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In confinement, overlapping polymers experience entropic segregating forces that tend to demix them. This plays a role during
cell replication, where it facilitates the segregation of the daughter chromosomes. It has been argued that these forces are
strong enough to explain chromosome segregation in elongated bacteria such as E. coli without the need for additional active
mechanisms [S.Jun and B.Mulder, PNAS, 2006, 103, 12388]. However, entropic segregation can only set in after the initial
symmetry has been broken. We demonstrate that the timescale for this induction phase is exponentially growing in the chain
length, while the actual segregation time scales only quadratically in the chain length. Thus the induction quickly becomes the
dominating, slow process, and makes entropic segregation much less efficient than previously thought. The slow induction might
also explain the long delay in chromosome segregation observed in experiments on E. coli.

1 Introduction

It is long known that polymers in confined geometries be-
have very differently from free polymer chains1–3. Their static
properties and dynamics play an important role for example in
DNA translocation through nanopores4, chromosome organi-
zation5–8, inkjet nozzles or polymers in nanofluidic devices9.
The arguably most striking feature of confinement is the ten-
dency of polymers chains to segregate for purely entropic rea-
sons10,11. This means, that in an elongated cell such as an
E. coli bacterium, two overlapping DNA molecules will move
spontaneously to opposite ends of the cell even in the absence
of active mechanisms7,11,12. It is still under debate whether
this is the only mechanism responsible for DNA segregation
during cell division, or whether additional active mechanisms
are present as is the case in eukaryotic cells6,13,14. However,
in order to distinguish the inevitable entropic segregation from
possible active mechanisms, we need to understand its under-
lying mechanisms and timescales. This is a classical polymer
problem in confined spaces, but has only recently attracted at-
tention7,15–17.

Theoretically, such systems can be tackled by de Gennes’
blob model1, which represents the polymer as a chain of
blobs. Inside such a blob, the polymer is assumed to behave
like a free polymer, unperturbed by constraints or other exter-
nal forces. In the case of cylindrical confinement, the diameter
of such a blob is determined by the cylinder diameter D. Using
the fact that the cost for the overlap of two blobs is indepen-
dent of chain length and small18, it can be shown for example
that the timescale for the segregation of two overlapping flex-
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ible polymers in such confinement is O
(

N2
t D2− 1

ν

)
with the

Flory exponent ν ≈ 0.6 and Nt the total number of monomers
in the polymer. Segregation times observed in computer sim-
ulations7,11 agree well with this prediction. However, the sim-
ulations also show that the initial symmetry of the system has
to be broken before the entropic segregation can set in. Be-
fore this has happened, two intially fully overlapping chains
do not move with respect to each other, and no segregation
can take place. Usually this induction phase takes a short pe-
riod of time, but it might last even longer than the segregation
process itself (compare also Fig. 4).

Such an induction phase is also observed in real bacteria.
Experiments investigating cell division in E. coli show a delay
of segregation after the initiation of the replication6. In these
experiments, the origin of replication was traced by floures-
cent markers. Once the origin is replicated, the two sister ori-
gins should appear as two separate flourescent spots, which
happens only 14 minutes after initiation of replication. During
this time the origins remain colocalized and do not segregate.

In this article we investigate the origin of this induction
phase. It was argued earlier that the symmetry breaking is a
diffusive process with timescale O

(
N3

t D2− 2
ν

)
, that is, much

slower than the actual segregation11. We will however show
that the induction is in fact a rare event with an expontential
timescale in the number of monomers.

The main mechanism of induction is not diffusion of the
entire chains, but rather the arrangement of the chain ends. In
order to start segregation, the two overlapping chains need to
arrange such that different chains hang over at the two ends
of the polymers (compare Fig. 1 (b)). In such a configura-
tion, a small displacement of the size of a blob is sufficient to
start segregation. If, however, one of the polymers is trapped
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Fig. 1 Ordering of two polymers in a cylinder: (a) typical trapped
polymer configuration during the induction phase; (b) configuration
that allows for entropic segregation.

between the ends of the second one, segregation cannot start
(Fig. 1 (a)). This trapping is the main origin of induction,
and the timescale of induction is the timescale of the polymers
switching roles at one of the ends.

This article is organized as following. In section 2 we use
renormalized Flory theory16 to compute the free energy bar-
rier for switching of chain ends. The details of the molecular
dynamics simulations are described in section 3. We conclude
with results and discussions in section 4.

