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The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell

partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously

observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamics simulations to predict

the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a

wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes,

slippers performing a swinging motion, and stationary parachutes. We discuss the effect of different RBC states on the flow

resistance, and the influence of RBC properties, characterized by the Föppl-von Kármán number, on the shape diagram. The

simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss

how the viscosity contrast would affect the shape diagram.

1 Introduction

The behavior of soft mesoscopic particles (e.g., polymers,

vesicles, capsules, and cells) in flow has recently received

enormous attention due to the wide range of applications of

such suspensions and their rich physical properties1. To better

control and/or manipulate the suspension’s properties, for ex-

ample in lab-on-chip applications2,3, a deeper understanding

of the interplay between flow forces, elastic response and dy-

namics of soft objects is required. An important example is the

motion of red blood cells (RBCs) in microcirculation, which

influences many vital processes in microvasculature4; how-

ever, similar mechanisms and phenomena encompass a much

wider class of capsule suspensions5,6. RBCs are extremely

flexible and experience strong deformations in microcircula-

tion due to the flow and/or geometrical constraints. RBC de-

formation is important for the reduction of blood flow resis-

tance7–11 and for ATP release and oxygen delivery12,13.

RBCs in microcirculation may attain various shapes includ-

ing parachutes and slippers7,14–21. Parachutes are character-

ized by a rather symmetric shape resembling a semi-spherical

cap and are located at a position near the tube center. Slippers

† Electronic Supplementary Information (ESI) available: ESI contains four

movies of different RBC shapes in capillary flow: snaking discocytes, tum-

bling discocytes, swinging slippers, and parachutes. Blue particles on the

RBC are firmly attached to the membrane and serve as tracers in order to vi-

sualize the membrane dynamics; these particles have no physical meaning.
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correspond to asymmetric RBC shapes, and therefore their

membrane is typically in motion (e.g., tank-treading). Both

non-centered slippers20 and centered slipper shapes17 have

been observed experimentally, where the latter may only differ

slightly from parachute shapes. The stable slipper shapes are

well established at higher hematocrits due to hydrodynamic

cell-cell interactions14,15,19. However, it is still not fully clear

whether slippers are stable or transient states for single cells

in flow7,9,17,20,21. The most convincing evidence so far comes

from simulations in two dimensions (2D)9,10,21.

Simulations of 2D vesicles in slit channels have shown the

existence of stable parachutes, slippers, and a snaking dynam-

ics of discocytes9,10 — where snaking refers to an oscillat-

ing RBC dynamics near the tube center. A phase diagram of

various shapes was predicted, depending on relative confine-

ment and flow rate. Simulations of single RBCs in three di-

mensions (3D)7,8,11,18 have been restricted so far to a limited

number of studies, which only reveal (except for fluctuations

and transient states) stationary parachutes and discocytes. It

is important to note that these shapes (averaged over thermal

fluctuations) are characterized by different symmetry classes,

ranging from cylindrical symmetry (parachutes) to a single

mirror plane containing the capillary axis and the RBC center

(slippers). This raises several important questions: Are slipper

shapes also stable in 3D capillary flow? Is snaking dynamics

around the center line possible in cylindrical microchannels in

3D? Do thermal fluctuations destroy the regular snaking os-

cillations? What is the role of the membrane shear modulus

(absent in 2D) in the phase diagram?

In this paper, we present a systematic study of single RBCs
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flowing in microchannels. We construct diagrams of RBC

shapes for different flow conditions and analyze RBC defor-

mations. Changes in RBC properties (e.g., shear elastic mod-

ulus, bending rigidity) are also considered, since they are of

importance in various blood diseases and disorders22. The

presented 3D shape diagrams describe RBC deformation in

microchannels, which mimic small vessels in microcircula-

tion, and show that the parachute shape occurs mainly in small

channels, while in large channels the slipper shape may occur.

All simulations assume the same viscosity for both cytosol

and suspending fluid; however, we discuss how the viscosity

contrast would affect the shape diagram. We also compare

the 3D results with the 2D shape diagrams in Refs. 9,10 and

emphasize essential differences. For instance, due to mem-

brane shear elasticity, there exists a region of RBC tumbling

in 3D, which is absent in 2D. Finally, the simulations results

are compared to available experimental data17,20,23.

The article is organized as follows. In Sec. 2 we briefly de-

scribe the mesoscopic method employed for fluid flow, a RBC

model, and simulation setup and parameters. In Sec. 3 we

first present the shape diagram for cell parameters typical for

a healthy RBC. Then, RBC membrane properties are varied in

order to elucidate their effect on the RBC shape and dynamics

in microchannel flow. We also discuss the effect of viscosity

contrast between external and internal fluids on the shape dia-

gram and the effect of different shapes on the flow resistance.

We conclude briefly in Sec. 4.

2 Models & Methods

To model tube flow, we employ the smoothed dissipative par-

ticle dynamics (SDPD) method24 for the suspending fluid.

SDPD is a particle-based mesoscopic simulation technique,

where each SDPD particle represents a small volume of fluid

rather than individual atoms or molecules. The RBC mem-

brane is represented by a triangulated network model7,8,25,26

and coupled to a fluid through friction forces.

