. This scenario is exemplified in Fig. 4a, referring
to ε1 = 0.5.

Around ε1 ≈ 0.1 a different scenario arises. A focus on
the properties of the system regarding the case ε1 = 0.1
is given in Fig. 5 where, in panel (a), we display the SUS
probability distribution of the number of particles P (N)
at T ∗ = 0.45 and two different simulation box sizes. The
two main peaks visible in the figure testify the existence
of stable gas and liquid phases, with corresponding crit-
ical point at T ∗

c ≈ 0.47 (see Table I). We notice that
the position of the gas peak in P (N) is shifted toward
extremely low values of N , indicating a rather low gas
density.
Beside the gas and liquid peaks, P (N) in Fig. 5a is

now characterized by the appearance of a third peak (see
also the magnification in the inset) that does not scale
with the box size. Such new feature signals the presence
of aggregates (micelles) in the low density regime of the
fluid. The analysis of microscopic configurations shows
that micelles grow in the form of roughly spherical clus-
ters formed by a variable number of particles typically
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(a) (b)

(c) (d)

FIG. 5. Focus on the case ε1 = 0.1. Panel (a): probability distribution of the number of particles P (n) at T ∗ = 0.45 and
two different box sizes with a magnification of micellar peaks in the inset. Typical microscopic configurations of self-assembled
structures developed in the system, i.e. micelles (panel b) and lamellæ (panel c), observed at T ∗ = 0.38. Panel (d): bond
probability distributions P (Nb) for different aggregates at T

∗ = 0.38.

ranging within few tenths (see Fig. 5b). We have as-
certained the presence of such spontaneously formed ag-
gregates over a temperature range extending down to the
lowest temperature investigated for this case (T ∗ = 0.36),
albeit confined on a narrow (low) density interval. When
aggregation takes place, finite size effects become relevant
and the SUS data must be carefully scrutinized: specifi-
cally, we have ascertained that the micelles peak does not
point to the presence of a true thermodynamic phase as
it invariably falls at the same number of particles inde-
pendently on the simulation box size. In other words, as
documented in Fig. 5a, when a larger simulation box is
employed, the positions of peaks corresponding to the gas
and liquid phases in the P (N) vs. N diagram turn to be
shifted (so to keep constant the corresponding coexisting
densities), whereas the micelles peak is left unchanged.

Conversely, within a P (ρ) vs. ρ representation, the gas
and liquid peaks maintain the same positions, whereas
the micelles peak shift toward lower densities [53]. The
formation of micelles takes places at low temperatures
and low densities. At low temperatures (T ∗ ≈ 0.40) and
larger densities, visual inspection of microscopic config-
uration reveals that molecules self-assemble into a dif-
ferent form, represented by planar structures (lamellæ),
and extending till the highest density value investigated
in this study, i.e. ρ∗ = 0.3. A representative snapshot of
such spontaneously formed structures is given in Fig. 5c,
whereas in panel (d) of the same figure we report the
bond probability distribution P (Nb) of different aggre-
gation forms observed in the fluid, with Nb defined as
the number of bonds per particle. Here two particles are
considered as bonded together if any of their site-site dis-
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FIG. 6. Equation of state (a) and energy vs pressure (b) at ε1 = 0.1 and different temperatures, indicated in the legends.

tances fall within the SW attraction range, i.e. between
σ and σ + λσ, see Eq. (3). As visible, the formation of
lamellæ is characterized by a broad peak centered around
Nb = 9, i.e. in such a planar arrangement each dumbbell
is preferentially bonded to nine neighbors. Interestingly
enough, exactly the same structure has been found re-
cently in Ref. [28] in the study of aggregate formation in
fluid composed by one-patch colloids. As for the forma-
tion of micelles, this is instead characterized by a wider
variety of different arrangements, as testified for instance
by the presence of multiple peaks in the corresponding
bond distribution.

