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By setting up a coarse-grained model of polymer nanocomposites, we monitored the change in elastic 

modulus as a function of the strain, derived from the stress-strain behavior by performing the uniaxial 

tension and simple shear of two typical spatial distribution states(aggregation vs. dispersion) of 

nanoparticles(NPs). In both cases, we observed that the elastic modulus decreases non-linearly with the 10 

increase of strain and reaches a low plateau at large strains. This phenomenon is similar to the so-called 

“Payne effect” for elastomer nanocomposites. Particularly, the modulus of the aggregation case is more 

sensitive to the imposed strain. By examining the structural parameters such as the number of neighboring 

NPs, coordination number of NPs, root-mean-squared average force exerted on the NPs, local strain, 

chain conformations(bridge, dangle, loop, interface bead and connection bead), and the total interaction 15 

energy of NP-polymer and NP-NP, we inferred that the underlying mechanism of the aggregation case is 

the breakup of the NP network or clusters formed through direct contact, while for the dispersion case the 

non-linear behavior is attributed to the destruction of the NP network or clusters formed through the 

bridging of adsorbed polymer segments among the NPs. The former physical network is influenced by 

NP-NP interaction and NP volume fraction, while the latter is influenced by NP-polymer interaction and 20 

NP volume fraction. Lastly we found that for the dispersion case, further increasing the inter-particle 

distance or grafting NPs with polymer chains can effectively reduce the non-linear behavior due to the 

decrease of the physical network density. In general, this simulation work for the first time establishes the 

correlation between the micro-structural evolution and the strain-induced non-linear behavior of polymer 

nanocomposites, and sheds some light on how to reduce the “Payne effect”. 25 

1. Introduction

 

The reinforcement of elastomers which are well-known for their 

unique ability to withstand large deformations and the 

reversibility is of great interest and importance.1-7 The strength 

and modulus of particulate-filled polymer composites, as an 30 

important part of reinforcement, are crucially influenced by the 

size, shape, content, and spatial distribution of the inclusions as 

well as the interfacial compatibility between the polymer matrix 

and the inclusions.8-16 However, as these influencing factors are 

closely correlated, few consistent conclusions on the 35 

reinforcement mechanism have been reached. Actually, the non-

linear behaviors under deformation conditions play an important 
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role in the understanding of reinforcement mechanism of 

particulate-filled elastomeric materials.7, 17-19 The amplitude-

dependence of the dynamic viscoelastic properties such as the 40 

storage and loss modulus is often referred as the Payne effect20. 

And the viscoelastic behavior with hysteresis under cyclic 

uniaxial tension and recovery processes is generally termed as the 

Mullins effect which is also pointed to the stress softening.21  

Some valuable information about the reinforcement 45 

mechanism can be obtained by studying the non-linear behaviors 

of polymer nanocomposites. For example, one contribution to the 

reinforcement comes from the polymer network related to the 

crosslink density and the chemical structure of polymer chains. 

Another contribution results from the hydrodynamic effect or the 50 

strain amplification, since the introduced rigid filler in the soft 

rubbery matrix cannot be deformed. Therefore, the intrinsic strain 

of the polymer matrix is much greater than the external strain, 

resulting in a strain-independent modulus.22  

Moreover, the contribution from the effect of “in-rubber 55 

structure” is studied.11, 12, 23-25 The primary particles assemble to 

form three-dimensional branched clusters called aggregates. 

These aggregates may be linked to form loose agglomerates by 
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van der Waals interactions. Therefore, the occluded rubber in the 

voids between the aggregates and agglomerates is shielded from 

deformation and thus the effective filler content is increased, 

leading to a strain-independent contribution to the modulus. For 

example, by the self-consistent approach, Omnès10 proposed a 5 

morphological pattern for the microstructure as a combination of 

the occluded rubber, the bound rubber and a percolating network 

to estimate the elastic properties. 

The non-linear behaviors at small amplitudes are also 

considered to be caused by the breakdown of the inter-aggregate 10 

association or the network structure of the fillers.6, 26 The concept 

of filler network breakdown seems to be valid in interpreting the 

strain-dependence of dynamic mechanical properties.13, 27-30 For 

example, Lame31 observed the local deformation and the fracture 

of the filler networks under deformations by in-situ AFM 15 

scanning. J. Fröhlich et al.32 investigated the strength of filler 

network and the filler-polymer interaction by Rubber-Process-

Analyzer (RPA), and regarded these two factors to be responsible 

for the low strain modulus. Furthermore, based on the filler 

network, Stockelhuber et al.33 proposed a layered fiber model to 20 

interpret the non-linear characteristics of the elastic and the 

viscous modulus of elastomer materials at high strain amplitudes. 

Besides, the long-range filler network (or “polymer-mediated 

filler network”) was reported to provide efficient reinforcement to 

elastomer materials.1, 14, 34-40 In the polymer-mediated filler 25 

network, fillers are connect with each other through polymer 

chain segments. For example, the molecular arrangements such as 

the “loop”, “dangle” and “bridge” structures in polymers filled 

with randomly distributed NPs under quiescent condition were 

analyzed by Vacatello41, 42 by Monte Carlo simulations. And 30 

Sternstein and Zhu43, 44 believed that the polymer structures of 

“chain loops” trapped on the filler surface as well as the 

entanglements characteristics of polymer chains and the 

molecular weight of the polymer matrix are the primary factors 

influencing the non-linear viscoelasticity of elastomer materials. 35 

Moreover, by investigating the non-linear viscoelastic behavior of 

silica-filled un-crosslinked polybutadiene, Zhu and his 

coworkers14 suggested that the filler association through chain 

adsorption and bridging enhances reinforcement.  

Particularly, the glassy polymer layers are reported to form in 40 

the vicinity of fillers.45, 46 For instance, Berriot and Montes47-50 

along with their co-workers observed a glass transition 

temperature gradient in the vicinity of the particles. They 

believed that it is the glassy layer that leads to the non-linear 

viscoelastic behavior in reinforced elastomers. Moreover, 45 

Merabia et al.51 described a microscopic model for the 

reinforcement of filled elastomers. They pointed out that strong 

reinforcement can be achieved when the glassy layers between 

fillers overlap, and it is particularly strong when the 

corresponding cluster fillers with glassy layers percolate. They 50 

also showed that the dynamics of yield and rebirth of glassy 

bridges can account for the non-linear behaviors. In addition, 

other factors such as the entanglement of polymer chains52, the 

chain scissions53, and the chain segment orientation54 are also 

mentioned to contribute to the non-linear behaviors of elastomer 55 

materials. 

Actually, from a microscopic point of view, the reinforcement 

of elastomeric materials involves various length and time scales51, 

55, 56. For example, on the nanoscopic scale, the primary particles 

of carbon black fillers are more or less spherical particles of 60 

typical diameter 10 nm. The primary particles are assembled into 

fractal aggregates of typical diameter 100 nm. Therefore, the 

geometric shapes and the physical and chemical interactions 

between the polymer and primary fillers determine the 

reinforcement. On the mesoscopic scale, the aggregates and the 65 

filler network play an important role in the reinforcement. Since 

it is difficult to directly characterize the complicated micro-

structure of elastomer nanocomposites through experimental tools, 

computer modeling and simulation have been used for such 

purpose.15, 57, 58 For instance, Mark et al.59 used Monte Carlo 70 

simulations on rotational isomeric state chains to investigate the 

elastomer reinforcement and found that the filler excluded 

volume effect changes the polymer chain distributions and thus 

the mechanical properties. Sen and his co-workers60 employed 

equilibrium molecular dynamics simulation to study the stress 75 

relaxation behavior of polymer nanocomposites, and their results 

suggested that the mechanical reinforcement could be a 

consequence of either particle agglomeration or a polymer-based 

network, depending strongly on the strength and range of particle-

polymer interaction, the particle volume fraction, and the state of 80 

particle dispersion. By molecular dynamics (MD) simulations, 

Jaber et al.35 studied the non-linear behavior of viscosity as a 

function of shear rate, and they ascribed the non-linear behavior 

to the formation of “polymer mediated filler network”. 

