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Soft glasses produced after the cessation of shear flow exhibit persistent
residual stresses. Mode coupling theory of the glass transition explains their
history dependence in terms of nonequilibrium, nonlinear-response relaxation

of density fluctuations.

Page 1 of 13 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Mode-Coupling Analysis of Residual Stresses in Colloidal Glasses

S Fritschi,a M Fuchs,a, and Th Voigtmann∗a,b,c

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 20XX

DOI: 10.1039/b000000x

We present results from computer simulation and mode-coupling theory of the glass transition for the nonequilibrium relaxation

of stresses in a colloidal glass former after the cessation of shear flow. In the ideal glass, persistent residual stresses are found that

depend on the flow history. The partial decay of stresses from the steady state to this residual stress is governed by the previous

shear rate. We rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-dynamics

simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the predictions of the theory.

1 Introduction

Amorphous soft solids that are produced by flowing them into

shape (entailing a quench into a nonequilibrium glassy state)

display residual stresses1,2. The internal stresses that build

up during flow do not relax fully, so that some part of them

persists in the solid that is formed by kinetic arrest in the

fluid; indefinitely, in the ideal-glass case. This was recently

demonstrated qualitatively for a simple setup where glass-

forming colloidal suspensions of nearly-hard-sphere parti-

cles were observed after cessation of steady shear from their

nonequilibrium stationary state (NESS), combining macro-

scopic and microscopic experiment, computer simulation, and

mode-coupling theory of the glass transition (MCT)1.

In fact, the appearance of persistant residual stresses is

known empirically since centuries, and is neither restricted to

soft solids, nor to amorphous ones. An early demonstration in-

volves small drops of molten (ordinary window) glass that fall

into cold water and thus solidify very rapidly. These drops,

known as Prince Rupert’s drops or Dutch tears since the 17th

century3, have a surprisingly shock-resistant body (capable of

withstanding the blow of a hammer) but explode dramatically

upon the slightest damage done to their tail. The high me-

chanical stability arises from a shield of compressive resid-

ual stresses along the drop’s surface that compensates high

tensile stresses in the less rapidly cooled inner material and

acts to stop crack formation3–5. Clipping the tail releases this

frozen-in network of residual stresses, rendering the material

less strong, and in this case even instable6. Under normal

conditions, the residual-stress network on the other hand is

stable over decades in time. Safety glass and modern smart-

phone cover glasses (where chemical processes are used to
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b Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany.
c Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und

Raumfahrt (DLR), 51170 Köln, Germany.

impose residual stresses) exploit this effect to fine-tune the de-

sired mechanical properties of the product7–9. Aside from the

amorphous state, residual stresses are decisive for the fatigue

crack growth and hence the long-term stability of railway rails

under the strong external forces caused by trains10,11. One

encounters residual-stress related material phenomena even

in biophysics. For example the cytoskeleton of cells is pre-

stressed (mainly due to the action of myosin motors)12. The

unsurpassed material properties of spider silk are attributed

to residual stresses13. Control of residual stresses during the

production stage is decisive in tuning the long-term stability

of certain thin polymer films14.

Shear cessation experiments15,16 arguably provide the

cleanest setup to investigate residual stresses. Close to kinetic

arrest, cessation experiments have addressed the relaxation of

stresses17 and the evolution of linear viscoelastic moduli after

the cessation of flow18,19 in laponite gels, and aging effects

in depletion gels20. We consider as an even simpler model

systems with hard-sphere like interactions, at fixed tempera-

ture and density, initially subject to homogeneous, stationary

simple-shear flow. Residual stresses arise when the system

does not relax back to equilibrium after cessation of the flow,

but gets trapped in a nonergodic state on the way. This is the

case for (ideal) glasses, whose quiescent state is nonergodic,

but who fluidize under shear, allowing to start the cessation

experiment from a well-defined, unique NESS.

We seek to improve the first-principles theoretical under-

standing of residual stresses: they are definitely a nonequilib-

rium and nonlinear-response effect, and are found to depend

strongly on the history of past material deformation. For col-

loidal suspensions as model soft solids, the combination of

an integration-through transients (ITT) approach to nonlinear

response with the mode-coupling theory of the glass transi-

tion (MCT)21–24 allows to address such issues starting from a

particle-based microscopic description. The theory predicts

shear-rate dependent residual stresses after the cessation of
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steady shear1, in qualitative agreement with experiment and

simulation.

It should be stressed that the theoretical modeling of resid-

ual stresses is far from trivial. A succesful model to describe

the nonlinear time-dependent rheology of soft materials is the

soft glassy rheology (SGR) model25. Although it explicitly

addresses the aging dynamics of kinetically arrested solids, it

implies the relaxation of stresses back to zero after cessation

of flow26.

In this contribution, we discuss residual stresses in model

hard-sphere like glasses as explained by MCT. The theory

predicts the persistence of a non-relaxing component of the

stress after flow cessation and captures its strong dependence

on past flow history and on the mechanism of yielding. We

compare with Brownian dynamics computer simulations on a

two-dimensional hard-sphere glass to test the predictions of

the theory, finding qualitative agreement.

This paper is organized as follows: we describe in Sec. 2 the

schematic-MCT model and give details for the event-driven

Brownian-dynamics (ED-BD) simulations we performed. In

Sec. 3, the main results for the partial relaxation of stresses,

and their analysis using the schematic-MCT model is given.

Section 4 presents conclusions and an outlook.

2 Methods

We discuss the evolution of the shear stress σ(t) after the ces-

sation of steady simple-shear flow with shear rate γ̇, instanta-

neously switched off at time t = 0. Time is measured in units

of the free-particle Brownian relaxation time τ0 = d2/D0,

where d is the diameter of the particles (the unit of length)

and D0 their free diffusion coefficient. Stresses are reported

in these natural units, kBT/dD, where kBT is the energy as-

sociated with thermal fluctuations and D the dimensionality

(D = 2 for our BD simulations, and D = 3 for the theory, al-

though this difference in dimensionality is not borne out in the

schematic-MCT model).