The phase diagram at ε1 = 0.1 is summarized in
Fig. 4b. The peculiar features emerging for such a value
of the interaction strength call for a more detailed anal-
ysis of structural and thermodynamic properties of the
system, that we have carried out by means of NPT Monte
Carlo simulations. In Fig. 6 we report, for several tem-
peratures, the equation of state in the pressure-density
plane, and the internal energy as a function of the pres-
sure. For 0.41 ≤ T ∗ ≤ 0.48, sub-critical phenomena can
be resolved, showing a discontinuity in the density, while
for T ∗ ≥ 0.48 a continuous transition is observed. The
corresponding density discontinuity appears to reduce in
magnitude upon increasing the temperature, until just
below the estimated critical temperature T ∗

c ≈ 0.47. The
energy per particle in Fig. 6b, observed for pressures
where the density deviates markedly from ideality (for
T ∗ = 0.42), but below the density transition, indicates
the onset of a particle association process. The onset
of a lamellar phase for P ∗ > 0.06 at T ∗ < 0.41 is seen
here by a marginally lower energy per particle. In spite
of having a comparatively low energy and the clustering
process taking shape here, we have observed no anoma-
lous behavior akin to that of Janus colloids, where for
instance the gas-liquid coexistence curve turns to be neg-
atively sloped in the temperature-pressure plane [47, 54].
The condensation process occurs without hindrance from

comparatively stable clusters, due to the fact that these
latter do not take on well defined “hard” surface mor-
phologies, i.e. with the strongly interacting spheres fac-
ing inward. This contrasts with the Janus sphere case,
where the angular dependence of a favorable interaction
promotes the orientation of the “hard” interaction out-
ward, effectively rendering each cluster-cluster interac-
tion rigid enough to prevent cluster merging processes,
until the system is dense enough.

In Fig. 4b we report, beside the SUS data, also the
phase coexistence points as obtained by Maxwell con-
struction on the equation of state in Fig. 6a. Specifi-
cally, we have calculated the slope of the ultimate three
points from either side of the transition at the corre-
sponding temperatures and projected straight lines to a
point where the pressure is equal. Error bars correspond
to the average distance between density at the projected
coexistence pressure and last Monte Carlo data point
with the projected point corresponding to the pressure
of the final data point of the other side of the transition.
As visible, NPT estimates satisfactorily agree with SUS
calculations.

Typical liquid site-site radial distribution functions
g(r), showing the preferential interaction of sites 2-2 and
1-1 are reported in Fig. 7. The 2-2 peak shows a prefer-
ence for the bond lengths to occupy the inner-most and
outer-most extents of the interaction range λ. The com-
paratively lower curve representing the 1-1 interaction
can be attributed to the relative larger binding energy
of the 2-2 interaction. The second, almost discontinuous
peak of the 1-1 curve around r = 2σ would seemingly im-
ply a preference for a significant proportion of the parti-
cles to be with spheres labeled as one at 180 degrees each
other, as depicted in the snapshot of Fig. 5c. In Fig. 8
we report the orientational order parameter P (u1 · u2),
defined as:

P (u1 · u2) ≡ 〈cos(θ12)〉 (10)
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FIG. 7. Centre-centre and site-site radial distribution func-
tions g(r) for ε1 = 0.1 at P ∗ = 0.0011 and T ∗ = 0.43.

FIG. 8. Orientational order parameter P (u1·u2) for T
∗ = 0.40

and increasing pressures. The onset of the lamellar phase is
seen here as a peak resolving in the |cos(θ)| → 1.

where θ12 is the angle between a unit vector pointing
from the sphere 2 to the sphere 1 of different dumbbells.
Data in the figure concern P (u1 · u2) as calculated at
T ∗ = 0.40 and increasing pressure; a normalization fac-
tor has been employed to make the total integral un-
der the curves unity, with 1024 bins for the distribution.
As visible, between P ∗ = 0.06 and 0.08 the system has
already started to display lamellar character. Increas-
ing the pressure causes the lamellar structure to become
more defined and the order parameter to appear increas-
ingly quartic. As for the development of micelles, we have
not observed a global alignment in the unit vectors. The
reason for this is twofold: firstly, there is no correlation
between the orientation of particles in different clusters as
they do not communicate through an adjacent lamellar
structures imposed planarity; secondly, as the interac-
tion potential does not have an angular component, the
favorable energetic configuration between any two par-

FIG. 9. Distributions of q6 for several values of Nb (color
convention in the legend of panel c). Top panels refer to
T ∗ = 0.46 with ρ∗ ≈ 0.009 (a) and ρ∗ ≈ 0.120 (b); bottom
panels, T ∗ = 0.42 with ρ∗ ≈ 0.001 (c) and ρ∗ ≈ 0.220 (d).

ticles can be maintained without the requirement of a
certain alignment; rather the two bonded particles have
only a very small restricted space of mutual orientations
(their comparatively hard components cannot themselves
overlap). We expect that the study of the radial depen-
dence of P (u1 ·u2) — not carried out here — should allow
the observation of some structure, as particles with dis-
tance r ≈ 〈Dm〉 (where 〈Dm〉 is the average diameter of a
micelle), will tend to have an opposing orientation lead-
ing to a strong peak around 〈Dm〉, and likely a weaker
peak at r ≈ 〈rc〉, with 〈rc〉 the average distance between
clusters.