2.1 Red blood cell model

The RBC membrane is modeled by a triangulated network of

springs7,8,25,26, which includes elastic, bending, and viscous

properties. A RBC is represented by a collection of Nv parti-

cles connected by Ns = 3(Nv −2) springs with the potential

Usp = ∑
j∈1...Ns

[

kBT lm(3x2
j −2x3

j)

4ξ (1− x j)
+

kp

l j

]

, (1)

where l j is the length of the j-th spring, lm is the maximum

spring extension, x j = l j/lm, ξ is the persistence length, and kp

is the spring constant. Note that this spring definition allows

us to define a nonzero equilibrium spring length l0. Then, we

employ a stress-free model for the membrane8 such that each

spring has its own l0 j set to the spring length of an initially

triangulated cell surface. In addition to the elastic contribution

in Eq. (1), each spring may also have dissipative and random

force terms8 in order to incorporate membrane viscosity. The

bending rigidity of a membrane is modeled by the bending

energy

Ubend = ∑
j∈1...Ns

kb [1− cos(θ j −θ0)] , (2)

where kb is the bending constant, θ j is the instantaneous an-

gle between two adjacent triangles having the common edge

j, and θ0 is the spontaneous angle, which is set to zero in all

simulations. Finally, to maintain a constant cell area and vol-

ume which mimic area-incompressibility of the lipid bilayer

and incompressibility of the inner cytosol, we introduce two

potentials

Uarea = ka

(A−Ar)
2

2Ar

+∑
j

kd

(A j −A0
j)

2

2A0
j

,

Uvol = kv

(V −Vr)
2

2Vr

,

(3)

where ka, kd , and kv are the global area, local area, and volume

constraint coefficients, respectively. A and V are the instanta-

neous cell area and volume, while A j is the instantaneous area

of an individual face within a triangulated network. Ar, A0
j ,

and Vr are the desired total RBC area, area of the j-th face (set

according to the initial triangulation), and total RBC volume,

respectively.

To relate the model parameters in the spring potential (1)

(e.g., ξ , kp) and the bending potential (2) to the macro-

scopic membrane properties (e.g., Young’s modulus Yr, bend-

ing rigidity κr), we use analytic relations derived for a reg-

ular hexagonal network8,27. The ratio lm/l0 is set to 2.2 for

all springs26. To relate simulation parameters to the physical

properties of RBCs, we need a basic length and energy scale.

Therefore, we define an effective RBC diameter Dr =
√

Ar/π
with Ar being the RBC membrane area. From Ar we can

also calculate the average bond length l0 for a given num-

ber of membrane vertices Nv, since Ar/Nt =
√

3l2
0/4 where

Nt = 2Nv − 4 is the total number of triangular elements on a

membrane. Experimental results28 for the RBC area imply

that Dr = 6.5 µm. Table 1 summarizes the parameters for the

RBC model in units of Dr and the thermal energy kBT , and

the corresponding average values for a healthy RBC in physi-

cal units. The global area (ka) and volume (kv) constraint co-

efficients are chosen large enough to approximate closely the

area-incompressibility of the lipid bilayer and incompressibil-

ity of the inner cytosol. Finally, a relation for time scale is

based on the characteristic RBC relaxation time, which is de-

fined further below in the text.
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RBC parameters scaled units physical units

Nv 1000

Ar 133.5×10−12 m2

Dr

√

Ar/π 6.5×10−6 m

l0 0.061 Dr 3.93×10−7 m

Vr 0.34 D3
r 93×10−18 m3

T 310 K

Yr 1.82×105 kBT

D2
r

18.9×10−6 N/m

κr 70 kBT 3×10−19 J

kd 4.2×104 kBT

D2
r

4.3×10−6 N/m

ka 2.1×106 kBT

D2
r

2.1×10−4 N/m

kv 1.4×107 kBT

D3
r

220 N/m2

Table 1: RBC parameters in units of the effective RBC di-

ameter Dr and the thermal energy kBT , and the correspond-

ing average values for a healthy RBC in physical units. Nv is

the number of membrane vertices, Ar is the RBC membrane

area, l0 is the average bond length, Vr is the RBC volume, T

is the temperature, Yr is the membrane Young’s modulus, κr

is the membrane bending rigidity, and kd , ka, and kv are the

local area, global area, and volume constraint coefficients, re-

spectively. In all simulations, we have chosen Ar = 133.5 and

kBT = 0.4, which implies that Dr = 6.5 and l0 = 0.4.

2.2 Smoothed dissipative particle dynamics

SDPD24 is a mesoscopic particle method, which combines

two frequently used fluid-dynamics approaches: the smoothed

particle hydrodynamics29,30 and dissipative particle dynam-

ics31,32 methods. The SDPD system consists of N point par-

ticles of mass mi, position ri and velocity vi. SDPD particles

interact through three pairwise forces: conservative (C), dissi-

pative (D), and random (R), such that the force on particle i is

given by

FC
i = ∑

j

(

pi

ρ2
i

+
p j

ρ2
j

)

wi jri j,

FD
i =−∑

j

γi j (vi j +(vi j · ei j)ei j) ,

FR
i = ∑

j

σi j

(

dW
S

i j +
1

3
tr[dWi j]

)

· ei j,

(4)

fluid parameters scaled units physical units

p0 16 kBT

l3
0

1.07 Pa

b 12.8 kBT

l3
0

0.86 Pa

η 16−122
√

mkBT

l2
0

1.2×10−3 Pa · s

kBT 4.282×10−21 J

Table 2: SDPD fluid parameters in simulation and physical

units. Mass and length for SDPD fluid are measured in units

of the fluid particle mass m and the membrane bond length l0.