Flow cessation is implemented in the theory by assuming

that instantaneously, for all t > 0, the (assumed) homogeneous

velocity-gradient field vanishes everywhere. In our Brownian-

dynamics simulations, this is reflected, but in comparing to

molecular-dynamics (MD) computer simulations in general,

and to experiment, one has to keep in mind that this is a sim-

plification. If shear flow is imposed through moving bound-

aries, our discussion refers to the case where these boundaries

are suddenly fixed in their current position, and held there so

that no further strain relaxation is allowed. This is to be dis-

tinguished from zero-stress boundary conditions, where stress

relaxation by adjusting the total strain would occur in addi-

tion27,28. We also neglect the effect of transiently inhomoge-

neous flow fields as they might arise shortly after stopping the

flow29. The transients should be associated with a compar-

atively short timescale of transverse-momentum diffusion, as

confirmed by thermostatted MD simulations30,31.

2.1 Theory

The integration-through transients32,33 approach to colloidal

rheology assumes that the system is at rest and in Boltzmann

equilibrium for the infinitely distant past, t → −∞. Flow is

subsequently switched on and causes a nonequilibrium pertur-

bation of the Smoluchwoski operator describing the tempo-

ral evolution of the N-particle distribution function. A formal

manipulation allows to derive the nonequilibrium, nonlinear

generalization of the Green-Kubo relation for the stress ten-

sor23,24. MCT inspires the subsequent approximation in terms

of density fluctuations to wave vector~k. For the shear stress

in simple shear flow along the x-direction and with gradient in

y-direction, one gets

σ(t)

kBT
=

∫ t

−∞
dt ′

∫
d~k

16π3
γ̇(t ′)

k2
xkyky(t, t

′)
k k(t, t ′)

S′kS′
k(t,t ′)

S2
k

φ2
~k(t,t ′)

(t, t ′) .

(1)

Here,~k(t, t ′) =~k+ kx~eyγtt ′ is the shear-advected wave vector,

describing the affine deformation of a plane-wave fluctuation

through the accumulated strain γtt ′ =
∫ t

t ′ γ̇(s)ds between two

points in time, t ′ ≤ t. For the case of shear cessation, we

set γ̇(t) = γ̇Θ(−t) with the Heaviside step function Θ. Equa-

tion (1) consists of a history integral over transient density-

correlation functions φ~k(t,t ′)(t, t
′) involving strain-dependent

density–stress coupling vertices that are given in terms of the

quiescent static structure factor Sk. The transient correlation

function is defined as the equilibrium average of fluctuations

evolved with the nonequilibrium dynamics. An important as-

set is that transient correlation functions only depend on the

flow history between their two time arguments t ′ and t, and

are oblivious of any changes in the flow before t ′.
Equation (1), together with the ITT-MCT equations for

φ~k(t, t
′), allows in principle to calculate the time-dependent

shear stress in response to an arbitrary time-dependent shear

flow γ̇(t), given the static structure factors of the system.

To reduce computational effort, one often employs an addi-

tional isotropic approximation; in Ref. 1 such an isotropically-

sheared hard-sphere model (ISHSM) was solved for the case

of shear cessation.

In schematic-MCT models, the full equations of motion of

the theory are simplified ad hoc, dropping the dependence

on wave vectors. This emphasizes the temporal correlations

as the main origin for nonlinear rheology close to the mode-

coupling glass transition. One possible schematic simplifica-

tion of Eq. (1), in the following referred to as model A, reads34

σ(t) =
∫ t

−∞
dt ′ γ̇(t ′)G(t, t ′) , (2)
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with the schematic version of the generalized dynamic shear

modulus

G(t, t ′) = vσφ(t, t ′)2 . (3)

Here, vσ is a coupling constant that adjusts the energy scale

of the schematic model. For a quantitative comparison with

experimental data on hard-sphere suspensions in three dimen-

sions, vσ = 100kBT/d3 has been suggested34. Since we are

mainly interested in a qualitative discussion here, we stick to

this value even though our Brownian dynamics simulations are

performed in 2D.

The dynamic shear modulus entering Eq. (1) is in the

schematic model replaced by the square of the density corre-

lation function. As a consequence, the integrand in Eq. (2) is

manifestly positive under steady shear. Yet, in many dense

glass-forming systems, so-called stress overshoots are ob-

served after startup of steady shear for accumulated strains

γ = γ̇t of a few percent (assuming shear flow to be started

at t ′ = 0). The resulting stress–strain curves σ(γ) display an

intermediate maximum before decreasing towards the steady-

state value, at about γ ≈ 0.1 for hard-sphere systems. Posi-

tion and strength of this overshoot depend on the details of the

interaction and the sample preparation and age30,35,36. The

overshoot corresponds to a stress-overrelaxation visible as a

negative dip in G(t,0) during the structural-relaxation pro-

cess. It describes the capability of the viscoelastic system to

transiently store more elastic energy than is maintained dur-

ing plastic flow, and an elastic recoil process during yield-

ing. Comparing the ITT Green-Kubo relation, Eq. (1), with

its schematic simplification, Eq. (2), one recognizes that a re-

duction of the coupling coefficients driven by shear advection

is missing from the schematic model. In the microscopic MCT

model, a certain amount of negative coupling of density fluc-

tuations into the stress can occur. One can interpret this re-

versible suppression as the effect of anelasticity on the average

structure, rather than plasticity which is expressed through the

strain-induced irreversible decay of the correlation function.

For the purpose of quantitative fits to such stress–strain

curves, a schematic model (here referred to as model B) has

been proposed, including an empirical term that captures the

strain dependence of density-fluctuation–stress couplings by

setting37, with G(t, t ′) = vσ(t, t
′)φ(t, t ′)2,

vσ(t, t
′) = v0

σ

(

1− (γtt ′/γ∗)
4
)

exp
[

−(γtt ′/γ∗∗)
4
]

. (4)

We denote here the obvious generalization of Ref. 37 to non-

steady shear. The parameters γ∗ and γ∗∗ model the position

and width of the overshoot, and are adjusted to fit experimental

data. They show a weak dependence on shear rate themselves

in fits of the steady-shear rheology of a hard-sphere suspen-

sion37. To keep the discussion simple, we neglect this and set

γ∗ = 0.105γc and γ∗∗ = 0.14γc. This produces a pronounced

stress overshoot in startup flow, allowing us to discuss the in-

fluence of the elastic-recoil effect on the stress relaxation after

cessation in a qualitative way. The scale parameter v0
σ is ad-

justed to match the dynamic yield stress to that of model A

with fixed vσ.