Besides, Raos et al.15, 61 employed a coarse-grained 85 

“dissipative particle dynamics” model to perform non-

equilibrium MD simulations. They investigated the viscoelastic 

behavior of filled rubber under oscillatory shear deformations of 

variable amplitude and frequency and observed the non-linear 

viscoelastic behavior as a function of shear amplitude. However, 90 

their work did not concern on the correlation between the micro-

structural evolution and the non-linear behavior. 

On the basis of the above description, the mechanism of 

mechanical reinforcement and non-linear behavior of polymer 

nanocomposites is still unclear. All previous investigations were 95 

focused on either the thermodynamics and kinetics of polymer 

nanocomposites under quiescent condition through equilibrium 

simulations and theoretical calculations or the reinforcement 

mechanism through experimental tools and non-equilibrium 

simulations. To the best of our knowledge, no simulation work 100 

has been performed to characterize the micro-structural evolution 

during the deformation process and explain the non-linear 

behaviors of polymer nanocomposites on a microscopic level. 

In this study, we employed the coarse-grained model to 

simulate big systems on large length and time scales, which were 105 

composed of 60480 beads in total. Non-equilibrium MD 

simulations were carried out, including the uniaxial tensile and 

simple shear tests. By designing different initial dispersion states 

of NPs before deformation, the stress-strain behaviors were 

investigated. We then developed a new stress-strain relation to fit 110 

the simulated data and derived the modulus-strain relation from 

the fitted stress-strain curve. Besides, we comprehensively 

characterized the micro-structural evolutions under deformations. 

Thus, we analyzed the different underlying mechanisms 

accounting for the decrease of elastic modulus with the increase 115 

of strain in different cases. 
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2. Model and simulation methods  

A coarse-grained model of NPs embedded in a homopolymer 

matrix was adopted in our simulation. The polymer chains are 

represented by a bead-spring model, which was developed by 

Kremer and Grest62. 5 

The whole system box contains 480 NPs (the volume fraction 

is 18.55%) and 2000 polymer chains. Each polymer chain 

contains thirty beads with the diameter equal to ζ and the mass 

equal to m. The NPs were modeled as LJ spheres with the radius 

Rn equal to 2ζ. Since the diameter of a NP is four times that of a 10 

polymer bead, the mass is therefore 64 times that of the polymer 

bead. Note that the radius of gyration of the polymer chains Rg is 

comparable with the radius of the NPs. Besides, although these 

chains are rather short compared to real polymer chains, they are 

already able to display the static and dynamic characteristic 15 

behavior of long chains. Each bond in this model corresponds to 

three to six covalent bonds along the backbone of a real chemical 

chain when mapping the coarse-grained model to a real polymer.  

The truncated and shifted Lenard-Jones (TSLJ) potential is 

used to compute the non-bonded interactions between polymer 20 

beads: 

 
12 6

4 2.5
( )

0 2.5

ij cutoff

ij

U r r
U r r r

r

 
 



     
       

       


            

(1) 

In this equation, the term U(rcutoff), which is a constant, refers 

to the standard 6-12 LJ potential energy at the cutoff distance. 

Actually, this term is added here to satisfy the condition that the 25 

potential is continuous everywhere. Namely, the interaction is 

truncated and shifted at the distance rcutoff so that the energy and 

force are zero. r is the distance between two interaction sites. 

Note that the LJ interaction is cut off at the distance 2.5ζ to 

include the attractive part, since it is reported in the literature that 30 

a negative thermal expansion coefficient would occur without 

such an attraction. The polymer-polymer interaction parameter is 

set to εpp=1.0. Since it is not our aim to study any specific 

polymers, the mass m and the diameter ζ of each bead is set to be 

unit. Thus all calculated quantities are dimensionless. For 35 

example, the number density of polymer beads ρ* is measured in 

ζ-3

 units, time is measured in units of τ=ζ(m/kBT)1/2, and the units 

of pressure, stress, and the elastic modulus are all kBT/ζ3. 

The interaction between adjacent bonded polymer beads is 

represented by a stiff finite extensible nonlinear elastic (FENE) 40 

potential: 
2

2

0

0

0.5 ln 1FENE

r
V kR

R

  
    
   

                                          (2) 

where k=30ε/ζ2 and R0=1.5ζ, guaranteeing a certain stiffness of 

the bonds while avoiding high-frequency modes and chain 

crossing. 45 

    Moreover, a modified LJ function that offsets the interaction 

range by REV 
 
is used to model the NP-polymer interaction and 

NP-NP interaction:  

 
12 6
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( )

0

ij cutoff EV cutoff

EV EVij
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U r r R r
r R r RU r

r R r

 


     
        

        


 

   (3) 

To consider the excluded volume effect of different interaction 50 

sites, the interaction range here is offset by REV. For the NP-

polymer interaction and NP-NP interaction, REV is set to Rn-ζ/2 

and 2Rn-ζ, respectively. And the actual cutoff is the sum of rcutoff 

and REV. The NP-NP interaction parameter and its cutoff distance 

are set to εnn=1.0 and rcutoff=2.5ζ, respectively. The NP-polymer 55 

interaction parameter εnp and its cutoff distance rcutoff were varied 

to simulate different interfacial interactions and to obtain different 

dispersion states of NPs.  

The initial configurations are generated that all the polymer 

chains and NPs are placed in a very large box, so the density of 60 

the system is very low. Then the NPT ensemble is adopted to 

compress the system, where the temperature is fixed at T*=1.0 by 

using the Nose-Hoover thermostat and barostat. The purpose of 

using the NPT ensemble is to control the system volume and thus 

to keep the reduced number density of polymer beads around 65 

ρ*=0.85, a value corresponding to the density of polymer melts. 

During the simulation, periodic boundary conditions are imposed 

in all three dimensions. The velocity-Verlet algorithm is 

employed to integrate the equations of motion, with a time step 

δt=0.001η. The obtained structures are further equilibrated under 70 

NVT ensemble with T*=1.0  over a long time so that each chain 

has moved at least 2Rg. After enough equilibration, the 

deformation procedure of the system is then carried out. Although 

coarse-grained molecular dynamics (CGMD) simulations might 

not give the correct results beyond equilibrium63, the method of 75 

adopting appropriate equations of motion and periodic boundary 

conditions can overcome this problem. Actually, the SLLOD 

equations of motion64, one of the widely used method for the non-

equilibrium case, are implemented in our simulation.  