p0 and b are parameters for the pressure equation, and η is

the fluid’s dynamic viscosity. In all simulations, we have set

m = 1, l0 = 0.4, and the thermal energy kBT = 0.4.

where ei j = ri j/|ri j| and vi j = vi − v j. pi and p j are

particle pressures assumed to follow the equation of state

p = p0(ρ/ρ0)
α − b, where p0, ρ0, α , and b are selected

parameters. The particle density is calculated locally and

defined as ρi = ∑ j WL(ri j) with weight function WL(r) =

105
16πr3

c

(

1+3 r
rc

)(

1− r
rc

)3

being the Lucy function, where

rc is the cutoff radius. Note that ∇WL(r) = −rw(r) such

that w(r) = 315
4πr5

c

(

1− r
rc

)2

and wi j = w(ri j). The (distance-

dependent) coefficients γi j and σi j define the strength of dis-

sipative and random forces and are equal to γi j =
5η0

3

wi j

ρiρ j

and σi j = 2
√

kBT γi j, where η0 is the desired fluid’s dynamic

viscosity and kBT is the thermal energy unit. The notation

tr[dWi j] corresponds to the trace of a random matrix of in-

dependent Wiener increments dWi j, and dW
S

i j is the traceless

symmetric part.

The time evolution of velocities and positions of particles is

determined by the Newton’s second law of motion

dri = vidt, dvi =
1

mi

(

FC
i +FD

i +FR
i

)

dt. (5)

The above equations of motion are integrated using the

velocity-Verlet algorithm.

The SDPD fluid parameters are given in Table 2. A natural

length scale in the fluid is the cut-off radius rc; however, since

we investigate the dependence of fluid properties on rc, we use

the membrane bond length l0 instead, which is very similar in

magnitude to rc. In addition, the exponent α in the equation of

state is chosen to be α = 7, and ρ0 = n, where n is the fluid’s

number density (in particles per l3
0 ). A relatively large value

of α provides a good approximation of fluid incompressibility,

since even small changes in local density may lead to strong

local pressure changes. Furthermore, the speed of sound, c,
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for the selected equation of state can be found as c2 = p0α/ρ0.

The corresponding Mach numbers have been kept below 0.1
in all simulations providing a good approximation for an in-

compressible fluid flow.

To span a wide range of flow rates, we employed differ-

ent values of fluid viscosities η in simulations with an input

parameter η0 ∈ [15;120]
√

mkBT/l2
0 (m is the fluid’s particle

mass), since the fluid viscosity modifies linearly the RBC re-

laxation time scale defined further below. Large values of

viscosity were used to model high flow rates of the physical

system in order to keep the Reynolds number in simulations,

based on characteristic RBC size, sufficiently low (see also

an argument at the end of Sec. 2.3). Even though we can

directly input the desired fluid viscosity η0 in SDPD, the as-

sumption that η0 equals the actual fluid viscosity η is reliable

only when each SDPD particle has large enough number of

neighboring particles, which may require a large enough cut-

off radius and/or a density of fluid particles. Therefore, it is

always advisable to calculate the fluid viscosity directly (e.g.,

in shear-flow setup) to check validity of the approximation of

the simulated fluid viscosity by η0. Note that for the fluid

viscosity we have always used the precalculated values of η
rather than input values of η0.

The tube wall has been modeled by frozen particles which

assume the same structure as the fluid, while the wall thickness

is equal to rc. Thus, the interactions of fluid particles with wall

particles are the same as the interactions between fluid parti-

cles, and the interactions of a RBC with the wall are identical

to those with a suspending fluid. The wall particles also pro-

vide a contribution to locally calculated density of fluid par-

ticles near a wall, while the local density of wall particles is

set to n. To prevent wall penetration, fluid particles as well as

vertices of a RBC are subject to reflection at the fluid-solid in-

terface. We employed bounce-back reflections, because they

provide a better approximation for the no-slip boundary con-

ditions in comparison to specular reflection of particles. To

ensure that no-slip boundary conditions are strictly satisfied,

we also add a tangential adaptive shear force33 which acts on

the fluid particles in a near-wall layer of a thickness rc.

Coupling between the fluid flow and RBC deformation is

achieved through viscous friction between RBC nodes and

surrounding fluid particles, which is implemented via dissipa-

tive particle dynamics interactions8. Each membrane vertex

interacts with fluid particles within a spherical volume with a

radius r′c using dissipative and random forces similar to those

in SDPD. The strength of dissipative (friction) coupling de-

pends on the fluid viscosity and particle density as well as on

the choice of r′c. The RBC membrane also separates inner and

outer fluids, which is implemented through bounce-back re-

flections of fluid particles on a membrane surface8. Finally,

the local density of fluid particles near the membrane includes

contributions of both inner and outer fluid particles.