The equation of motion for the transient density correlation

functions in the schematic MCT (for both models) reads34

∂tφ(t, t
′)+φ(t, t ′)+

∫ t

t ′
m(t, t ′′, t ′)φ̇(t ′′, t ′)dt ′′ = 0 , (5)

where we have set the initial relaxation time to unity defin-

ing the unit of time. The memory kernel m(t, t ′′, t ′) describes

structural relaxation and its modification through the applied

flow. The mode-coupling theory of the glass transition closes

the equation of motion by approximating the memory ker-

nel as a quadratic functional of the density correlation func-

tions themselves, assuming density fluctuations to be the dom-

inant slow dynamical variable. Mimicking the microscopic-

MCT expression, we employ the common F12 model for time-

dependent shear34,

m(t, t ′′, t ′) = h(t, t ′)h(t, t ′′)
[

v1φ(t, t ′′)+ v2φ(t, t ′′)2
]

. (6)

Here, h(t, t ′) is a function describing the suppression due to

shear of the memory effects that cause slow structural relax-

ation. v1 and v2 are the coupling coefficients of the model.

They describe the thermodynamic state of the system. For

small coupling coefficients, the quiescent solution of the F12

model is liquid like, where density fluctuations fully relax:

φ(t, t ′) → 0 as t − t ′ → ∞. There is a line of critical cou-

pling coefficients (vc
1,v

c
2) identified as the ideal glass transi-

tion of the model, where a nonergodic solution φ(t, t ′)→ f > 0

first appears38. Choosing the point determined by vc
2 = 2 en-

sures that the asymptotic dynamics of the F12 model matches

that expected for hard-sphere-like suspensions. For simplic-

ity, we set v2 = 2 throughout. We introduce a separation

parameter ε to indicate the distance to the glass transition:

v1 = vc
1+ε/(

√
2−1), where ε > 0 indicates glassy states with

v1 > vc
1, and ε < 0 liquid states with v1 < vc

1.

Accumulated strain decorrelates the MCT memory kernel;

this is described by the empirical strain-reduction function

h(t, t ′) = 1/[1+(γtt ′/γc)
2]. Here, γc = 0.1 is a parameter that

sets the scale for the elastic limit of the solid.

The ITT-MCT equations of motion are solved numerically.

We need to keep the full dependence of correlation functions

on their two time arguments. However, for the transient cor-

relation functions the calculation is eased by noting that for

cessation of steady flow at t = 0, the time half-plane (t, t ′ < t)
can be split into three regions. In particular, for the two regions

t > t ′ > 0 and t ′ < t < 0, the equations for the transient cor-

relation functions restore time-translational invariance since

the shear rate is constant between any pair (t ′, t) there. The

nontrivial predictions of the model all stem from the behavior

of the two-time correlation functions spanning the cessation

1–12 | 3
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point, t ′ < 0 < t. A numerical scheme to deal with these cor-

relation functions in the case of step changes in shear rate has

been devised39.

2.2 Simulation

We perform event-driven Brownian dynamics simulations40

for a 2D binary mixture of hard disks. The system consists

of NA = 500 particles with diameter d = 1, and NB = 500

particles with diameter dB = 1.4, and has been widely stud-

ied as a model glass former41,42, including its nonlinear rhe-

ology in steady state, large-amplitude oscillatory shear, and

the transient dynamics after shear startup37,43–46. The only

control parameter is the packing fraction ϕ giving the ratio of

volume occupied by all the disks to the volume of the sys-

tem. The mode-coupling glass transition point of this binary

mixture has been determined from extensive simulations41,

ϕc ≈ 0.795. For comparison, jamming in this system occurs

around ϕrcp ≈ 0.8447, significantly above the density regime

we are interested in.

In this contribution, we focus on the shear-cessation dynam-

ics of a glassy state, and set ϕ = 0.81 throughout. Brownian

dynamics is approximated by a sequence of event-driven sim-

ulation steps of length τB, ensuring that no particle overlaps

occur, after which the particles are assigned new Gaussian ran-

dom displacement vectors40. For times t ≫ τB, the dynamics

reflects that expected from the N-particle diffusion equation

for hard spheres with a free-diffusion coefficient D0 = τB/2

in simulation units. We set τB = 0.01. Shear flow is imposed

in the simulation by Lees-Edwards periodic boundary condi-

tions48, and by imposing a corresponding deterministic bias

for the random displacements. The resulting stationary state

is homogeneous for all the shear rates considered below.

Stresses are measured in ED-BD by associating with each

“collision” of two Brownian particles i and j a momentum

transfer ∆~vi j, where each Brownian displacement ∆~xi is as-

signed a velocity ~vi = ∆~xi/τB. The shear stress is then given

by

σ =
1

V

〈

1

∆t
∑
i< j

∑
{tc}

∆vx
i j(tc)∆r

y
i j(tc)

〉

, (7)

where ∆~ri j(tc) is the separation vector between two particles

during their collision. The sum runs over all collision times

tc in a small time interval ∆t used to smoothen the result. We

choose ∆t in the range [25τB,150τB]≡ [0.00125τ0,0.75τ0] de-

pending on the shear rate, and the time after startup and cessa-

tion (using smaller time intervals close to the points where the

shear rate changes). To improve statistics at the largest shear

rates (γ̇τ0 ≥ 4 × 10−1), averaging intervals up to ∆t = 10τ0

have been used.

After startup of shear from a well-aged glassy configura-

tion, the simulations were run up to an accumulated strain of
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Fig. 1 Time-dependent shear stress σ(t) from ED-BD simulations

of a 2D hard-disk system at packing fraction ϕ = 0.81, for various

shear rates as labeled. Steady shear with rate γ̇ is switched off after

an accumulated strain γ = 1 is reached. The time of switch-off

defines t = 0.