In our simulation, there are two deformation modes. One is the 80 

uniaxial tension, which is implemented by changing the box 

length to L0α 
in the z direction, where L0 is the original box length 

and α is the tensile elongation. Meanwhile, the box lengths in the 

x and y
 

directions are reduced to L0α
-1/2

 simultaneously to 

maintain a constant box volume. The strain rate is specified as 85 

ε =(Lz(t)-Lz(0))/Lz(0)=0.0327/η, which is the same as that used in 

the simulation from  previous studies65, 66. Therefore, the box 

length Lz(t) as a function of the elapsed time t will change as 

Lz(t)= Lz(0)*(1+0.0327*t/η). By the way, the relaxation time of 

polymer chains in our simulation is nearly 10η. Therefore, the 90 

strain rate is comparable with the relaxation time of polymer 

chains, which is consistent with the practical situation during 

deformation processes of elastomers. It is noted that the obtained 

qualitative results in our simulation are independent of the strain 

rate (see Figure 9(b) and Figure S5 in the Supplementary 95 

Information). Moreover, the average tensile stress ζt in the z 

direction is derived from the deviatoric part of the stress tensor 

ζt=(1+μ)(-Pzz+P) ≈ 3(-Pzz+P)/2, where P=Σi(Pii/3) is the 

hydrostatic pressure.67 The parameter μ
 
stands for the Poisson’s 

ratio, which is equal to 0.5 in our simulation, because rubbery 100 

materials are often regarded as incompressible during the 

deformation process.  

    The other deformation mode performed here is the simple shear. 

For the SLLOD method for shearing system, the Lees-Edwards 

“sliding brick” boundary conditions68 are applied. The upper xy 105 

plane of the simulation box is shifted along the x direction, so that 

each point in the simulation box can be thought of as having a 

"streaming" velocity. This position-dependent streaming velocity 
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is subtracted from each atom's actual velocity to yield a thermal 

velocity which is used for temperature computation and 

thermostatting. The shear strain is defined as 𝛾 =δx/ Lz(0), where 

the offset δx is the transverse displacement distance in the shear 

direction (x direction for xy deformation) from the unstrained 5 

orientation, and Lz(0) is the box length perpendicular to the shear 

direction. We set the shear strain rate 𝛾 =0.01/η, which means the 

shear strain will increase by 0.01 per unit time. The average shear 

stress ζs is obtained from the deviatoric part of the stress tensor 

ζs=Pxy=Pyx.
69  10 

For the purpose of focusing on the effect of dispersion state of 

NPs, the deformation process is unified with the same parameter 

values. Especially, the NP-polymer interaction is set to be 

moderate attraction (εnp=3.0
 

and rcutoff=2.5ζ). Actually, this 

setting is reasonable, because during every time step of the 15 

deformation process, the relaxation processes of polymer chains 

cannot finish at the same time. That is, the deformation process is 

a non-equilibrium dynamic process for the polymer chains, 

whereupon the disequilibration effect brought out by changing 

the NP-polymer interaction can be ignored.  20 

During the deformation process, the interactions between the 

atoms in the basic cell and the image atoms across the cell wall 

serve to transmit the deformation to the atoms in the basic cell. 

The strain and the stress used in our simulation are the 

engineering strain and engineering stress, respectively. More 25 

simulation details can be found in our previous studies70, 71. All 

the MD simulation runs were carried out by using the large scale 

atomic/molecular massively parallel simulator (LAMMPS), 

which was developed by Sandia National Laboratories.72 

3. Results and discussions 30 

Since the mechanical properties are intimately related to the 

initial dispersion state of NPs, we begin our discussion with two 

typical cases, i.e. aggregation and dispersion of NPs.  

3.1 Poor dispersion system 

3.1.1 Characterization of NP dispersion 35 

In this simulation system, the poor dispersion state of NPs is 

obtained by setting the NP-polymer interaction as εnp=0.1. First, 

we use the snapshot for an intuitive observation of the dispersion 

state, as shown in Figure 1(a). Clearly, the NPs aggregate to form 

a three-dimensional network in the polymer matrix. The radial 40 

distribution function (RDF) is also calculated to characterize the 

dispersion state and is presented in Figure 1(b). In this figure, a 

strong peak appears at approximately r=4ζ, indicating direct 

contact of NPs, which confirms poor dispersion of NPs. Note that 

the data shown in all figures have been averaged over the 45 

simulation time to get statistically significant values. 

3.1.2 Stress-strain curve and modulus-strain curve 

By performing the uniaxial tensile test, the relationship 

between the tensile stress ζ and the tensile strain ε is obtained, as 

presented in Figure 2(a). It is worth mentioning that the simulated 50 

polymer is in the rubbery state, with the simulated temperature 

T*=1.0 above the glass transition temperature of Tg
*=0.49 (see 

Figure S2 in the Supplementary Information), and the polymer 

chains are without chemical crosslinking. According to Figure 

2(a), the stress grows significantly with the increase of the strain. 55 

Note that the linear growths under small deformations (at strains 

of less than a few percent) and under large deformations (at 

strains of more than 30%) denote the elastic regimes. In the first 

elastic regime the growth rate is very high, while in the second 

elastic regime the growth rate is slow. These simulated results are 60 

in good qualitative agreement with the experimental observations. 

By the way, although CGMD simulations can provide accurate 

qualitative predictions for the physical properties (mechanical, 

rheological and so on), quantitative agreement with the 

experimental data is still unsatisfactory. Therefore, here our  65 

simulation work mainly provides a qualitative description of the 

mechanical behavior of PNCs. 

Actually, the instantaneous growth rate, i.e., the slope of the 

stress-strain curve, at a given tensile strain is the elastic modulus 

(the tangent modulus of elasticity, E=dζ/dε) at that tensile strain. 70 

However, to obtain a smooth modulus-strain curve, we need to 

first fit the stress-strain curve with an appropriate function and 

subsequently calculate the derivative.  

In Figure 2(a), the traditional Mooney-Rivlin equation 

                22
1( )( 1/ )

a
a  


                                         (4) 75 

and several other well-known nonlinear stress-strain relations,  

such as  

22
1

1.84
( )( 1/ )

0.84 /

a
a  

 
  

                             

(5)73 

22
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(6)74 

22
1( )( 1/ )

0.72 0.61/ 0.35

a
a  

 
  

 

       (7)75 80 

are each fitted to the simulated results. In these equations, ai 

(i=1,2) are constants and λ=1+ε. Unfortunately, the square of 

correlation coefficient R2 is much lower than 1.0 in each case, an 

indication of poor fit. By the way, although these stress-strain 

relations generally apply for crosslinked polymer networks, the 85 

parameter denoting the contribution of crosslinking is nearly 0, 

which is consistent with our simulation model here. 

In an attempt to better fit the simulated results, we proposed a 

modified stress-strain equation based purely on mathematical 

considerations: 90 

22
1

3 4 5

( )( 1/ )
* /

a
a

a a a
  

 
  

                        

(8) 

In this equation, ai(i=1,2,3,4,5) are the fitting parameters. As 

shown in Figure 2(a), the modified equation fits the simulation 

results well with R2=0.935. 

Thus, we take the derivative of the well-fitted stress-strain 95 

curve with respect to the tensile strain, and the resulting elastic 

modulus-strain curve is obtained, as shown in Figure 2(b). The 

elastic modulus indicates the instantaneous elasticity deformation 

capacity of materials. The higher the elastic modulus, the less 

deformable the material. Theoretically, the elastic modulus of an 100 

ideal elastomer remains constant during deformations.  