2.3 Simulation setup

The simulation setup consists of a single periodic tube-like

channel characterized by a diameter D and the length of L =
10Dr, filled with a fluid and a single suspended RBC. For sim-

plicity, the fluid viscosity inside a RBC is set to be the same

as that of blood plasma. The flow is driven by a constant force

f applied to each fluid particle, which is equivalent to a con-

stant pressure gradient ∆P/L = f n, where ∆P is the pressure

drop. To characterize the flow we define a non-dimensional

shear rate given by

γ̇∗ =
ηD3

r
¯̇γ

κr

= τ ¯̇γ , (6)

where ¯̇γ = v̄/D = D f n/(32η) is the average shear rate (or

pseudo-shear rate), v̄ = Q/A is the average flow velocity with

cross-sectional area A = πD2/4 and volumetric flow rate Q =
πD4 f n/(128η), and τ = ηD3

r/κr is a characteristic relaxation

time of a RBC. Note that we define ¯̇γ based on the Poiseuille

flow solution for a Newtonian fluid without a RBC, since a

single RBC does not significantly affect the total flow rate.

This assumption for Q also results in γ̇∗ to be proportional

to the pressure drop, which would be a convenient parameter

to control in experiments. Furthermore, the flow behavior is

determined by the cell confinement χ = Dr/D and the Föppl-

von Kármán number Γ =YrD
2
r/κr = 2662 (average value for a

healthy RBC), which characterizes relative importance of cell

elasticity to bending rigidity.

To interpret the non-dimensional shear rate with respect

to experimental measurements, we can compute the charac-

teristic RBC relaxation time from Eq. (6) to be τ = 1.1 s.

Thus, the pseudo-shear rate ¯̇γ used in experiments is roughly

equivalent in magnitude to γ̇∗ in inverse seconds. It is impor-

tant to note that since we employ distinct viscosity values in

different simulations, the RBC relaxation time in simulation

units also changes. Therefore, the same shear rate in simula-

tions with different viscosities corresponds to different shear

rates in physical units. This approach allows us to keep the

Reynolds number low in the simulations, while a large range

of shear rates in physical units can be spanned.

2.4 Sensitivity of simulation results to the discretization

of fluid and RBC membrane

A too coarse discretization of fluid and RBC membrane may

affect simulation results. To check whether our RBC dis-

cretization is fine enough, a number of simulations has been

performed using significantly different numbers of membrane

vertices, Nv = 1000 and Nv = 3000. The comparison reveals

that Nv = 1000 is sufficient to obtain accurate results for the

investigated range of flow rates. Much larger flow rates may

require finer RBC discretization due to strong membrane de-

formations.
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(a) (b) (c)

Fig. 1: Simulation snapshots of a RBC in flow (from left to right) for χ = 0.58. (a) a biconcave RBC shape at γ̇∗ = 5; (b) an off-center slipper

cell shape at γ̇∗ = 24.8; (c) a parachute shape at γ̇∗ = 59.6. See also Movies S1-S4†.

Another potential source of error arises from the discretiza-

tion of fluid flow. There are two main parameters here, which

are related to each other: the particle density n and the cutoff

radius rc within the SDPD fluid. The value of rc cannot be

arbitrarily small, since the SDPD method properly functions

only if each particle has a large enough number of neighbor-

ing particles. Thus, the choice of rc is directly associated with

the particle density and can be selected smaller in magnitude

for higher number densities. To study the sensitivity of the re-

sults to fluid discretization, the fluid density has been varied

between n = 0.2 l−3
0 and n = 0.8 l−3

0 , while the correspond-

ing rc values were between 3.8 l0 and 2.3 l0. Simulation re-

sults show that values of rc . 3 l0 and n & 0.4 l−3
0 are small

and large enough, respectively, to properly reproduce the flow

around a RBC for the studied flow rates. Note that the cutoff

radius does not directly reflect strong local correlations, since

local interactions are scaled by the weights wi j, which decay

to zero at distance rc.

Finally, coupling between the RBC and fluid flow is also

performed over a smoothing length r′c. Even though generally

there are no restrictions on the choice of r′c, it has to be small

enough to impose properly the coupling between RBC vertices

and local fluid flow. To test the sensitivity of our simulation

results to the choice of this parameter, we varied the coupling

radius between 1.2 l0 and 2.4 l0. A comparison of simulation

results indicated that r′c . 1.9 l0 appears to be sufficient to

obtain results independent of r′c for γ̇∗ . 100. All results in the

paper are obtained using the discretization parameters which

comply with the estimations made above.

3 Results and Discussion

3.1 Shapes and dynamics of a healthy RBC

Figure 1 shows several RBC shapes for χ = 0.58 (correspond-

ing to a channel diameter D= 1.72Dr), which are typically en-

0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

χ

γ*

Snaking

Parachute

Tumbling

Slipper

Fig. 2: A phase diagram for Γ = 2662 (Yr = 18.9 × 10−6 N/m,

κr = 3× 10−19 J), which mimics average membrane properties of

a healthy RBC. The plot shows various RBC dynamics states de-

pending on the flow strength characterized by γ̇∗ and the confinement

χ . The symbols depict performed simulations, with the RBC states:

parachute (green circles), slipper (brown squares), tumbling (red dia-

monds) and snaking (blue stars) discocyte. The phase-boundary lines

are drawn schematically to guide the eye.

countered in microcirculatory blood flow, see also Movies S1-

S4†. For slow flows, see Fig. 1(a), the RBC shape is similar to

the biconcave discocyte shape in equilibrium. For higher flow

rates, see Fig. 1(b), a slipper shape may be observed, which

is characterized here by an off-center position within the tube

such that the membrane displays a tank-treading motion due

to local shear gradients resembling the tank-treading in shear

flow34,35. At the highest flow rate, see Fig. 1(c), a parachute

shape is obtained, where the cell flows at the channel center

and the membrane is practically not moving in the lab frame.