γ = 1 to ensure that a steady state had been reached. The

last steady-state configuration is used to set the origin of

time thereafter. After cessation, runs were performed with

up to 5× 106 BD simulation steps, corresponding to a time

t/τ0 = 2.5×104. To obtain sufficient statistics for the stresses,

a large number Nr of independent simulation runs is required.

We have used Nr = 393 (524, 801, 615, 392) runs for the cal-

culation of σ(t) after cessation from shear rates γ̇τ0 = 4×10−n

with n = 0 (1, 2, 3, 4), supplemented by 359 (200, 187, 193)

shorter runs (with 1×106 BD steps) for n = 1 (2, 3, 4).

The results for σ(t) from the ED-BD simulations are shown

in Fig. 1. The region γ̇t < 0 corresponds to simulations of

startup shear, as discussed previously for this system37 and for

MD simulations of similar model glass formers30. This initial

part of the σ-versus-γ̇t curves reflects the stress–strain curves

σ(γ) discussed in these references. They exhibit pronounced

stress overshoot phenomena; a fact that will be related to the

stress relaxation after cessation below. At the highest shear

rate, γ̇τ0 = 4, one notices a small undershoot after the maxi-

mum in the stress–strain curve, and some smaller oscillations

in σ(t) until the point where shear was switched off. There-

fore, some care has to be taken interpreting the results for this

shear rate, and we will only discuss generic features that are

qualitatively identical also for the lower shear rates. While the

present ED-BD simulation algorithm remains a well-defined,

overlap-free, rejection-free Monte Carlo scheme40, its approx-

imation of the Smoluchowski equation for Brownian-particle

motion becomes questionable for shear rates much larger than

γ̇τ0 ≈ 4.
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Fig. 2 Upper panel: stress relaxation σ(t) after cessation of shear

flow from the nonequilibrium stationary state, for a two-dimensional

Brownian dynamics simulation of a binary hard-disk system, at

packing fraction ϕ = 0.81, for the shear rates from Fig. 1 as

indicated. Dotted lines: results from a schematic-MCT model with

strain-dependent stress–density coupling vertex (model B, see text)

for γ̇τ0 = 4×10−4 and 4×10−3 and separation from the glass

transition ε = 0.0001. Dashed lines indicate the residual stress σ∞

(shown in Fig. 5) estimated from the simulation, see text. Lower

panel: same data, normalized to the steady-state stress (flowcurve)

and as a function of rescaled time γ̇t. The dash-dotted line indicates

a 1/γ̇t law.

3 Results and Discussion

We first present results for the stress relaxation after simple-

shear cessation in our two-dimensional Brownian dynamics

simulation. Figure 2 shows the shear stress σ(t) as a function

of time t since cessation, for various shear rates. With increas-

ing shear rate, the steady-state shear stress σss(γ̇) increases;

this is seen as the initial value of the σ(t) curves in Fig. 2.

Some of this shear stress relaxes after cessation of flow, on

a time scale set by the past shear rate. This is evidenced by

the lower panel in the figure, where a scaling of the normal-

ized σ(t)/σss-versus-γ̇t curves onto an apparent master curve

is observed for an initial time window, γ̇t . 0.1. Curves for

lower pre-shear rates deviate from the master curve at earlier

rescaled times. For the highest shear rates, the decay at in-

termediate times is approximately described by a 1/γ̇t form

(dash-dotted line in the figure).

For long times, a nonzero plateau value is indicated in the

simulations. Note that large fluctuations hamper the explo-

ration of the long-time regime in the simulation; this is in par-

ticular true for the larger shear rates shown in Fig. 2. Here, the

initial part of the relaxation covers around two orders of mag-

nitude in stress, and hence reaches the noise limit of the statis-

tical sampling. Nevertheless, the simulation data are compati-

ble with the emergence of a finite long-time limit in the ideal

glass, σ∞(γ̇) = limt→∞ σ(γ̇; t) > 0, i.e., a persisent residual

stress. To demonstrate this, we add in Fig. 2 as dashed lines the

time-averaged stress σ̄ over the interval t/τ0 ∈ [9800,25000]
for the simulations with shear rates γ̇τ0 ≤ 4×10−2. For these

cases, σ̄ is significantly different from zero. Dotted lines in the

upper panel of Fig. 2 show exemplary results from schematic

MCT, discussed in more detail below, to highlight the ex-

pected behavior in the ideal glass. The theory result overes-

timates the amount of residual stress that persists in the glass,

but describes the partial relaxation from the steady state. Our

result corroborates earlier MD simulation results for a binary

Yukawa mixture with a dissipative-particle-dynamics thermo-

stat and temperature as the control variable1.

In MCT, a finite residual stress emerges since σ(t) is deter-

mined from the past flow history, and infinitely long-lasting

memory effects in the ideal glass cause a nonvanishing con-

tribution to the generalized dynamical modulus G(t, t ′) from

times t ′ < 0 (i.e., before cessation) even as t → ∞. We will

investigate the shape of these correlation functions in more

detail below. Figure 3 demonstrates the stress relaxation after

the cessation of flow in the schematic-MCT models introduced

above. A state in the ideal glass (distance parameter ε = 0.01;

solid lines) was chosen. For comparison, we also show stress

relaxation curves for a state point in the liquid (ε = −0.01;

dashed lines). There, stresses ultimately relax to zero as the

system reaches an equilibrium state again. This final relax-

ation is determined by the structural-relaxation time scale τα

of the quiescent equilibrium correlation function, which is in-

dependent on the pre-shear rate γ̇. Since the simulation data

shown in Fig. 2 show relaxation essentially only on a time

scale connected with γ̇, this can be taken as an indicator that

they are not connected with equilibrium-liquid like relaxation.