2 Theory

For simplicity, we consider only one half of the two poly-
mers, that is, two overlapping self-avoiding linear polymers
that consist of N = Nt/2 monomers of size a each and are
confined in a cylinder of diameter D. Rather than enforcing
full overlap, we allow the chains to partially segregate, how-
ever only at the one end of the two chains, compare Fig. 2.
The other side corresponds to the center of the overlapping
polymers. If the chains are sufficiently long, this is justified,
because there is barely any interaction between the two ends.
We use the difference d between the positions of the outermost
beads of the chains to characterize the overhang. If d = 0, the
chains are fully overlapping, however, we will show that this is
typically entropically disfavored. Role switching of the chain
ends is characterized by a sign switch of d. The timescale of
this process is what we are interested in, since it characterizes
the timescale to overcome a trapped configuration.

To determine the free energy of this system, we use the
Flory free energy19 of a single polymer of length N in a cylin-
der of diameter D. The polymer is represented as a chain
of nbl = N/g blobs, where g = (D/a)1/ν is the number of
monomers per blob with ν ≈ 0.6. Inside such a blob, the poly-
mer is considered to be a free self avoiding polymer with g
monomers. The diameter of such a blob is the size of a free
polymer coil of g beads, which by construction is D. Then
the equlibrium length of the polymer is Leq = nblD and its free
energy is16,18

F (nbl) = Fblnbl = FblN/g, (1)

Fig. 2 Schematic view of an overhang configuration. The blob size
is equal to the cylinder diameter D, the overhang is described by the
difference d between the positions of the leftmost beads of the two
chains. In the overlap region, we follow the model of Jung et al.16

and assume the two chains to be confined to effective cylinders of
diameter D

√
α and D

√
1−α , respectively.

where the constant Fbl is the free energy per blob, a non-
universal constant depending on the type of polymer. Note
that the diameter D enters the free energy only through the
number of monomers in a blob, g.

The free energy of our system consists of three contribu-
tions: the first one is the free energy of the overhanging tail,
the second and third contributions are the free energy of the re-
maining part of this polymer in the overlap region and the free
energy of the other polymer, respectively. The free energy of
the overhanging tail consisting of n0 = d/D overhanging blobs
can be directly computed from the Flory energy and is

F1(no) = Fblno. (2)

To compute the free energy of the second and third contribu-
tions we extend the ”renormalized” Flory approach proposed
by Jung et al16. In this approach two fully overlapping poly-
mers in a cylinder with diameter D are treated as two single
polymers trapped in effective subcylinders of reduced diame-
ter D/

√
2 each.

The overhanging polymer contributes less monomers to the
overlap region than the trapped one, and thus occupies less
space. This we model by considering two subcylinders with
effective diameters D2 = D

√
α and D3 = D

√
(1−α), respec-

tively, so that the parameter α is the area fraction of the cylin-
der occupied by the overhanging polymer in the overlapped
region. Each subcylinder confines a single polymer that can
be again considered as a sequence of blobs with a free energy
given by Eqn. (1).

For the subcylinder of diameter D2 the polymer splits into
(N−nog)/g2 blobs with g2 = (D2/a)1/ν = gα1/2ν monomers,
so that its free energy is

F2 = Fbl(nbl−no)α
−1/2ν . (3)

The trapped chain in the subcylinder of diameter D3 has its full
N beads in the overlap region and thus consists of N/g3 blobs,
where the number of monomers per blob is g3 = (D3/a)1/ν =
g(1−α)1/2ν . Its free energy is therefore

F3 = Fblnbl(1−α)−1/2ν . (4)
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Combining the three contributions, the free energy of the
system with no = |d|/D overhanging blobs is

F (no,nbl) = Fbl
[
no +(nbl−no)α

−1/2ν+

+nbl(1−α)−1/2ν
]
. (5)

Again, the diameter D enters only indirectly through the num-
ber of monomers in a blob. The parameter α we determine
from the condition that both chain segments in the overlap re-
gion should be in equilibrium and occupy the same stretch L
along the cylinder:

L = (nbl−no)D
√

α
1−1/ν

= nblD
√

1−α
1−1/ν

, (6)

which leads to

α(no,nbl) =

[
1+
(

1− no

nbl

)2ν/(ν−1)
]−1

. (7)

In the fully mixed state (no = 0) the splitting parameter is α =
1/2, therefore the free energy of this state is

F (no = 0,nbl) = Fblnbl21+1/2ν . (8)

We are left with determining the equilibrium number of
overhanging blobs, no. To this aim, we insert the equilibrium
splitting α in (5) and rewrite the free energy in terms of the ra-
tio δ = no/nbl = |d|/Leq. The free energy difference between
configurations with overhang ratio δ given by Eqn. (5) and the
fully mixed state δ = 0 given by Eqn. (8) is

∆F (δ ,nbl)

nblFbl
=

1
nblFbl

[F (δ ,nbl)−F (δ = 0,nbl)] =

= δ +(1−δ )[(1−δ )2ν/(ν−1)+1]1/2ν+

+
[
(1−δ )2ν/(1−ν)+1

]1/2ν

−21+1/2ν , (9)

which solely depends on the ratio δ . Fig. 6 shows this uni-
versal free energy difference, which has a single, pronounced
minimum, corresponding to the equilibrium state. We denote
with Fmin the free energy difference per blob between this
minimum and the fully mixed state.