3.1.3 Phenomenon similar to “Payne effect” 

According to Figure 2(b), starting at a small strain of 0.1%, the 

elastic modulus of this filled polymer decreases dramatically 

from 32.31 to about 2.01 at the strain of 10% and reaches a low 105 

plateau of 0.15 at strains of larger than 100%. Besides, the initial 

elastic modulus of this filled polymer is much higher than that of 

the neat polymer (unfilled), with the initial modulus of the latter 

being approximately 5.63. Qualitatively, these non-linear 

characteristics are very similar to the experimentally observed 110 

“Payne effect”.  
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It is noted that the elastic modulus of the neat polymer also 

decreases with increasing strain. Presumably the initial plateau 

modulus (E0≈5.63) is attributed to the entropic trapping of 

polymer chains. However, the simulated initial modulus plateau is 

shorter than the experimental observation, which may be caused 5 

by the short-range interaction between polymer beads. 

Reasonably, in this work we study the stress-strain curves by 

using the same force-field and model for all simulated systems. 

Besides, as a result of the chain slippage effect, the modulus of 

the neat polymer under large deformation is very low 10 

(Eε≥100%≈0.11).  

The effect of the chain entanglement on this non-linear 

behavior should be negligible because the chain length of 30 

beads is shorter than the critical entanglement length (Ne≈65±7)76. 

Indeed, when the chain length is increased from 30 beads to 200 15 

beads, the elastic modulus of the neat polymer increases (the 

initial plateau modulus E0 increases from 5.63 to 9.15, as shown 

in Figure S3 in the Supplementary Information). However, in this 

work we mainly focus on the effect of NPs on the non-linear 

behavior at constant polymer chain length, and the effect of chain 20 

entanglement is not considered.  

3.1.4 Underlying mechanism 

To further probe the mechanism of this large decrease in elastic 

modulus with increasing strain, we will analyze the micro-

structural evolution during the deformation process.  25 

Two neighboring NPs are considered to form a cluster if their 

center-to-center distance is smaller than 4.25ζ. And in the case of 

poor dispersion, the NP clusters are linked to form a three-

dimensional network structure (the so-called filler network or NP 

network). Figure 3(a) shows the variation of the number of 30 

neighboring NPs with the tensile strain. It is found that the inter-

aggregate association is gradually broken up during the 

deformation process. For instance, the number of neighboring 

NPs decreases substantially as the strain increases from 0.1% to 

10.0%, indicating the dissociation of neighboring NPs. And the 35 

abrupt decrease of elastic modulus at small strains is believed to 

be attributed to the breakup of directly contacting NPs. The 

snapshots given by Figure 3(b) display the microscopic evolution 

of the NP network, clearly showing that the NP network ruptures 

and the large NP clusters become broken up. 40 

Specifically, this three-dimensional NP network structure 

undergoes four evolution stages.  

Although in stage I (at strains below 0.2%) the NP clusters 

have not begun to break up, as evidenced by the number of 

neighboring NPs shown in Figure 3(a), the elastic modulus drops 45 

quickly. For a better understanding of the underlying mechanism, 

we calculated the root-mean-squared average force  𝐹𝑧  exerted 

on each NP in the tensile direction, and the results are shown in 

Figure 4(a). The instantaneous mobility of NP increases with the 

increase of the instantaneous force exerted on it. Although  𝐹𝑧  is 50 

an average value calculated from NP to NP, however, statistically 

it reflects the changes of the forces with higher weight. For 

example, in the stage I, the change of  𝐹𝑧  mainly originates from 

the extremely large forces on the linking points of the NP. Figure 

4(a) shows that the “rigid” NP network endures an enormous 55 

force once the system is subjected to tensile loadings, resulting in 

a very high elastic modulus. On the other hand, this enormous 

force can induce the dislocation for NPs. Especially, the 

dislocation of NPs is much more severe at the linking points of 

the NP network which perform as stress concentration points but 60 

are easily deformed, leading to an amplified strain for these 

linking points over the measured overall strain. As a consequence, 

these linking points will break up first, namely the rupture of NP 

network, as illustrated in Figure 4(b). 

To confirm the strain amplification effect, we probe the local 65 

strain of one typical pair of neighboring NPs at the linking point 

as a function of stretching time, and the results are shown in 

Figure 4(c). The local deformation at the linking points exceeds 

the measured overall strain from the beginning of stretching. 

Besides, at the overall strain of about 10%, the local strain at the 70 

linking points gradually approaches the overall strain, mainly 

because of the slippage of polymer chains, as will be discussed 

later.  

 𝐹𝑧  reaches a minimum at the strain of approximately 0.2%,, 

denoting the rupture of NP network. By the way, the decreasing 75 

amplitude of  𝐹𝑧  is very large compared with that of elastic 

modulus, because the resultant force of the NP clusters is actually 

not so large as the internal atomic force  𝐹𝑧  which pushes the NP 

clusters relatively compressed, as evidenced by the strain 

diminution effect inside the NP clusters (Figure 4(c)). In other 80 

words,  𝐹𝑧  cannot represent the overall stress or the elastic 

modulus, but can only reflect the internal instantaneous mobility 

of NPs.  

Moreover, the initial elastic modulus and the tensile strain 

when the NP network ruptures are intimately related to the 85 

strength of the network which is influenced by the NP-NP 

interaction and NP volume fraction (see sections 3.1.6 & 3.1.7 

below). For example, the initial elastic modulus of a pure NP 

system of close packing could be as large as about 277.09.  

In stage II (at strains of 0.2%-0.6%), the number of 90 

neighboring NPs still does not change much, but the elastic 

modulus decreases dramatically. From Figure 4(a), we can see a 

peculiar increase of   𝐹𝑧 . This interesting phenomenon is 

intrinsically caused by the structural adjustment inside the NP 

clusters which is brought out by the dislocation accumulation of 95 

stressed NP clusters. During this process, the diminished local 

strain inside the NP clusters is gradually compensated by using 

the overall strain as benchmark, as shown in Figure 4(c). The 

structural adjustment of the NP clusters is influenced by the 

strength of the initial NP network and the size and packing of the 100 

NP clusters. If the NP clusters do not form a three-dimensional 

network, the strain diminution effect on the structural adjustment 

of NP clusters will be much smaller. And because of the structural 

adjustment, the NP clusters becomes less compact, resulting in a 

dramatic decrease of elastic modulus. Meanwhile, the loosening 105 

of inter-aggregate association is an important pre-step for the 

breakup of NP clusters.  

In stage III (at strains of 0.6%-10.0%), the NP clusters begin to 

break up successively in a significant way. To further examine the 

microscopic deformation of NP clusters, the fraction of NPs with 110 

different coordination numbers (CN) normalized by the total 

number of NPs is calculated and plotted against the tensile strain 

in Figure 4(d). At strains of 0.6%-10.0%, large NP clusters such 

as those with CN=7-9 and CN≥10 are severely broken up into 

smaller ones with the gradual increase of the number of NPs with 115 

CN=1-3 and CN=4-6. According to Figure 4(d), the large NP 
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clusters break up in two steps. As stress concentration points, the 

linking points of the separated large NPs are first broken up, as 

indicated by the decrease of the number of NPs with CN=7-9 at 

strains of 0.6%-3%, and the breakup results in a rapid decrease of 

elastic modulus. In other words, during this first step, the original 5 

NP clusters functioning as “long fibers” are cut to “shorter fibers”, 

so the elastic modulus declines rapidly. And in the second step, 

the NPs with CN≥10 start to dissociate at strains larger than 3%. 