1–11 | 5

Page 5 of 12 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Figure 2 presents our main result, the shape diagram for

different flow rates and confinements, where the cell param-

eters are similar to those of a healthy RBC. The parachute

RBC shape is predominantly observed in the region of strong

confinements and high enough flow rates, where large flow

forces are able to strongly deform a RBC. Here, it should be

noticed that parachutes are also stable for weak or no confine-

ment when the curvature of the parabolic flow in the center ex-

ceeds a critical value9,36. At weak confinements, we find off-

center slippers with tank-treading motion for higher flow rates,

and discocytes with tumbling motion for lower flow rates.

Both regions arise from the transition from strongly deformed

parachute to more relaxed (discocyte and slipper) shapes, sim-

ilar to the transition seen in the diagram for 2D vesicles9,10.

However, the boundary between slippers and discocytes is

governed by the critical shear rate γ̇∗ttt of the tumbling-to-tank-

treading transition of a RBC37,38; tumbling occurs off the tube

center, when the local shear rate drops below γ̇∗ttt . In the case of

small viscosity contrast between inner and outer fluids (equal

to unity here), the origin of the tumbling-to-tank-treading tran-

sition is the anisotropic shape of the spectrin network, which

requires stretching deformation in the tank-treading state37,38,

and therefore cannot be captured by simulations of 2D vesi-

cles. In addition, near the tumbling-slipper boundary, tum-

bling motion of a RBC exhibits a noticeable orbital drift such

that the tumbling axis is not fixed and oscillates in the vorticity

direction (see Movie S2). This effect is qualitatively similar to

a rolling motion (also called kayaking) found in experiments39

and in simulations40 of a RBC in shear flow. Orbital oscil-

lations of a tumbling RBC are attributed to local membrane

stretching deformations due to small membrane displacements

whose effect becomes reduced if a RBC transits to a rolling

motion39.

At small shear rates γ̇∗, there also exists a so-called snaking

region, first observed for 2D vesicles in Refs. 9,10, where

a RBC performs a periodic oscillatory motion near the cen-

ter line. In contrast to snaking in 2D, the snaking motion in

3D is fully three dimensional and exhibits an orbital drift (see

Movie S1), which is similar to that for a RBC rolling motion

in shear flow occurring in a range of shear rates between RBC

tumbling and tank-treading39,40. The origin of orbital oscil-

lations in the snaking regime might be similar to that for a

rolling RBC; however, this issue requires a more detailed in-

vestigation. Note that at very low γ̇∗ . kBT/κr, the rotational

diffusion of RBCs becomes important, and RBC dynamics is

characterized by random cell orientation. Another striking dif-

ference between the phase diagrams in Fig. 2 and in Refs.9,10

is that at high confinements the “confined slipper” found in the

2D vesicle simulations is suppressed in 3D. The confined slip-

per in 2D found for χ & 0.6 is qualitatively similar to a slipper

at low confinements, which is also called “unconfined slip-

per” in Refs. 9,10, since this vesicle state exists in unbounded

parabolic flow. Note that the regions of confined and uncon-

fined slippers in 2D have no common boundary. The absence

of slippers at high confinements in 3D is due to the cylindrical

shape of a channel, such that a confined slipper would have to

conform with the wall curvature, which is energetically unfa-

vorable.

To better understand the differences between various RBC

states, we now analyze the cell orientational angle, displace-

ment from the channel center, and asphericity. The RBC ori-

entational angle is defined as an angle between the eigenvec-

tor of the gyration tensor corresponding to the smallest eigen-

value (RBC thickness) and the tube axis. The RBC displace-

ment r is computed as a distance between the RBC center

of mass and the tube center. The RBC asphericity character-

izes the deviation of a cell from a spherical shape and is de-

fined as [(λ1 −λ2)
2 +(λ2 −λ3)

2 +(λ3 −λ1)
2]/(2R4

g), where

λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the gyration tensor and

R2
g = λ1 +λ2 +λ3. The asphericity for a single RBC in equi-

librium is equal to 0.15. Figure 3 presents the temporal de-

pendence of these properties for different RBC states, includ-

ing snaking and tumbling discocyte, slipper, and parachute.

For the snaking dynamics, the orientational angle oscillates

between 40 and 90 degrees (Fig. 3(a)), the cell remains close

to the channel center (Fig. 3(b)), and shows only slight defor-

mations compared to the equilibrium shape (Fig. 3(c)). The

parachute shape is characterized by a small orientational an-

gle (aligned with the tube axis), a cell position right in the

tube center, and a small asphericity which indicates that the

RBC shape attains a more spherical shape. Both tumbling dis-

cocytes and tank-treading slippers are displaced further from

the channel center (Fig. 3(b)) than those for snaking disco-

cytes and parachutes, and show an oscillating orientational

angle. However, tumbling discocytes clearly show cell rota-

tions, while slippers display a swinging motion characterized

by small orientational oscillations around the tank-treading

axis37. Moreover, a tumbling RBC does not experience strong

deformations (Fig. 3(c)), while a slipper shows large oscilla-

tions in cell asphericity. Note that to determine RBC shape for

given conditions, we used both visual assessment of the corre-

sponding RBC shapes in flow and the analysis of the charac-

teristics discussed above.