Note that our universal free energy curve predicts a nonzero
gradient at δ = 0. Therefore, the free energy as a function
of the signed distance d has a sharp nondifferentiable peak at
d = 0, which is clearly unphysical. This is due to the fact that
the blob picture no longer holds for the overhanging part if
no � 1, i. e. there are much less beads than necessary for a
single blob. In that case, the overhanging part no longer feels
the confinement, and thus has a different free energy with a
smooth curvature. This is confirmed by our simulation data as
presented below.

Fig. 3 Schematic view of the simulation setup. The two rightmost
beads are fixed to prevent diffusion, the following 4g beads are
pairwise crosslinked. Only the remaining nblg beads on the left are
free overlapping polymers.

When the polymers switch roles, i. e. when switching the
sign of d, the free energy barrier Fbarrier = nblFmin between
the minimum and no = 0 has to be overcome, making it a rare
event. According to Kramer’s or reaction-rate state theory20

the switching rate k is

k ∼D
√

F ′′
0 F ′′

b e−βFbarrier , (10)

where β = 1/kBT with the Boltzmann constant kB and tem-
perature T . F ′′

0 and F ′′
b denote the curvatures at equilibrium

distance and the top of the barrier, respectively. Following the
scaling properties of the free energy, F ′′

0 and F ′′
b scale like

1/(D2nbl). Finally, D denotes the diffusion constant, which
in our case is dominated by the motion of the outermost blob
and therefore scales like 1/g. Thus, the rate is

k ∼ 1
D2gnbl

e−βFbarrier =
1

D2N
exp
(
−βFmin

N
g

)
. (11)

Coming back to the original question of the origin of the
induction phase, we note that it is delayed whenever one of
the polymers is trapped. To escape this trapping, the polymers
have to switch roles at one of the two ends, and the induction
time is nothing but the mean first passage time, which behaves
like

t f s ∼
1
k
∼ D2N exp

(
βFmin

N
g

)
∼ D2Nt exp

(
βFmin

Nt

2g

)
,

(12)
in terms of the total length Nt of the two polymers. Note
that there are only two non-universal parameters, namely the
free energy minimum per blob Fmin, which captures the static
properties of the polymer, and the proportionality prefactor,
which captures its diffusional dynamics.

The most striking feature of Eqn. (12) is the exponential de-
pendency on the number of monomers, in contrast to the ear-
lier prediction t f s ∼N3

t based on diffusion of the full chains11.
We will now present computer simulation results that in depth
verify the main assumptions in this derivation and show that
Eq.(12) explains the induction time reported in Ref.11 well.

3 Simulation method

Our simulations follow the approach used by Arnold and Jun
in Ref.11. The cell membrane is represented as an open cylin-
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der with diameter D, which mimics its growth during the cell
cycle. We represent the polymers as a bead-spring chains of
N = Nt/2 beads with diameter a, linked by spring-like bonds.
The excluded volume of the beads as well as the wall are mod-
eled by the Weeks-Chandler-Andersen (WCA) potential21:

UWCA(r) = kBT

{( a
r

)12−
( a

r

)6
+ 1

4 r < 6√2a
0 r ≥ 6√2a,

(13)

where r is the distance between two bead centers. The springs
between the beads of the chains are finite extensible nonlinear
elastic (FENE) bonds:

UFENE(r) =−
1
2

εF ln

[
1−
(

r
rF

)2
]
, (14)

where rF = 2a is the maximal stretch of the bond and εF =
40kBT is the interaction strength. Note that εF is the product
of the spring constant 10kBT/a2 and r2

F , so that we employ the
same FENE interaction as Ref.11.

We perform molecular dynamics simulations of this system
using the simulation package ESPResSo22. To propagate the
system, we employ a velocity Verlet integrator23 with a fixed
time step of 0.01. The system is kept at constant temperature
by means of a Langevin thermostat with dimensionless fric-
tion 1, which models embedding in a solvent.