Paradoxically, in stage IV (at strains larger than 10.0%), the 

profile of the curve in Figure 3(a) at strains from 10% to 327% is 10 

similar to the profile of the curve at strains lower than 10%, yet 

the modulus tends to be steady and is much smaller than the 

initial modulus (Figure 2(b)). Since the incipient structural break-

up of NP clusters leads to a significant drop of modulus, why 

does the sequential structural breakup under larger deformations 15 

(ε>10%) result in a stabilized low modulus? Actually, this 

phenomenon can be reasonably interpreted by the chain slippage 

theory, based on the consideration of the two comparable elastic 

modulus of 0.15 for this filled polymer and 0.11 for neat polymer 

at large strains. As the strain increases, the polymer chains are 20 

oriented and stretched driven by the interaction of NPs and other 

chains, and accordingly inter-chain sliding occurs. Therefore, the 

slippage between polymer chains plays a dominant role in the low 

modulus regime, in spite of the breakup of NP clusters at large 

strains. 25 

    To examine this explanation, we calculated the bond 

orientation as a function of the strain, and the results are 

displayed in Figure 4(e). Here we use the second-order Legendre 

polynomial  𝑃2  to characterize the bond orientation: 

  2

2 3 cos 1 / 2P                                            (9) 30 

where θ denotes the angle between a given element (two 

adjoining monomers in a polymer chain) and the reference 

direction (the stretching direction). The possible values of  𝑃2  

range from -0.5 to 1.0. Specifically,  𝑃2 =-0.5 indicates a perfect 

orientation perpendicular to the reference direction,  𝑃2 =0 a 35 

random orientation of the segments and  𝑃2 =1.0 a perfect 

alignment parallel to the reference direction. According to Figure 

4(e), there is a distinct orientation of chain segments at strains 

larger than 10%, reflecting an conformational rearrangement of 

chains and the resulting slippage of whole polymer chains. This 40 

result confirms the above explanation of the low modulus at 

strains higher than 10%. In addition, the rapid decay of NP-NP 

interaction (see eq. (3)) with the increase of distance also 

contributes to the phenomenon. 

3.1.5 Evolution of “polymer-mediated filler network”  45 

To further explore the micro-structural evolution, we also 

calculated the changes of the “polymer-mediated filler network” 

structures during the deformation, and the results are shown in 

Figure 5. In the transient “polymer-mediated filler network”, 

fillers are connected to each other through polymer segments. We 50 

make the following definitions: the interface beads refer to those 

polymer beads contacting the surface of one given NP directly, 

while the connection beads refer to those interface beads 

connecting two NPs to form a sandwich-like structure. All 

interface beads and connection beads are constrained by the NPs. 55 

Besides, the “loop” structure refers to the molecular sequences of 

non-interface beads with the two adjoining interface beads 

located on the same NP. The “bridge” structure is similar to the 

“loop” structure, but the sequences start and end with interface 

beads contacting two different NPs. And the “dangle” structure 60 

refers to the dangling terminal segments. 

According to Figure 5(b), the number of interface beads and 

connection beads does not change much at  strains below 10% 

(even below 100%) but increases rapidly at strains larger than 

100%, signifying the improvement of the interface between the 65 

NPs and polymer matrix. However, in consideration of 60000 

polymer beads totally, the chain units contacting more than two 

NPs occupy a very small proportion, implying that the polymer 

“melt viscosity” cannot be effectively increased. Besides, as the 

NP clusters break up increasingly, polymer chains have more 70 

probability to contact NPs. Actually, these polymer chains 

interacting with multiple NPs will play an important role under 

large deformations. 

Likewise, the number of different structures such as dangles, 

loops and bridges changes slightly at small strains and increases 75 

significantly at large strains, indicating that many more polymer 

segments become involved to form the transient “polymer-

mediated filler network”, according to Figure 5(c). 

Meanwhile, the amounts of the three “polymer-mediated filler 

network” structures are compared. For example, in the initial 80 

equilibrium state (unstretched state), the relation generally obeys 

the equation of Ndangles≈2Nbridges+2Nloops, reflecting that one 

polymer chain can only form either one “bridge” or one “loop” 

with two dangling terminals. However, as the strain becomes 

larger, the relation tends to be Ndangles≈Nbridges+Nloops (ε>300%), 85 

indicating that the stretched polymer chain forms two structures 

(“bridge”+“bridge”, “bridge”+“loop” or “loop”+“loop”) with two 

dangling terminals. Additionally, by analyzing the molecular 

underpinnings of the three structures, we make the hypothetical 

assumption that the “bridges” and “loops” can provide 90 

reinforcement. Therefore, the growth in the number of “bridges” 

and “loops” per chain should be responsible for the increasing 

stress under large deformations, proving that polymer chains play 

an increasing role in the reinforcement of polymer 

nanocomposites. 95 

3.1.6 Effect of NP-NP interaction and NP-polymer interaction 

Now, for the case of the initial poor dispersion of NPs, the 

effects of the NP-NP interaction strength εnn and NP-polymer 

interaction strength εnp on the strain-induced non-linear behavior 

are investigated, and the results are shown in Figure 6. From 100 

Figure 6, we can see higher initial modulus and shorter elastic 

plateau with the increase of NP-NP interaction, i.e., a more 

distinct non-linearity of elastic modulus with respect to the strain. 

This observation confirms again that the breakup of the NP 

network or clusters formed through direct contact is responsible 105 

for the non-linear behavior for the NP aggregation case. Besides, 

the increase of non-linearity also indicates the enhancement of 

NP network/clusters with the increase of inter-particle interaction.  

Furthermore, Figure 6 also shows the effect of NP-polymer 

interaction on the non-linear behavior. Obviously, the initial 110 

elastic plateau is little affected by the NP-polymer interaction. 

And a reasonable explanation for the slight increase of the 

modulus is that stronger NP-polymer interaction reinforces the 

NPs network.  

3.1.7 Effect of NP volume fraction and percolation threshold 115 

Now, we extend our effort to study the effect of NP volume 
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fraction (θ) on the non-linear behavior. Polymer systems filled 

with different volume fractions of NPs are established, where the 

RDFs of NPs each show a sharp peak at approximately r=4ζ. The 

non-linear behavior of these systems are investigated, and the 

results are shown in Figure 7(a). Clearly, the non-linear behavior 5 

becomes more significant with the increase of NP volume 

fraction, which agrees well with the experiment observations. 

Besides, according to the inserted VMD snapshots, the NPs with 

high volume fraction (θ=15.96% and 18.55%) are linked to form 

three-dimensional network, while the NPs with lower volume 10 

fraction (θ=4.53%, 8.67% and 12.47%) are not. Therefore, the 

elastic modulus of polymers filled with θ=4.53%, 8.67% and 

12.47% NPs does not decrease too much at strains below 0.2%. 

When the initial elastic modulus is  plotted against the NP volume 

fraction in Figure 7(b), the percolation phenomenon can be 15 

identified. Specifically, the percolation threshold is approximately 

12.5%. Moreover, the non-linearity of the initial elastic modulus 

with respect to the NP volume fraction increases with the increase 

of NP-NP interaction strength due to the enhancement of NP 

network or clusters formed through direct contact.  20 

3.2 Good dispersion system 

3.2.1 Characterization of NP dispersion 

Now, we shall study the other case where polymer chains are 

moderately attractive to NPs (εnp=3.0). The snapshot in Figure 8(a) 

shows that the NPs are spatially isolated in polymer matrix. 25 

Besides, according to the RDF in Figure 8(b), we can see that the 

peak at approximately r=4ζ disappears, indicating no direct 

contact between the NPs. And the peaks located at r=5ζ and r=6ζ 

reflect that the NPs are bridged by one or two polymer beads.  

3.2.2 Stress-strain curve and modulus-strain curve 30 

    Likewise, the stress-strain curve is calculated through the 

uniaxial tensile test, and the results are shown in Figure 9(a). 