In Fig. 9 we report the rotational invariant of local
bond order parameters q6 (see Ref. [55] and references
therein), to probe the dependence of bond orientations
on the interaction potential, in both micelles and the liq-
uid phase. We have considered only bonds of the 2-2
interactions in the calculation of this metric. Distribu-
tions in the figure show well defined structures for par-
ticles which make relatively few bonds. The three peaks
in the Nb = 2 distribution at 0.8135, 0.583 and 0.538
(most clear in the gas phase distributions) correspond to
different bonding environments. In the first case the an-
gle between bonds (made by particle i to each of its two
neighbors j and j′) corresponds to π/3 radians, i.e. an
equilateral triangle with rij = rij′ = rjj′ is formed; the
second case, ≈ 0.6797 radians, corresponds to an isosceles
triangle with rij = rij′ = σ + λσ and rjj′ = σ; the third
case, ≈ 1.6961 radians, corresponds to rij = rij′ = σ and
rjj′ = λσ. The end of the distribution indicates particles
whose neighbors number three corresponds to an equilat-
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N=50 N=100 N=200

N=300 N=500 N=1000

FIG. 10. Snapshots of microscopic configurations concerning the Janus dumbbell model (ε1 = 0) at T ∗ = 0.31 and increasing
number of particles N .

eral triangle based pyramid whose tip, mutually at the
furthest extent of the interaction range, is the particle
i. Where the number of bonds is greater than four, the
ability to easily detect a potential dependence ceases, and
no more fine detail is obtainable directly from the distri-
butions of q6 except for the distribution of numbers of
bonds per particle.

Upon approaching the Janus dumbbell case, i.e. as
ε1 → 0, a third different phase scenario arises, as exem-
plified in Fig. 4c for the case ε1 = 0.025. As visible, at rel-
atively high temperatures (T ∗ ≥ 0.42), the system stays
in a homogeneous fluid phase. Lowering the temperature
leads to the formation of micelles at low densities, while
at intermediate and (relatively) high densities the system
is still in a fluid phase. As the temperature is further de-
creased, below T ∗ = 0.38, formation of also bilayer sheets
(lamellæ) is observed. The progressive organization of
clusters as the number of particles increases is schemati-
cally represented in Fig. 10 where we show several differ-
ent microscopic snapshots of the system with ε1 = 0 (i.e.
exactly in the Janus dumbbell limit) at fixed T ∗ = 0.31
and on varying N in a simulation box with a fixed edge

of 20σ. As visible, lamellar structures appear even at
N = 100, corresponding to set ρ∗ = 0.0125. Therefore,
the molecular geometry of the model promotes planar
configurations rather than spherical aggregates (like mi-
celles), that are observed only at extremely low densi-
ties. The onset of aggregation in Janus dumbbells is sig-
nalled at the structural level by the behavior of partial
structure factors S(k). In Fig. 11 we report in partic-
ular the S22(k) at fixed ρ∗ = 0.20 and decreasing tem-
peratures: the progressive enhancement of a low-k peak
(beside the main scattering peak centered around 2π/σ),
and the simultaneous absence of any diverging trend in
the k → 0 limit, provide a picture of a self-assembling
fluid(see e.g. [24, 56–58] and references therein), where
aggregates become more structured as the temperature
is lowered.

The extrapolation of the critical temperature, reported
in Fig. 3, leads to the prediction of a hypothetical crit-
ical point T ∗

c ≈ 0.37 for ε1 = 0.025, and slightly lower
for Janus dumbbells. However, as shown in the phase
diagram of Fig. 4c, the formation of lamellar aggregates
preempts the gas-liquid phase separation, implying the
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FIG. 11. Enhancement of the low-k peak of S22(k) for Janus
dumbbells upon lowering the temperature at fixed ρ∗ = 0.20.