For all graphs reported below, we use ν = 0.59 as Flory
exponent. In the simulations of the switching process, we
recreate the system used for the theoretical considerations. We
consider two polymers of length (nbl +4)g with two beads on
one end fixed, which prevents center of mass diffusion along
the cylinder. The number of beads per blob was determined
from fitting g = (D/a)1/ν to the single chain data given in
Ref.24, from which we obtained a = 1.31. Initially, the sys-
tem is prepared ladder-like, i. e. the ith beads of both polymers
are bonded. After equilibration we remove nblg crosslinking
bonds, but keep four blobs next to the fixed beads intercon-
nected (compare Fig. 3). These four blobs are used as a buffer
to prevent back-bending of the polymers. We then vary the di-
ameter of the cylinder D = 3,4, . . . ,7 and the non-crosslinked
length of the polymers N = nblg, where nbl = 5,6, . . . ,20. The
resulting free chain lengths are between 30 and 550 beads.
The scaling of the length with the diameter ensures that the
polymers are neither too short at large diameters, nor exces-
sively long at small diameters. We perform 500,000 time steps
for each parameter set.

4 Results

We start first with showing the distributions of induction and
segregation time for segregation of two polymers with N =
300 beads each in cylinder of diameter 7 in Fig. 4. Unlike in

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

t ·103
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
(t
)

induction time

segregation time

Fig. 4 Exemplary distribution of the induction and segregation time
t obtained from computer simulations of polymers consisting of
Nt = 300 beads each in a cylinder of diameter D = 7.

0 100 200 300 400 500

t ·103

−6

−4

−2

0

2

4

6

d
/D

Fig. 5 Difference d between the positions of the leftmost beads
versus time t for two polymers of length nbl = 10 beads in a cylinder
of diameter D = 5. A sign switch indicates that the overhanging
polymer has switched.

what follows, the polymers are completely free to move, but
are initially setup such that they fully overlap, following the
procedure described in Ref.11. The distributions clearly differ,
with the induction time being expontially distributed, as one
would expected for the described switching mechanism. In
this case of a relatively short chain, the mean induction time is
still shorter than the mean segregation time, but already com-
parable. This shows that the induction phase is by no means
negligible in the overall segregation process.

Fig. 5 shows the evolution of the difference d of the posi-
tions of the outermost free beads for an exemplary simulation
with nbl = 10 blobs in a cylinder of diameter D = 5. Sign
switching of d indicates that the overhanging polymer has
switched. Clearly, this switching is a rare event with a mod-
erate barrier height. Fig. 5 also shows that the overhang is on
average approximately 2 blobs. This reflects that the trapped
polymer cannot be compressed too strongly, but on the other
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Fig. 6 Free energy difference landscapes for fixed nbl = 10 (top)
and fixed D = 5 (bottom). The left graphs show free energies as
measured in the simulations and our prediction Eqn. (9) (solid red)
as a function of the ratio δ = no/nbl = |d|/(Dnbl), assuming a free
energy of Fbl = 5kBT per blob. The dashed black line gives the
same prediction using an effective overhang δe f f = 0.5δ . The right
graphs show the same data, but zoomed in at the top of the barrier.
This demonstrates that the free energy difference is a smooth
function at the top of the barrier δ = 0.

hand, a fully mixed state is unfavorable, as predicted.
From the distribution of the number of overhanging blobs

we can compute the free energy of a certain overhang by
∆F (δ )kBT = − lnP(δ )+ lnP(0). Fig. 6 shows the free en-
ergy distribution for fixed diameter D = 5 and fixed nbl =
10, respectively. We also show our free energy prediction
Eqn. (9), where we have chosen as free energy per blob
Fbl = 5kBT to match our simulation results.

While the overall shape is well predicted by our theory, the
equilibrium overhang is clearly underestimated. However, if
we use and effective overhang of δe f f = 0.5δ , we can match
the simulation data rather well. This is probably due to the
fact that the transition between overlap and overhang region
is not sharp as in our model, but smoothed out, which effec-
tively decreases the overhang. This assumption is supported
by Fig. 6 of Ref.24, which shows that the density of beads of
the overlapping chains gradually changes along the cylinder

4 6 8 10 12 14 16 18 20
nbl
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1.5

2.0
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3.0
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4.5

F b
a
rr
ie
r/
k
B
T

D=3.0

D=4.0

D=5.0

D=6.0

D=7.0

Theory

Fig. 7 The height of the energy barrier Fbarrier as a function of the
polymer length in terms of blobs nbl = N/g for various diameters D
of the cylinder. The line is the theoretical prediction Fminnbl , using
the free energy barrier per blob Fmin ≈ 0.19kBT as single fit
parameter for all curves.