Following the above steps, we first fit the stress-strain curve by 

using eq. (8), and then take the derivative of the fitted stress-

strain curve to obtain the modulus-strain curve. According to 35 

Figure 9(b), the modulus-strain curve corresponding to good 

dispersion system is similar to that of poor dispersion system, but 

there are some differences between them. One difference is that 

the significant decrease of elastic modulus of good dispersion 

system delays, leading to a more prominent initial plateau. The 40 

elastic modulus of good dispersion system changes little at strains 

below 0.2%. Another obvious difference is that the initial plateau 

modulus of good dispersion system (E0≈22.72) is much smaller 

than that of poor dispersion system. Moreover, the low modulus 

under larger deformations (Eε≥100%≈0.13) results from the chain 45 

slippage effect as well.  

3.2.3 Invalidation of the mechanism of the breakup of NP 

network/clusters 

Similarly, we first study the breakup of the NP clusters during 

the tension process to find out the mechanism of the non-linear 50 

behavior of elastic modulus. According to Figure 10(a), no NP 

clusters form in this good dispersion system, as evidenced by the 

inexistence of neighboring NPs at strains below 10% strain. And 

the number of neighboring NPs increases with the increase of 

strain, indicating a slight aggregation of the NPs. But the 55 

maximum NP cluster only contains several NPs, according to 

Figure 10(b). Since the NPs are dispersed well in polymer matrix, 

it is impossible to form NP clusters through direct contact, and it 

can be inferred that there must be some other micro-structural 

evolutions accounting for the decrease of modulus.    60 

3.2.4 The “rigid” polymer shell layer 

Here we propose a polymer shell layer-bridged NP network 

model that the NPs are connected to each other through “rigid” 

polymer layers, as shown in Figure 11(a). As we know, in the 

case of strong NP-polymer interaction, the surrounding polymer 65 

chains will be intensely adsorbed onto the surface of NPs, leading 

to much slower dynamics of polymer chains in the vicinity of the 

NPs, i.e., the “rigid” polymer layers.  

  To confirm the polymer shell (interfacial zone) in our simulation 

system, we investigate the relaxation time (ηinf) and the mean 70 

square displacement (MSD) of polymer segments in the vicinity 

of a given NP under the condition of moderate NP-polymer 

attraction (εnp=3.0), and the results are presented in Figure 11(b) 

and 11(c), respectively. To obtain the relaxation time, we need to 

first calculate incoherent intermediate dynamic structure (IIDS) 75 

factor77-79: 

 
1 1

sin( ( ))1 1
( ) exp( ( ) (0) )
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t t
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(10) 

where M stands for the total number of polymer beads,  𝐫𝑚  𝑡 −

𝐫𝑚  0   or Δrm(t) means the displacement of scattering center m 

over a period of time t , and q denotes the momentum transfer 80 

describing the spatial scale of the measurement. Then, the 

obtained IIDS factor curve is fitted by Kohlrausch-Williams-

Watts (KWW) function80, 81: 
( / )( ) tf t e

                                                      (11) 

Finally, with the use of the fitted parameters (η and β), we 85 

calculate the relaxation time (ηinf): 

 inf
0

exp 1/
t

dt


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

                             (12) 

The dotted extension line in Figure 11(b) is the hypothetical 

value when the mass center of polymer beads locates at the 

surface of the NP. Clearly, when the polymer beads approach the 90 

NP surface, the relaxation time gradually increases. By the way, 

the polymer segments contacting the NPs are not totally 

immobilized. This polymer shell is not in the glassy state, as 

evidenced by the fact that the relaxation time of polymer beads at 

the surface of the NPs (ηinf≈0.9) is much smaller than in the glassy 95 

state (ηinf≈9.5). Moreover, the polymer beads far away from the 

NPs (1.5ζ from the surface of the NP) recovers its bulk behavior. 

Thus, the distanced 1.5ζ can be defined as the thickness of 

polymer shell. Besides, the mean square displacement (MSD) 

shown in Figure 11(c) also exhibits a gradual increase when the 100 

polymer beads approach the NPs, and the thickness of the 

polymer shell is also close to 1.5ζ. Therefore, the NPs can be 

bridged by at most three “rigid” polymer layers. Because of  high 

volume fraction and uniform dispersion of the NPs in this good 

dispersion system, the NPs are bridged by one or two polymer 105 

layers, as proved by the RDF above. It is very reasonable that the 

connection strength between NPs bridged by one polymer layers 

is larger than by two layers and three layers. It is noted that the 

polymer beads in the bridged layer belong to several different 

chains, thus we name this structure as polymer layer-bridged NP 110 

network rather than polymer chain-bridged NP network. 

3.2.5 Polymer shell layer-bridged NP network/clusters 

On the basis of the above detailed analysis, two NPs can be 
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considered to form a cluster through the bridging of “rigid” 

polymer layers, i.e., the broad concept of neighboring NPs. And 

due to the bridging of polymer layers, the indirect interaction 

between NPs becomes more soft.  

In the good  dispersion system, the polymer layer-bridged NP 5 

clusters form a three-dimensional network. Similarly, this 

polymer layer-bridged NP network shows up a high initial elastic 

modulus and undergoes four evolution stages during the 

deformation process. However, unlike the NP network through 

direct contact, this polymer layer-bridged NP network is more 10 

stable to sustain its original state when submitted to small 

deformations, as proved by the smooth decrease of elastic 

modulus at strains below 0.6%. On the one hand, the uniformly 

dispersed NPs are submitted to the force evenly. As a result, the 

material system are not so sensitive to little external perturbation. 15 

According to Figure 12(a), the root-mean-squared average force 

 𝐹𝑧  exerting on each NP in the tensile direction does not change 

much under small deformations. On the other hand, once the 

neighboring NPs bridged by polymer layers are forced to 

generate the relative displacement, the connection beads in the 20 

polymer layers will adjust themselves to maintain the bridging 

between the neighboring NPs. As shown in Figure 12(b),  𝐹𝑧  

exerting on the connection beads fluctuates strongly compared 

with  𝐹𝑧  exerting on the free beads and the interface beads under 

deformations, indicating the adjustment of connection beads. And 25 

because of the adjustment of connection beads, the bridging 

structures become loose, resulting in the decrease of elastic 

modulus at strains below 0.6%. Imaginably, the decreasing 

amplitude of elastic modulus is intimately related to the packing 

of polymer layer-bridged NPs, the number of polymer layers in 30 

the bridging and the NP-polymer interaction (see sections 3.2.7 & 

3.2.8 below). By the way, the increase of  𝐹𝑧  on the polymer 

beads at large strains is attributed to the orientation and slippage 

of polymer chains.  

At stains larger than 0.6%, the polymer layer-bridged NP 35 

clusters begin to break up, for the polymer shell layers are no 

longer able to bridge the NPs, leading to the desorption of 

connection beads and the weakening of NP-polymer attraction. 

The total interaction energy of NP-NP and NP-polymer as a 

function of tensile strain is given in Figure 12(c). The 40 

contribution of NP-NP interaction energy to the decrease of 

elastic modulus is much less than that of NP-polymer interaction 

energy. Besides, the NP-polymer interaction energy gets higher 

with the increase of strain, confirming the weakened NP-polymer 

attraction.  45 

Figure 12(d) shows the number of neighboring NPs bridged by 

one or two layers as a function of tensile strain. Specifically, the 

breakup process of polymer layer-bridged NP clusters can also be 

divided into two steps: the first step is the breakup at strains 

between 0.6% and 20%, leading to a significant drop of the 50 

modulus, and the second step is the continuing breakup at strains 

larger than 20%, resulting in a stabilized low modulus due to the 

slippage of polymer chains.  