3.2 Comparison with experiments

There exist several experimental studies of a RBC in mi-

crochannel flow17,20,23,41. In the experiments of Ref. 23, the

rotation of single RBCs and of their rouleaux structures in tube

flow with radii ranging from 30 µm to 100 µm has been inves-

tigated. Even though the tube diameters in the experiments

were larger than those used in our simulations, these exper-

iments provide direct evidence of the existence of RBC off-

center tumbling dynamics for low confinements and low flow
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Fig. 3: Characteristics of different RBC states: blue triangle - snaking discocyte (γ̇∗ = 9.9, χ = 0.72), red diamond - tumbling discocyte

(γ̇∗ = 14.9, χ = 0.44), brown square - slipper (γ̇∗ = 49.7, χ = 0.44), and green circle - parachute (γ̇∗ = 64.6, χ = 0.65). (a) Cell orientational

angle between the eigenvector of the gyration tensor corresponding to the smallest eigenvalue (RBC thickness) and the tube axis. (b) Distance

between the RBC center of mass and the tube center normalized by Dr. (c) RBC asphericity, which characterizes the deviation from a spherical

shape. The asphericity is defined as [(λ1 − λ2)
2 +(λ2 − λ3)

2 +(λ3 − λ1)
2]/(2R4

g), where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the gyration

tensor and R2
g = λ1 +λ2 +λ3. The asphericity for a single RBC in equilibrium is equal to 0.15. See also Movies S1-S4†.

rates with ¯̇γ . 50 s−1, in agreement with the simulation results

in Fig. 2.

In the experiments of Ref. 17, the imposed flow velocities

were very large, ranging from 1 cm/s to 30 cm/s in a capillary

with the diameter of 9 µm. This is much faster than the typical

flow velocities in microcirculation, where for venules and ar-

terioles with a similar diameter flow velocities are in the range

of 0.2− 7 mm/s.4,42 The range of flow velocities we span in

our simulations is about 0.2−1.0 mm/s, and is therefore com-

parable with that in microcirculation. The results in Ref. 17

show the existence of parachute and slipper shapes, where a

weak confinement favors non-centered slipper shapes, which

is in qualitative agreement with the simulations in Fig. 2. Fur-

thermore, a good agreement between experiments and simula-

tions is found for low confinements, where parachute shapes

are observed for flow rates with the velocities lower than 4−7

cm/s17. At flow velocities larger than approximately 7 cm/s

and at low confinements, centered slippers are observed which

resemble parachutes, but become slightly asymmetric17. Re-

cent 2D simulations10 have also found that at high enough

flow rates centered slippers and parachutes may coexist. Cur-

rently, we were not able to reach such high flow rates in 3D

simulations due to numerical limitations. In addition, this re-

gion might be of limited interest, since the corresponding flow

rates are far beyond the physiologically relevant values.

Experimental data in Ref. 20 were obtained for narrow cap-

illaries with diameters ranging from 4.7 µm to 10 µm; how-

ever, the flow velocities are considerably smaller than those in

Ref. 17, in the range of 1−40 mm/s. For strong confinements

χ & 1, centered bullet-like shapes are observed which resem-

ble an elongated cylindrical shape with a semi-spherical cap at

the front end and a semi-spherical dip at the rear end. A com-

parison with our simulation results for the weaker confinement

of χ = 0.65 shows a good agreement since centered parachute

shapes are found in both experiments and simulations. The

transition to the parachute shape for χ = 0.65 occurred at the

RBC velocity of about 0.5 mm/s in the experiments20, while

our simulations predict the transition velocity of about 0.45

mm/s.

3.3 The effect of membrane properties on the shape dia-

gram

In order to investigate the effect of membrane elastic param-

eters on the RBC phase diagram in capillary flow, we have

calculated phase diagrams for both reduced Young’s modulus

and increased bending rigidity. The state diagram for mem-

brane bending rigidity increased by a factor of five, such that

κr = 1.5× 10−18 J and Γ = 532, is shown in Fig. 4. We ex-

pect a dependence of the transition lines on the membrane

parameters and geometry of the channel to be of the form

γ̇∗c = Ω̃(Γ,χ ,κr/kBT ), where Ω̃ is a universal function for

each transition. In addition, a more general form of γ̇∗c should

also include the strength of thermal fluctuations characterized

by ambient temperature as an independent variable. As an ex-

ample, different temperatures would affect the rotational dif-

fusion of RBCs, which may become important at very low γ̇∗

and lead to random cell orientation modifying potentially a

snaking region. Also, recent experiments on vesicles43 and a

corresponding theory44 suggest that the transition lines might

be affected by thermal noise due to the sensitivity of a non-

linear dynamics to small perturbations near transition lines.

A comparison of the results of Fig. 4 with those of Fig. 2
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Fig. 5: A phase diagram for Γ = 887 (Yr = 6.3 × 10−6 N/m,

κr = 3× 10−19 J) where the Young’s modulus of a cell membrane

is three times lower than that assumed for a healthy RBC. The plot

shows different RBC dynamical states in tube flow with respect to the

non-dimensional shear rate γ̇∗ and the confinement χ . The symbols

depict performed simulations and RBC states include the parachute

(green circles), slipper (brown squares), tumbling (red diamonds) and

snaking (blue stars) discocyte. The phase-boundary lines are drawn

schematically to guide the eye.

shows that for stiffer cells, the parachute and slipper/tumbling

regions shift to lower values of γ̇∗. This behavior is consis-

tent with the roughly linear dependence of the shear rate ¯̇γ at

the parachute-to-discocyte transition on RBC bending rigidity

and shear modulus reported in Ref. 7, which is equivalent to

γ̇∗ = c1(χ) + c2(χ)Γ. Similarly, the snaking region shrinks

towards lower γ̇∗ values.