main axis.
Note that the collapse is much better for the constant di-

ameter than constant number of blobs. This is due to the fact
that the scaling regime is only realized for relatively large di-
ameters as reported before16,24. However this would require
longer polymers, which would make the sampling of the en-
ergy barrier problematic due to the large free energy differ-
ence. The right hand graphs of Fig.6 demonstrates that unlike
our prediction, the free energy is not peaked at δ = 0, but
smooth. However, the curvature is surprisingly large, so that
this curvature dominates the prefactor of the switching rate.

Fig. 7 shows the numerically determined depth of the mini-
mum for a wide range of cylinder diameters and chain lengths.
There is some spread in the data because the bottom of the
free energy landscape is relatively flat and we report the nu-
merically lowest observed free energy. Nevertheless, for all
diameters D and chain lengths, we find the energy barrier to
scale linearly with nbl as predicted by Eq. (5), and by fitting to
our results, we can determine that Fmin ≈ 0.19±0.05kBT for
our polymer model. This value we use in all remaining plots.

Fig. 8 shows that also the switching rate k scales like k ∼
exp(−βFminnbl)/(D2N) as predicted. To that aim we plot
the rate of switching times D2N versus the polymer length
in terms of blobs. In the simulations, we measure the rate
of switching by counting sign changes in d, however record-
ing d only every 100 time steps to avoid counting recrossings.
Again there is noticable spread in the data for larger diame-
ters, because the rate decreases with the diameter, making it
difficult to measure. However, the D = 3 curve clearly lies
somewhat below the rest of the data, which we attribute to the
fact that the blob picture does not hold well at these relatively
small diameters. The data for D > 4 distributes around k =
γ/(D2N) exp(−βFminnbl), where we insert Fmin = 0.19kBT
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Fig. 8 The rate of switching k times D2N versus the polymer length
in terms of blobs nbl = N/g. The solid line shows the predicted
exponential scaling relation (11) using the previously measured
Fmin ≈ 0.19kBT .

as determined from Fig. 7. The only remaining fitting param-
eter was the effective friction coefficient γ , which we found to
be approximately 12 in dimensionless simulation units11.

Finally, Fig. 9 shows that the induction time scales indeed
like 1/k, as predicted. In this figure, the data given in Fig. 5
of Ref.11 was reploted not as a function of the diameter D,
but as function of the total number of blobs. The induction
time was rescaled by D2Nt , so that Eqn. (12) predicts a single
exponential increase, which is well reproduced by our data
for nbl up to 20. For larger nbl , the data still collapses, but
does not follow the predicted exponential. This is due to the
fact that by construction of this data, the diameter decreases
with increasing nbl , and we reach the lower limit D = 4 for the
blob picture to hold. Since the simulation models are identical,
we employ the same barrier free energy per blob Fmin in the
slope of the exponential, which fits the data rather well. This
is another strong indication that the role switching plays an
important role for the induction phase.

5 Conclusions

We have investigated the induction phase of the segregation
process of flexible chains in a confining cylinder. Our results
suggest that the induction phase is not governed by diffusion
of the chains as argued before, but rather by an ordering pro-
cess at the polymer ends. It is entropically favorable for the
polymers to at least partially segregate at their ends. As this
happens independently, one polymer may be trapped by the
other, so that no segregation can take place. This trapped state
has to be overcome by switching the roles of the polymers
on one side, which is a rare event due a free energy barrier
at full overlap. Both free energy calculations based on the
blob model and molecular dynamics simulations show that the

0 5 10 15 20 25 30 35 40
nbl

10-1

100

101

t i
n
/
(D

2
N

t
)

Nt =100

Nt =200

Nt =300

Fig. 9 The induction time t f s as given in Ref.11 rescaled by D2Nt
versus the number of blobs nbl for different number of monomers Nt
per chain. The data agree well with our theoretical prediction (12)
for the induction time using the previously determined barrier per
blob Fmin = 0.19kBT , which is shown as red line. Above 20 blobs,
the data still collapses, but deviates from the exponential prediction
due to small cylinder diameters.

height of the barrier is proportional to the number of blobs
in the polymer. Using Kramer’s theory one can estimate the
switching rate and by that the duration of the induction phase,
which scales exponentially with the energy barrier und thus
the length of a polymer. For long polymers, the induction
time therefore becomes dominating over the actual segrega-
tion time, making entropic segregation a very slow process on
average.
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