For further confirmation, we also performed the simple shear 

of the simulation system, and the results are shown in Figure 55 

13(a). The similarity of the two curves of shear modulus and 

tensile modulus is noticed, i.e., the synchronous change with 

respect to the strain. The ratio of the tensile modulus E to the 

shear modulus G obeys the relation E/G≈3.0, which is consistent 

with the theoretical prediction for polymeric materials above the 60 

glass transition, further validating our non-equilibrium CGMD 

simulation method. Moreover, the number of neighboring NPs 

bridged by polymer shell layers at small shear strains is also 

investigated, as shown in Figure 13(b). Clearly, the breakup 

process of polymer layer-bridged NP clusters under shear 65 

deformations is consistent with that under tensile deformations. 

Specially, the breakup effect of polymer layer-bridged NP clusters 

is amplified under shear deformations, revealing that the shear 

force damages the micro-structures more efficiently than the 

tensile force. 70 

3.2.6 Evolution of “polymer-mediated filler network”  

Now we come back to the issue of the micro-structural 

evolution under tensile deformations. The variation of the number 

of the three “polymer-mediated filler network” structures with the 

tensile strain is shown in Figure 14. In the initial equilibrium state 75 

(unstretched state), the numbers roughly obey the relation of 

Ndangles≈Nbridges+Nloops, indicating that one polymer chain cane 

form two structures (“bridge”+“bridge”, “bridge”+“loop” or 

“loop”+“loop”) with two dangling terminals. However, the 

number of “bridges” and “loops” decreases at large strains,  80 

resulting from the orientation and slippage of polymer chains on 

the surface of NPs. These long-ranged “bridge” structures and 

“loop” structures maybe offer a few contributions to the non-

linear behavior. 

3.2.7 Effect of NP-NP interaction and NP-polymer interaction 85 

  Similarly, the effect of NP-NP and NP-polymer interaction on 

the non-linear behavior is investigated. From Figure 15, we can 

observe that the non-linearity of elastic modulus with respect to 

the strain is almost not influenced by the NP-NP interaction. The 

initial elastic modulus decreases slightly with the increase of NP-90 

NP interaction, presumably because stronger NP-NP interaction 

makes the polymer layer-bridged NP network less stable.  

According to Figure 15, the initial elastic modulus increases 

with the increase of NP-polymer interaction. In theory, stronger 

NP-polymer interaction leads to greater restriction of polymer 95 

beads surrounding the NPs, resulting in the enhancement of the 

polymer layer-bridged NP network. By the way, if we map the 

interaction parameter to the practical experimental system, 

εnp=10.0
 
roughly corresponds to the strength of hydrogen bonding.  

3.2.8 Effect of NP volume fraction 100 

Now, we focus on the effect of NP volume fraction (θ) on the 

non-linear behavior. Polymer systems filled with different volume 

fractions of NPs are established. By setting different values of 

exclude volume parameter REV without changing other parameters, 

the RDF of NPs in each system after equilibration shows peaks at 105 

approximately r=5ζ and r=6ζ, close to that of good dispersion 

system. Then the uniaxial tensile tests are carried out after 

changing REV back, and the results are presented in Figure 16(a). 

Clearly, the non-linear behavior becomes more prominent with 

the increase of NP volume fraction, indicating the enhancement 110 

of polymer layer-bridged NPs network/clusters. By the way, even 

though the NP volume fraction is as low as 4.53%, the local 

network/cluster still forms, as evidenced by the inserted 

snapshots.  

Besides, the initial elastic modulus exhibits good linearity 115 

with the increase of NP volume fraction, as shown in Figure 16(b). 
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However, for stronger polymer layer-bridged NP network/clusters 

resulted from the stronger NP-polymer interaction strength, the 

relation between the initial elastic modulus and the NP volume 

fraction becomes non-linear, which agrees well with the 

experiment observations82.  5 

3.2.9 How to effectively reduce the non-linear behavior? 

It is well known that this non-linear behavior of elastomer 

nanocomposites is of great practical importance. For example, the 

decrease of this non-linearity can reduce the rolling resistance of 

automobile tires, which is of paramount significance for energy 10 

saving and environment protection. 

From the above discussions, we know that good dispersion of 

NPs obtained by improving the compatibility between polymer 

matrix and the NPs can reduce the non-linear behavior. Therefore, 

the best strategy to reduce the non-linearity is to disperse the NPs 15 

uniformly. For instance, increasing the distances between NPs by 

force is one good method. According to Figure 17(a), the system 

filled with 18.44% NPs exhibits a weaker non-linear behavior 

when the inter-particle distance is larger than 6.0ζ. Also for 

system filled with 4.53% NPs, the non-linear behavior is also 20 

reduced with the increase of inter-particle distance. By the way, 

when the inter-particle distance is larger than 8.0ζ, there are no 

polymer layer-bridged NP clusters forming. It is possible that the 

long-range “polymer-mediated filler network” structures and the 

entropic trapping of polymer chains give rise to the decrease of 25 

elastic modulus, and therefore the non-linear behavior is very 

close to that of the neat polymer system. Besides, another 

effective approach is the surface modification of NPs, such as 

coating NPs with oligomer or grafting NPs with polymer chains. 

For example, by using the previous method70, the system filled 30 

with 7.52% grafted NPs was modeled. Each NP is grafted with 

fifteen polymer chains, and each grafted chain consists of ten 

beads. The grafted chains are chemically identical with the matrix 

chains. According to Figure 17(c), the strain-induced non-

linearity of elastic modulus is considerable low, demonstrating an 35 

effective approach to reduce the “Payne effect”. 

4. Conclusion 

By carrying out non-equilibrium coarse-grained molecular 

dynamics simulations, we have investigated the changes of elastic 

modulus as a function of strain for two typical spatial 40 

distributions (aggregation vs. dispersion) of NPs in polymer 

nanocomposites. The relation between the modulus and the strain 

is derived from the stress-strain curves by performing the uniaxial 

tension and simple shear. For both the aggregation and dispersion 

cases, the non-linear behavior, namely the non-linear decrease of 45 

the modulus with respect to the strain, is observed. Based on the 

characterization and analysis of the micro-structural evolution 

such as the number of neighboring NPs, coordination number(CN) 

of NPs, root-mean-squared average force exerted on the NPs in 

the tensile direction, local strain, chain conformations(bridge, 50 

dangle, loop, interface bead and connection bead), and the total 

interaction energy of NP-polymer and NP-NP, it is indicated that 

the breakup of the NP network or clusters formed through direct 

contact accounts for the non-linear behavior of the aggregation 

case. The NP network/clusters undergoes four stages, namely the 55 

rupture of the network structure, the structural adjustment and 

loosening of NP clusters, the breakup of linking points of 

separated large NP clusters, and the successive breakup of NP 

clusters on a large scale. The strain amplification effect occurs at 

the linking points and the strain diminution effect happens inside 60 

the NP clusters. For the dispersion case, the elastic modulus is 

dominated by the NP network formed through the bridging of 

adsorbed polymer segments among the NPs. The polymer shells 

surrounding the NPs are composed of polymer beads with low 

mobility, depending on the distance from the surface of the NPs 65 

and the interfacial interaction. However, these adsorbed polymer 

shells are demonstrated to be far from the glassy state. In addition, 

for both cases, the elastic modulus reaches a low plateau at large 

strains due to the orientation and slippage of polymer chains. 

these interpretations are further validated by tuning the NP-NP 70 

interaction, NP-polymer interaction, and the NP volume fraction. 