Comparing with the simulation results, Fig. 2, one recog-

nizes two main differences to the schematic model A: in the

simulation, the initial transient stress relaxation is stronger,

so that the final residual-stress plateau is hardly discernible

in a semi-log representation (upper panel of Fig. 2); only in

a double-logarithmic representation (lower panel), the finite
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Fig. 3 Stress relaxation σ(t) following cessation of stationary shear

flow, calculated within schematic MCT for a state in the ideal glass

(distance parameter ε = 0.01; solid lines), and in the liquid

(ε =−0.01; dashed lines). Shear rates γ̇τ0 = 10−4, 4×10−4,

4×10−3, and 4×10−2, as indicated by labesl. Upper panel: with a

strain-independent coupling coefficient in the schematic

Green-Kubo relation (model A). Lower panel: with strain-dependent

coupling vσ(t, t
′), Eq. (4), as discussed in the text (model B).

residual stress becomes apparent. The second difference con-

cerns the dependence of the residual stress on the pre-shear

rate: in the simulations, we observe σ∞(γ̇) to be a decreas-

ing function of increasing γ̇. In the schematic model A with

fixed vertex vσ, the residual stress σ∞ instead increases with

increasing pre-shear rate; this is also the case in the isotropic

approximation to the microscopic ITT-MCT1.

The trend exhibited by the simulation results typically leads

to a crossing of σ(t)-versus-t curves belonging to different γ̇.

Stronger shear causes higher steady-state stresses (so that the

initial value of the σ(t) curve increases), but a larger amount of

these stresses can relax after cessation from strong pre-shear,

than from weaker pre-shear. Intuitively, stronger shear flu-

idizes the glassy structure more severly, allowing for more ef-

fective particle rearrangements in order to relax stresses after

the driving is switched off. Note however that the decrease

of σ∞ with increasing pre-shear rate is a general, but not a

universal effect; it is observed in the MD simulations men-

tioned above, in experiments on hard-sphere-like suspensions

of core-shell PS-PNIPAM particles, and also for hard-sphere

suspensions of PMMA particles close to the glass transition1.

However, these PMMA suspensions at higher packing frac-

tion displayed an increase of the residual stress with increas-

ing pre-shear rate. Coincidentally, the systems for which a de-

creasing σ∞(γ̇) was observed, are also those with strong stress

overshoot phenomena under startup flow.

The different trends of σ∞(γ̇) can indeed be connected to the

amount of elastic recoil that causes the stress overshoots under

startup flow. As explained above, the schematic model A does

not contain this mechanism. It only describes the relaxation of

stresses due to irreversible, plastic rearrangements; in the the-

ory identified as those that cause strain-induced decorrelation

of advected density fluctuations. The introduction of a time-

dependent coupling between stresses and those density modes,

introduced into the schematic model by a time-dependent ver-

tex vσ(t, t
′), accounts for a further relaxation caused by anelas-

tic deformation due to the affine effects of shear. Including

this mechanism of stress overshoots indeed has the effect of

reducing the residual stress σ∞(γ̇) such that it becomes a de-

creasing function of increasing γ̇. The lower panel of Fig. 3

demonstrates this for model B with the time-dependent ver-

tex with parameters γ∗ and γ∗∗ from Eq. (4). With this choice,

the schematic model B reproduces the crossing of σ-versus-

t curves observed in the simulation. Curves from the model

B corresponding to two shear rates used in the simulation,

γ̇τ0 = 4 × 10−4 and 4 × 10−3, albeit at a smaller distance

parameter ε = 0.0001 (corresponding to the simulated state

which is rather close to the glass transition), have also been

added to the simulation results for comparison (dotted line in

Fig. 2). Note that we did not attempt to fit the simulation data

by adjusting the model parameters.

The qualitative similarity between the MCT model and the

simulation results becomes clearer in a double-logarithmic

representation of σ(t) as a function of t or rescaled time

γ̇t. This is shown for the schematic-MCT models in Fig. 4.

As in the simulation results, one notes reasonably good data

collapse for the normalized stress σ(t)/σss for intermediate

rescaled times γ̇t: all liquid- and glass-state curves for the

shear rates shown almost coincide in their initial relaxation

from the steady-state value. It should however be noted that in

the schematic-MCT models, this scaling does not hold strictly.

This can in particular be noted for model B with the strain-

dependent vertex, shown in the lower panel of Fig. 4. The

relative amount of stress relaxation after cessation, ∆σ∞ =
(σss −σ∞)/σss, cessation is described qualitatively correctly

by both variants of the schematic model: ∆σ∞ increases as
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Fig. 4 Double-logarithmic representation of the normalized stress

relaxation function σ(t)/σss as a function of rescaled time γ̇t, from

schematic MCT in the glass (solid lines, ε = 0.01) and in the liquid

(dashed, ε =−0.01). Shear rates are γ̇τ0 = 10−4, 4×10−4, 10−3,

4×10−3, and 10−2. Upper panel: model A with fixed stress–density

vertex vσ. Lower panel: model B including a strain-dependent

vertex vσ(t, t
′), see text. The dashed lines indicate (γ̇t)−0.33 (upper

panel) respectively 1/γ̇t (lower panel).

a function of increasing pre-shear rate, in agreement with all

known experimental and simulation data.

While the simulation results shown in Fig. 2 show indica-

tions of a decay ∼ 1/γ̇t, the schematic-MCT curves are sig-

nificantly less steep. In the model A with fixed vσ, the initial

decay approximately follows σ ∼ t−a with a ≈ 0.33 as ex-

pected from the asymptotic power law for relaxation onto the

nonergodic plateau derived in MCT38. The σ(t)/σss-versus-

γ̇t curves for the experimental data of Ref. 1 similarly show

a power-law-like relaxation regime, σ(t) ∼ (γ̇t)−x. For the

PS-PNIPAM system, one estimates x ≈ 0.5, while the PMMA

suspension is described by an exponent x & 0.67 close to the

glass transition (ϕ = 0.587), and x ≈ 0.4 for the state that was

investigated deeper in the glass (ϕ = 0.614).

It is worth noting that the soft glassy rheology model pre-
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Fig. 5 Residual stress σ∞ as a function of pre-shear rate γ̇, in

thermal units kBT/dD (D is the spatial dimension, separation

parameters ε as labeled). Solid lines are σ∞(γ̇) including a

strain-dependent vertex in the Green-Kubo relation (model B,

separation parameters ε as labeled); dashed lines correspond to

model A with fixed vertex vσ. Dotted lines are the flowcurves

(steady-state stress σss as a function of shear rate) for model A.