Figure 5 shows the state diagram for a RBC in tube flow

with the membrane Young’s modulus reduced by the factor of

three (Yr = 6.3 µN/m) in comparison to that of a healthy RBC.

This diagram should be compared with Figs. 2 and 4, which

are for healthy RBCs and cells with an increased bending

rigidity, respectively. In Fig. 5, the transition from snaking dis-

cocytes and swinging slippers to the parachute shape, as well

as the transition from tumbling discocytes to swinging slippers

occur at lower flow rates than those for a healthy RBC (Fig. 2).

As a consequence, the snaking region shrinks substantially

and is observed primarily at very low γ̇∗. Another feature is

that the tumbling region is significantly reduced in comparison

to that in the diagram for healthy cells (Fig. 2). These results

are consistent with the fact that the transition from discocyte

to parachute shapes in Poiseuille flow depends roughly linear

on the RBC elastic properties and bending rigidity7, as well

as that the tumbling-to-tank-treading transition of a RBC in

shear flow depends near linearly on the RBC elastic properties

such as Young’s modulus37,38. This implies that the transi-

tion lines for a fixed ambient temperature are linear functions

of the Föppl-von Kármán number Γ, as discussed above. A

comparison with the results of Ref. 7 for RBCs with consider-

ably smaller bending and shear rigidities indicates that strong

thermal fluctuations destroy the regular snaking oscillations.

Correspondence of different systems with a fixed Föppl-

von Kármán number Γ is also supported by the argument

that the RBC relaxation time τ is a linear function of RBC

membrane elastic parameters (κr or equivalently Yr for a fixed

Γ). Thus, a simulation with the parameters {Dr,Yr,sκr, γ̇
∗}

should lead to identical results as those obtained from a simu-

lation with {Dr,Yr/s,κr, γ̇
∗/s}, where s is a scaling constant.

Even though this argument is quite general, other characteris-

tics of a system need to be also properly considered including

thermal fluctuations and Reynolds number of the flow. Fi-

nally, the assumption of linear dependence of τ on the mem-

brane properties may become invalid for strong enough flow

rates, which may lead to non-linear membrane deformation.

A semi-quantitative comparison of cell shape regions can be

done by looking at the state diagram of Fig. 5 for the reduced

membrane Young’s modulus and the state diagram of Fig. 4

for an increased membrane bending rigidity. The correspond-

ing Föppl-von Kármán numbers are not the same, but similar

in magnitude and both are considerably smaller than that for

healthy RBCs. Thus, we expect that the two state diagrams

for Γ = 532 (Fig. 4) and Γ = 887 (Fig. 5) should be similar,
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and show the same trends in comparison with the diagram for

healthy cells (Fig. 2). This comparison further supports our

argument about the existence of universal functions γ̇∗c to de-

scribe the transition lines.

3.4 The effect of cytosol viscosity on the shape diagram

We have focused in our simulations on the investigation of the

effect of membrane elasticity on RBC dynamics in microcap-

illary flow, and have therefore employed same viscosity for

the suspending fluid and RBC cytosol. For a healthy RBC, the

viscosity contrast λ , defined as the ratio of cytosol over blood

plasma viscosity, is approximately λ = 5. Therefore, we want

to discuss briefly the possible effect of the viscosity contrast

on the dynamical states. Clearly, cytosol viscosity only plays

a role when the internal fluid (or equivalently membrane) is

in motion, i.e., only when the cell tank-treads in the slipper

state. Thus, we mainly need to discuss how the slipper region

will be modified. Recent experiments45 and simulations46 in-

dicate that the viscosity contrast indeed strongly affects the

tumbling-to-tank-treading transition characterized by γ̇∗ttt .

An increase in λ is known to shift γ̇∗ttt of the tumbling-to-

tank-treading transition to higher shear rates46. Therefore, we

expect that the boundary between the tumbling and slipper re-

gions in Fig. 2 would shift to higher values of γ̇∗ for a real RBC

leading to the expansion of the tumbling region. A very large

viscosity of either RBC membrane or cytosol, which may oc-

cur in some blood-related diseases or disorders22, may also

lead to a complete disappearance of the slipper region, which

would be replaced by the RBC tumbling state. Recent simu-

lations of 2D vesicles with λ = 1 in Ref. 9 and λ = 5 in Ref.

10 have shown an expansion of the snaking region toward the

slipper region, since the RBC tank-treading becomes less fa-

vorable. Note that since RBC tumbling due to membrane elas-

tic anisotropy is not possible in 2D, the snaking region in Refs.

9,10 has a large common boundary with the slipper region,

while in 3D the snaking region has practically no boundary

with the dynamical slipper region and is mainly connected to

the tumbling region (Fig. 2). Thus, no significant changes in

the snaking region due to the viscosity contrast is expected in

3D. In analogy with the expansion of the snaking region in 2D,

an expansion of the tumbling region in 3D can be expected.