metastability (and possibly the absence) of a correspond-
ing critical point. By comparing again with Ref. [24], we
record the absence of a gas-liquid phase separation in
the low ε1 range both for λ = 0.1 and for λ = 0.5. In
the former case, however, no evidence for the formation
of lamellæ has been detected, and we have attributed
the absence of a gas-liquid coexistence to the competing
formation of cluster aggregates, together with the short-
range character of the attractive interaction, bringing the
critical point (if any) to a temperature range too low
to be numerically investigated. Interestingly enough, a
relative large, fivefold increase of the interaction range
(from λ = 0.1 to λ = 0.5) produces a relative modest en-
largement toward lower values of the range of interaction
strength for which a stable gas-liquid phase separation
can be found (from ε1 ≈ 0.2 to ε1 ≈ 0.1). On the other
hand, in the specific case of Janus dumbbells, if we in-
crease the interaction range to the limit λ = 1, the hard-
sphere on the first site would be completely enveloped by
the square-well interaction on the second site (see right
panel of Fig. 1), becoming much less effective. In this
case our model would tend to that of a simple square-
well monoatomic fluid, having a normal gas-liquid phase
separation. In this context, it is interesting to study how
“marginal” the presence of the hard-sphere protrusion
on one site of our model must become, in order to let a
stable gas-liquid coexistence emerge for ε1 values down
to zero, i.e. in the Janus dumbbell case. Meanwhile we
observe that, should such a gas-liquid coexistence be ob-
served in the range λ = 0.5− 1, a closer correspondence
would be established with the phase behavior of Janus
spherical colloids for which, as we mentioned in the In-
troduction, a stable coexistence between a micellar-gas
and a liquid phase is already found for λ values around
0.5 [47]. In this latter case, only by decreasing λ to 0.2,
the gas-liquid phase separation becomes metastable and

new self-assembled structures, like wrinkled sheets, de-
velop in the system [35, 47].

CONCLUSIONS

We have studied the gas-liquid phase coexistence and
the self-assembly processes taking place in a colloidal
model constituted by two tangent dumbbells with square-
well interactions, upon varying the attraction strength on
one of the two molecular sites. Specifically (see Fig. 2),
the two limiting cases are constituted by symmetrical
square-wells on the one side, and Janus dumbbells on
the other one side, with several cases in between, as ob-
tained by progressively reducing the attraction strength
ε1 of one of the two square-wells. We have employed
successive umbrella sampling Monte Carlo simulations to
trace the gas-liquid coexistence curves, complemented by
NPT Monte Carlo simulations only for the special case
ε1 = 0.1.
We have documented how the unbalance between

the square-well attraction strengths, combined with
anisotropic steric interactions, gives rise to a rich fluid
phase scenario exemplified in Fig. 4. For a wide range of
ε1 values (> 0.1) the system behaves as a “simple fluid”
showing a normal gas-liquid phase separation below a
certain critical temperature. The observed linear scal-
ing of such a temperature with ε1 can be understood in
terms of a simple mean-field argument. As ε1 → 0.1, self-
assembled structures start to develop, causing a drastic
reduction in the temperature-density extension of the gas
and liquid coexisting phases. At low densities and tem-
peratures, such structures are constituted by small spher-
ical aggregates (micelles), involving few tenth of particles.
At low temperatures and higher densities, we have ob-
served the onset of a different self-assembled structure,
in which molecules are organized into planar configura-
tion (lamellæ). As ε1 is further decreased below 0.1, we
have observed no stable gas-liquid phase separation, with
the system forming only micelles at low densities and
lamellæ at intermediate/high densities. In the case of
Janus dumbbells (i.e. with ε1 = 0) lamellar structures
take place also at reduced densities as low as 0.0125,
suggesting that the specific geometry of tangent Janus
dumbbells definitely promotes the development of planar
configurations rather than spherical aggregates.
To summarize, the models investigated in this work are

useful prototypes to study the role of attractive interac-
tions in tuning cluster formation and/or phase separa-
tion in colloidal dimers. The rich phase behaviors, along
with the relatively simple design of our models, make
them suitable candidates for a better understanding of
the self-assembly processes. In particular, this study
has highlighted the difference with the phase diagram
of Janus colloids, on the one hand, and the interplay be-
tween steric interactions stemming from both shape and
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interaction anisotropy, on the other hand. Varying the
geometric properties of our models (as for instance the
ratio between the hard-core diameters [59] or their dis-
tance) is expected to add further significant features on
the overall phase diagram documented in this work, with
a potentially rich scenario.
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Progressive modification of the fluid phase diagram of colloidal dimers, from symmetrical square-
wells to Janus dumbbells.
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