Filled symbols: σ∞ from experiment in D = 3 (PMMA suspensions

at ϕ = 0.587: diamonds; at ϕ = 0.614: triangles; PS-PNIPAM

suspensions close to the glass transition: circles), all from Ref. 1,

and from ED-BD simulations in D = 2 (squares). For the

PS-PNIPAM data at the four lowest shear rates, open circles indicate

σss.

dicts such power law decay, with an exponent x that is identical

to the SGR’s effective temperature parameter26, and indepen-

dent on shear rate. In the SGR model, one thus expects the

stress relaxation to be slower deeper in the glass, with x ≈ 1

close to the transition. In this respect, the initial decay of

σ(t) observed in our simulations and in the PMMA suspen-

sions follow this expectation, while the value x ≈ 0.5 observed

for the PS-PNIPAM system is lower than expected (given that

these experimental data correspond to a state not too far from

the glass transition). The γ̇-dependent slowing down of the

stress relaxation (visible, e.g., in the lower panel of Fig. 2), in-

terpreted as the approach to a finite residual stress are features

that differ significantly from SGR.

Figure 5 shows the dependence of the residual stress σ∞ =
σ(γ̇; t =∞) as a function of the previous shear rate γ̇. Sym-

bols show experimental and simulation data. Values for σ∞

for three different hard-sphere-like colloidal suspensions were

taken from Ref. 1, where they had been determined as the

stress reached at a fixed time towards the end of the measure-

ment. We add our results from ED-BD computer simulations

of the 2D hard-disk mixture (square symbols in the figure).

Here, to determine σ∞, the simulated σ(t) curves have been

averaged over a certain time window, as explained in connec-

tion with Fig. 2 (dashed lines there). In line with the discus-
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the regime t ′ < 0 < t enters. Schematically, this is repre-

sented by the shaded area in Fig. 6. The MCT equation of

motion for φ(t, t ′) is dominated by the history-dependent con-

tribution arising through the memory-kernel integral involving

m(t, t ′′, t ′) and φ̇(t ′′, t ′) for t ′′ ∈ [t ′, t], Eq. (5). The paths for t ′′

followed in this integral are indicated in Fig. 6 by dashed lines

for the two functions. Figure 7 shows the two-time “cessation

correlator” φ(t, t ′) for t > 0 and t ′ < 0 for an exemplary case.

The qualitative behavior of this correlation function can be

understood from the structure of the memory-kernel equa-

tion and from the boundary conditions. Note that correla-

tion functions are at least continuous, so that for t ′ = 0 the

cessation correlator equals the quiescent equlibrium one (cf.

Fig. 6), φ(t,0) = φeq(t). For t = 0, on the other hand, φ(0, t ′) =

φ
(γ̇)
ss (|t ′|), the transient correlation function under steady shear

of rate γ̇. These two boundary cases are visible in Fig. 7 as the

red lines towards the back of the plot.

The MCT expression for σ(t) suggests to discuss correla-

tion functions at fixed first argument t, as a function of −t ′ > 0.

Exemplary results are shown in Fig. 8. Since the accumulated

strain that decorrelates the MCT memory kernel increases

with increasing |t ′|, one expects the correlation functions to

monotonically decay from their initial value for each t with

increasing |t ′|. (The situation may be different when, say, con-

sidering cessation of large-amplitude oscillatory flow, where

the transient correlation functions are nonmonotonic43.)

For liquid states (ε < 0 in the model), the equilibrium cor-

relation function decays to zero on a structural-relaxation time

scale τα. Hence, for t ≫ τα, the transient correlator φ(t, t ′) for

t ′ < 0 vanishes, and there is no contribution to σ(t) in Eq. (2).

This explains the observation made in Fig. 3 that in the liquid,

stresses relax back to zero after cessation on the time scale τα,

independent on the previous shear rate.

In the glass, the quiescent correlator decays to a finite

plateau, the nonergodicity parameter f = limt→∞ φeq(t). For

sufficiently large t, the cessation correlator φ(t, t ′), viewed as

a function of |t ′| hence has initial value f . To understand its

decay to zero, recall first that the steady-state transient correla-

tion function in the shear-melted glass features a decay to zero

on a time scale τγ̇ ∼ 1/γ̇ (up to a prefactor set in the model by

γc), as long as γ̇τ0 ≪ 1.

For γ̇ → 0, a scaling limit is approached where φss(t) ∼
φ̃ss(γ̇t) for t → ∞. In this scaling limit, the short-time decay

of the correlator on the time scale τ0 becomes irrelevant, and

the scaling function obeys φ̃ss(s) = f for s → 0. Since the

steady-state stress σss is then determined essentially only by

the integral over φ̃ss(γ̇t), a dynamic yield stress arises that is

qualitatively given by vσ f 2.

For times γ̇t ′ ≪ 1, φss(t
′) (or eqiuvalently φ(0,−t ′)) remains

close to the equilibrium curve. The decay of φ(t, t ′) for t → ∞
can now be understood recalling the structure of the MCT

memory integral sketched in Fig. 6. At large t and small |t ′|,
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Fig. 8 Constant-t cuts through Fig. 7: Transient two-time

correlation function φ(t, t ′) of the schematic-MCT model for

t ′ < 0 < t, as a function of −γ̇t ′ for fixed t for a distance parameter

ε = 0.01. Solid lines correspond to γ̇τ0 = 10−4, at t = 0 (identical to

the nonequilibrium-steady-state correlator), t = 3.6τ0, and t = ∞

(numerically obtained for t/τ0 > 109) as labeled. Dashed lines:

same curves for γ̇τ0 = 10.

the integral is dominated by equilibrium-correlator contribu-

tions, and extends the latter. The contributions only change

significantly once |t ′| = O(τγ̇), since then the contribution to

the memory kernel arising from φ̇(t ′′, t ′) (horizontal dashed

line in Fig. 6) starts to decay. Therefore, also φ(t, t ′) decays

to zero on a time scale τ′γ̇ = O(τγ̇). If t ≫ τ0, the two-time

correlator hence resembles the scaling curve φ̃ss(γ̇t) that de-

termines the yield stress. This is visualized in Fig. 7 where we

show φ(t, t ′) as a function of the two time arguments t > 0 and

t ′ < 0. At t ′, t → 0, the microscopic relaxation from unity to f

can be seen. For the small pre-shear rate chosen in the figure,

this microscopic relaxation has a small weight in the integral

determining σ(t). For large |t ′|, the correlator becomes effec-

tively independent on t, featuring decay on the time scale τγ̇.