An effect of the viscosity contrast on the boundary between

the slipper and parachute regions is not obvious. 2D sim-

ulations for different viscosity contrasts9,10 indicate that the

boundary is slightly altered such that the slipper region gets

mildly expanded. Thus, it is plausible to expect a similarly

weak effect in 3D; however, a definite statement on this issue

is only possible after a systematic numerical investigation of

the effect of viscosity contrast has been performed in 3D.
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Fig. 6: Normalized snaking, tumbling, and swinging (slipper state)

frequencies ω of RBCs as a function of the dimensionless shear rate

γ̇∗. The elastic membrane parameters are the same as in Fig. 4 (Yr =
18.9×10−6 N/m, κr = 1.5×10−18 J), i.e. the bending rigidity is five

times larger than that used for a healthy RBC, and Γ = 532. Three

confinements are shown, as indicated. The symbols depict simulation

results for various confinements. The regions of γ̇∗ corresponding

to different RBC states can be distinguished in the plot by colors

and line types - swinging (brown, dashed line), tumbling (red, dotted

line), and snaking (blue, solid line).

3.5 Snaking, tumbling, and swinging frequencies

The simulations also provide interesting information about the

dependence of the snaking, tumbling (both in the discocyte

state) and swinging (in the slipper state) frequencies ω on

shear rate, as shown in Fig. 6 for three different confinements

extracted from the state diagram of Fig. 4. In all regimes, the

frequencies increase linearly with shear rate. However, the

prefactors of this linear dependence are very different. The

strongest dependence is found in the swinging regime, some-

what larger than that in the snaking regime, while the fre-

quency is almost independent of γ̇∗ in the tumbling regime. In-

creasing confinement significantly reduces the snaking, tum-

bling and swinging frequencies. Note that the swinging fre-

quencies are likely to be overpredicted in Fig. 6 in compari-

son with those of real RBCs due the assumption of having the

same viscosity of the suspending medium and RBC cytosol.

3.6 Flow resistance

Figure 7 presents the volumetric flow rate QRBC with a RBC

measured in simulations and normalized by the flow rate Q

without a RBC. Data are shown for different γ̇∗ for the case of

Γ = 2662, corresponding to the shape diagram in Fig. 2. The

volumetric flow rate at low confinements remains essentially

unaffected by the presence of a RBC. As the confinement is
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increased, the flow rate decreases and the effect of a RBC on

the flow rate appears to be stronger at low γ̇∗ values. Note that

Fig. 7 also presents the change in flow resistance, since the

apparent viscosity is inversely proportional to the volumetric

flow rate. Thus, the apparent viscosity increases with increas-

ing confinement. A reduction in the flow resistance with in-

crease of γ̇∗ (represented by different curves in Fig. 7) is due to

the transition from discocyte to parachute and slipper shapes,

since for large enough γ̇∗ no significant further changes in flow

resistance occur.

Even though Fig. 7 shows the effect of confinement on

QRBC, the flow resistance for different χ may be also affected

by the change in hematocrit. In all simulations, the length

of the channel was kept same, while the tube diameter has

been varied, which means that the tube hematocrit (Ht ), cal-

culated as the ratio of the RBC volume to total tube volume,

is inversely proportional to D2. For the strongest confinement

χ = 0.79 (D = 8.2 µm) Ht is equal to 0.027, while for the

lowest confinement χ = 0.37 (D = 17.8 µm) Ht = 0.0057.

4 Conclusions

Even though the phase diagrams of RBC shapes show some

qualitative similarities with the corresponding diagram of 2D

vesicles9,10, there are several qualitative and quantitative dif-

ferences. In 3D, slippers are essentially absent at high confine-

ments (χ & 0.7) and low flow rates due to the cylindrical chan-

nel geometry, which requires the RBC slipper to comply with

the channel wall curvature and cannot be captured by a 2D

model. Therefore, parachute shapes are preferred at high χ –

in agreement with the 3D results of Ref.7. At even higher con-

finements than those in this study, RBCs are expected to attain

bullet shapes20. Another evident difference between RBCs in

3D and vesicles in 2D9,10 is the existence of a RBC tumbling

region, which appears in 3D due to anisotropic elastic proper-

ties of RBCs.37,38 For vesicles in 2D, the only possibility to

include tumbling is to introduce a high enough viscosity con-

trast between the fluids inside and outside a RBC.

The calculated state diagrams in 3D provide a better de-

scription of RBC shapes and dynamics in microvascular flow

than the previous 2D results. The flow resistance is affected

only weakly by the transition from discocyte to parachute

and slipper shapes, most significantly at high confinements

(χ & 0.6). The geometrical complexity of microvasculature

induces non-trivial partitioning of RBCs, which often leads

to very low cell volume fractions within various vessel struc-

tures, so that our simulation results provide an important step

towards an understanding of blood flow and RBC behavior

in microcirculation. Finally, similar physical mechanisms are

expected for capsule suspensions.
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Graphical abstract

The behavior of red blood cells (RBCs) in microvessels plays an important role in blood flow resistance

and in the cell partitioning within a microcirculatory network. RBCs in microcirculation may attain

various shapes including parachutes and slippers. We employ mesoscopic hydrodynamic simulations

to study the behavior and deformation of single RBCs in microchannels yielding the construction of

diagrams of RBC shapes for a wide range of flow conditions.
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