This explains that for γ̇ → 0, both the residual stress σ∞ and

the steady-state stress σss approach the dynamic yield stress.

For large γ̇τ0, the shear-induced relaxation of the steady-

state correlator no longer obeys τγ̇ ∼ 1/γ̇. In the schematic

model, it instead approaches τγ̇→∞ ∼ τ0. As a result, σss ∝ γ̇,

and the flowcurve exhibits a high-shear Newtonian regime.

The two-time cessation correlator φ(t, t ′) is still governed by

the same qualitative argument as given above: the initial value

for t → ∞ is still f , and the memory integral is still cut off by

the decay of the steady-state correlator on a time scale O(1/γ̇)
(horizontal dashed line in Fig. 6). Thus, σ∞ is still deter-

mined by the integral over a function whose decay scales as

1/γ̇, resulting in a constant expression in Eq. (2). The numer-

ical value of σ∞ will differ somewhat from the yield stress σy,

since the shape of the cessation correlator for t → ∞ changes
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Fig. 9 Transient two-time correlation function φ(t, t ′) of the

schematic-MCT model as a function of t − t ′ for fixed t ′ < 0, for

distance parameter ε = 0.01 and shear rate γ̇τ0 = 10−4. Solid lines

correspond to t ′ as labeled, |γ̇t ′|= ∞ is the steady-state correlation

function under shear. The dotted line marked γ̇t ′ = 0 corresponds to

the quiescent equilibrium curve. Inset: results for the liquid,

ε =−0.01.

somewhat with changing γ̇.

The situation is demonstrated for two different shear rates,

γ̇τ0 = 10−4 and γ̇τ0 = 10, in Fig. 8 (solid and dashed lines).

Here, the cessation correlator φ(t, t ′) is shown for fixed t > 0

as a function of rescaled second time argument, |γ̇t ′|. For the

lower shear rate, the final decay to zero is set by τγ̇ for all t,

which is also the case demonstrated in Fig. 7. For γ̇τ0 ≫ 1, the

steady-shear correlation function decays on the microscopic

time scale τ0, and hence does not scale with γ̇. As how-

ever t increases, the microscopic contributions disappear from

φ(t, t ′), and a decay on a shear-induced time scale, τ′γ̇ ∼ 1/γ̇

re-emerges. In this case one notices that τ′γ̇ > τγ̇, since the

memory integral picks up microscopic transients that are, in

the case of strong shear, no longer negligible. As a result, the

irreversible plastic relaxation described by the transient corre-

lation functions describe a residual stress that increases with

increasing γ̇, as noted above, but becomes independent on pre-

shear rate as γ̇ → ∞.

So far, we have discussed constant-t cuts of the transient

correlation functions, i.e., those that determine the shear stress

within ITT-MCT. In discussing two-time-dependent correla-

tion functions, it is often more convenient to consider cuts for

fixed second argument, i.e., constant-t ′ cuts, since this facili-

tates the interpretation of t ′ as a waiting time from which cor-

relations into the future are measured. For the case of shear

cessation, the transient correlation functions are of interest

only for t ′ < 0. Figure 9 shows an exemplary case for the

schematic-MCT model. The qualitative behavior can again be

understood from Fig. 7. For |t ′| ≈ 0, the quiescent correlator is

recovered, while for |t ′|→ ∞, one approaches the steady-shear

correlation function. Since this steady-state correlator decays

on the time scale τγ̇, the region of nontrivial t ′-dependence is

|γ̇t ′|. 0.1. By continuity, the transient correlator then follows

the steady-state correlator initially (for t < 0). Since for t > 0,

no further relaxation mechanisms contribute to its decay, the

transient two-time correlator then quickly crosses over to a t ′-
dependent plateau where φ(t, t ′) is independent on t. In Fig. 7,

this is exhibited by the fact that for |t ′| large enough such that

the transient correlation function assumes a value less than the

plateau f , it is independent on t in the glass. The curves shown

in the main panel of Fig. 9 hence obey φ(t, t ′) → f̃ (t ′) < f

for t → ∞ and fixed t ′ < 0. In the non-ideal glass, one ex-

pects this plateau to ultimately decay due to relaxation pro-

cesses that are not captured in the MCT approximation. In

the liquid, the curves are modulated by the final decay on the

structural-relaxation time scale τα. This is demonstrated in

the inset of Fig. 9, where we show the same constant-t ′ cuts

as in the main panel, but for the liquid state with separation

parameter ε =−0.01.

The transient cessation correlators are not straightforwardly

accessible in molecular-dynamics simulations, since they re-

quire averaging over the equilibrium distribution function

while the trajectories correspond to those influenced by the

past shear rate. In the simulation, the averaging is performed

over a set of configurations that one assumes to be repre-

sentative of the statistical ensemble as it evolves over time.

This a priori only gives access to the waiting-time depen-

dent correlation function Φ(t + tw, tw). Evaluating this quan-

tity within ITT-MCT involves additional approximations (see

supplementary material of Ref. 1) and is outside the scope of

the present discussion.

4 Conclusions

We have analyzed the transient decay of the shear stress af-

ter the cessation of steady shear flow in an ideal-glass model

using schematic models of the mode-coupling theory com-

bined with the integration-through transients framework (ITT-

MCT). The theory predicts the partial relaxation of stresses

to a long-time plateau value: a flow-history dependent resid-

ual stress σ∞ emerges that is sustained by the glass produced

from the shear-melted initial steady state. Brownian-dynamics

computer simulations of a two-dimensional hard-disk mixture

in the glass confirm this picture qualitatively. Our simulation

results further corroborate similar results from earlier experi-

ments and 3D molecular-dynamics simulations1.

The residual stress depends on the preparation history of

the glass, in our case exemplified by its dependence on pre-

shear rate γ̇. Two variants of the schematic-MCT model have

been discussed that differ by whether or not they take account

of anelastic strain-induced decorrelation of the overlap be-
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tween stress and density fluctuations. Taking into account only

the relaxation of stresses through irreversible decorrelation of

density fluctuations caused by thermal noise (model A), resid-

ual stresses remain that are larger than the dynamical yield

stress σy. Further stress relaxation is provided by a reduc-

tion of stress–density couplings that originates in the affine

shear advection and is also the cause of pronounced stress

overshoots in startup flow. In the schematic model, this needs

to be captured empirically (model B), guided by a numerical

discussion of the full, wave-vector dependent ITT-MCT37.

The yield stress is the smallest stress the shear-melted

glassy state needs to maintain in order to flow homogeneously.

In the limit of infinitesimally slow flow, none of this stress

can relax. For faster flow, the steady-state stress rises above

the dynamic yield stress, and for models with no or suffi-

ciently weak startup-stress-overshoot phenomena, these addi-

tional stresses only relax partially, due to the effect of irre-

versible thermal motion. A further stress-relaxation mecha-

nism is provided by the same mechanism that is responsible

for stress overshoots in flow startup: the capability of cages

to transiently store a large amount of elastic energy that is re-

leased under plastic deformation. In the case of shear cessa-

tion, this mechanism allows for a further relaxation of past-

flow-induced stresses, so that the remaining residual stresses

decrease with increasing shear rate. Nevertheless, a certain

amount of stresses never relaxes in the arrested glass, sig-

nalling the nonequilibrium nature of the amorphous solid that

is being produced.

From the point of view of statistical physics, the appearance

of persistent residual stresses is a clear deviation from On-

sager’s regression hypothesis, and hence a genuine nonlinear-

response effect. Recall Onsager’s reasoning in the present

context50: If an external perturbing field h0 coupling to the dy-

namical variable X , is switched on adiabatically in the infinite

past, h(t) = h0 exp[εt] (with ε → 0+), the normalized devia-

tion in X obeys: 〈∆X(t)〉ne/〈∆X(t = 0)〉ne = ΦX (t)+O(h0),
where the relaxation function, ΦX (t), is the normalized corre-

lation function of the fluctuations of the variable X in the un-

perturbed system. It is thus independent of the external field.

In our case, the imposed shear flow with rate γ̇ couples to the

shear stress, yet we find that the normalized deviatoric shear

stress σ(t)/σss sensitively depends on small shear rates, even

in the asymptotic long-time limit. The origin of the violation

of Onsager’s result lies in the time-dependence of the initial

stationary state. Its decay is shear-induced and thus becomes

arbitrarily slow in the limit of γ̇ → 0. In ITT-MCT this slow

decay is the origin of a dynamic yield stress in the steady state,

and of the persistent residual stress after flow cessation.

The ITT-MCT theory describes time-dependent single-

point averages (such as the macroscopic stress σ(t)) in

nonequilibrium through Green-Kubo-like integrals, based on

two-point transient correlation functions φ(t, t ′). The latter are

a convenient tool for theoretical analysis, but one has to keep

in mind that they do not correspond to the correlation func-

tions accessible in experiment or simulation. Since they are

formed with the Boltzmann equilibrium distribution by defi-

nition, they describe the nonequilibrium evolution contingent

on only those external fields that are present between their two

time arguments t ′ and t. In ordinary correlation functions, av-

eraging is performed with the time-dependent nonequilibrium

distribution function at time t ′, which is then denoted as a wait-

ing time tw. The nonequilibrium distribution function contains

a further flow-history dependence, so that the correlation func-

tions Φ(t + tw, tw) seen in experiment and simulation depend

also on perturbations at times t ′′ < tw. The ITT formalism can

in principle be extended to describe these waiting-time depen-

dent correlators, as has been demonstrated for the case of the

MSD at tw = 0 after cessation1. We leave a more in-depth

discussion of waiting-time dependences for a future publica-

tion51.

Since glassy states contain internal stresses caused by past

perturbations, they are no longer characterized solely in terms

of the thermodynamic state variables. One expects them to

show material properties that again depend on the past flow

history; for example, the Maxwell shear modulus depends on

the pre-strain applied to the glass18,52,53, and also on the ther-

mal history of the glass54. The time-dependent changes ob-

served in the (frequency-dependent) dynamical shear moduli

after cessation provide a rheological probe of aging-like phe-

nomena55. Understanding the dependence of material coef-

ficients on the previous strain history is of great conceptual

importance for applications. The further development of first-

principles microscopic theory will provide a basis for improv-

ing the predictability of materials-design processes.
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and T. Rouxel, Adv. Mater., 2011, 23, 4578–4586.

6 S. Chandrasekar and M. M. Chaudhri, Philos. Mag. B, 1994, 70, 1195–

1218.

7 (a) J. P. Withers and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 2001,

1–12 | 11

Page 12 of 13Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



17, 355–365; (b) J. P. Withers and H. K. D. H. Bhadeshia, Mater. Sci.

Technol., 2001, 17, 366–375.

8 P. J. Withers, Rep. Prog. Phys., 2007, 70, 2211–2264.

9 D. Walton, J. Amin and N. Shashidhar, electronic design, 2010, 58, 70–

73.

10 P. J. Webster, D. J. Hughes, G. Mills and G. B. M. Vaughan, Mater. Sci.

Forum, 2002, 404–407, 767–772.

11 T. Sasaki, S. Takahashi, Y. Kanematsu, Y. Satoh, K. Iwafuchi, M. Ishida

and Y. Morii, Wear, 2008, 265, 1402–1407.

12 X. Trepat, G. Lenormand and J. J. Fredberg, Soft Matter, 2008, 4, 1750–

1759.

13 P. Papadopoulos, J. Sölter and F. Kremer, Colloid Polym. Sci., 2009, 287,

231–236.

14 G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin
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