Lastly we find that increasing the inter-particle distribution 

distance and grafting NPs with polymer chains are effective to 

decrease this non-linearity. In general, our comprehensive 

simulation results are aimed to uncover the underlying 75 

mechanism and provide some guidance on reducing the 

commonly observed non-linear behavior of polymer 

nanocomposites. 
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Inserting Graphics 

 
Figure 1. Characterization of the NP dispersion state: (a) The 

snapshot of the simulated system. Note that the red spheres denote 

the NPs, and for clarity the polymer chains are represented by blue 5 

points.(b) Radial distribution function (RDF) of NPs. The NP-

polymer interaction parameter is εnp=0.1. 

 
Figure 2. (a) The stress-strain curve calculated in the tensile test and 

its nonlinear curve-fittings. The fitting equations are 𝝈 =10 

 𝒂𝟏 + 𝒂𝟐/𝝀  𝝀 − 𝟏/𝝀𝟐 , 𝝈 =  𝒂𝟏 + 𝟏. 𝟖𝟒𝒂𝟐/(𝝀 + 𝟎. 𝟖𝟒/ 𝝀)  𝝀 −
𝟏/𝝀𝟐 , 𝝈 =  𝒂𝟏 + 𝒂𝟐/(𝝀 − 𝟏/ 𝝀 + 𝟏)  𝝀 − 𝟏/𝝀𝟐 , 𝝈 =  𝒂𝟏 +
𝒂𝟐/(𝟎. 𝟕𝟐𝝀 + 𝟎. 𝟔𝟏/ 𝝀 − 𝟎. 𝟑𝟓)  𝝀 − 𝟏/𝝀𝟐 , and 𝝈 =  𝒂𝟏 +

𝒂𝟐/(𝒂𝟑𝝀 + 𝒂𝟒/ 𝝀 + 𝒂𝟓)  𝝀 − 𝟏/𝝀𝟐 , corresponding to curve-fitting 1, 

2, 3, 4 and 5, respectively. All ai (i=1,2,3,4,5) are fitting parameters, 15 

and λ=1+ε. The squares of correlation coefficient (R2) are 0.361, 0.056, 

0.451, 0.106 and 0.935, respectively. (b) The elastic modulus versus 

the tensile strain for neat polymer and NP filled polymer. Note that 

the elastic modulus is calculated based on the best curve-fitting 5. 

20 

 

Figure 3. (a) The number of neighboring NPs directly contacting with 

each other during the deformation process; (b) snapshots of the 

microscopic deformation of the system along the z direction at several 

typical strains. 25 

  

30 

 
Figure 4. (a) The root-mean-squared average force  𝑭𝒛  exerted on 

each NP along the tensile direction as a function of the tensile strain; 

(b) schematic of the evolution of the linking points of the NP network; 

(c) the local strain at linking points and inside NP clusters, and the 35 

measured overall strain as a function of stretching time. Note that the 

local strain is calculated based on one typical pair of neighboring NPs 

located at the corresponding position; (d) the fraction of NPs with 

different coordination numbers (CN); (e) the bond orientation of 

polymer chains  𝑷𝟐  during the deformation process. 40 
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Figure 5. (a) Schematic representation of “polymer-mediated filler 

network” structures. The red spheres denote the NPs. The green and 5 

the yellow spheres represent the polymer beads; (b) the changes of 

the number of interface beads and the connection beads under 

deformations; (c) the changes of the number of “dangle” structure, 

the “loop” structure and the “bridge” structure 

 10 

Figure 6. The elastic modulus versus tensile strain for different NP-

NP interactions and NP-polymer interactions. The initial states of 

NPs are all the same with the bad dispersion state above. 

  

 15 

Figure 7. (a) The elastic modulus-strain curves for different NP 

volume fractions. The RDFs of NPs for all these systems shows a 

sharp peak at approximately r=4σ. From top to bottom, the inserted 

snapshots correspond to the filled systems with the increasing of NP 

volume fractions; (b) the initial elastic modulus as a function of NP 20 

volume fraction. 

 

Figure 8. Characterization of the NP dispersion state: (a) The 

snapshot of the simulated system with good dispersion of NPs. (b) The 

RDF of NPs. The NP-polymer interaction parameter is εnp=3.0. 25 

 
Figure 9. (a) The stress-strain curve obtained from the tensile test and 

its best non-linear curve-fitting by 𝝈 =  𝒂𝟏 + 𝒂𝟐/(𝒂𝟑𝝀 + 𝒂𝟒/ 𝝀 +
𝒂𝟓)𝝀−𝟏/𝝀𝟐; (b) The elastic modulus of good dispersion system 

compared with poor dispersion system. 30 
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Figure 10.The changes of (a) the number of neighboring NPs directly 

contacting with each other and (b) the size of the maximum NP 

cluster during the deformation. 

5 

 
Figure 11. (a) Schematic representation of polymer shell layer model. 

The red spheres denote the NPs, and the concentric circles with 

different colors represent polymer layers with different mobility; (b) 

the relaxation time of polymer segments along the radial distance of 10 

the NP. The radius of the NP is 2σ. The interaction between the NP 

and the polymer beads is set to be moderate attraction (εnp=3.0). The 

dotted extension line is the hypothetical value when the mass center 

of polymer beads locates at the surface of the NP, regardless of the 

occupied volume of the beads; (c) the mean square displacement 15 

(MSD) of polymer segments along the radial distance of the NP. 

 

 
  

 20 
 

 
Figure 12. Characterization of polymer layer-bridged NP network: (a) 

The changes of root-mean-squared average force  𝑭𝒛   exerted on 25 

each NP in the tensile direction during the deformation process; (b) 

The changes of root-mean-squared average force  𝑭𝒛  exerted on 

polymer beads in the tensile direction; (c) the changes of total NP-NP 

and NP-polymer interaction energy; (d) the changes of the number of 

neighboring NPs bridged by polymer shell layers. 30 

 
Figure 13. The simple shear: (a) the changes of the elastic modulus 

derived from the shear test and the tensile test; (b) the change of the 

number of neighboring NPs bridged by polymer layers at small shear 35 

strains. 
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Figure 14. The numbers of “polymer-mediated filler network” 

structures including the “dangles”, “loops” and “bridges” change as a 

function of the tensile strain 

 5 

Figure 15. The elastic modulus versus tensile strain for different NP-

NP interactions and NP-polymer interactions. The initial state of NPs 

are all the same with the good dispersion state above. 

  
  10 

   
Figure 16. (a) The elastic modulus-strain curves for different NP 

volume fractions. The RDFs of NPs for all these systems show peaks 

at approximately r=5σ and r=6σ, close to that of the good dispersion 

system. From top to bottom, the inserted snapshots correspond to the 15 

filled systems with the increasing of NP volume fractions; (b) The 

initial elastic modulus as a function of the NP volume fraction. 

 

20 

 
Figure 17. (a) The RDFs of NPs corresponding to different simulation 

systems; (b) the elastic modulus-strain curves corresponding to 

different simulation systems; (c) the elastic modulus curves for the 

ungrafted NPs filled system and the grafted NPs filled system. The NP 25 

volume fraction is 7.52% and the interaction between the grafted 

chains and the matrix chains is set to εgm=1.0 rcutoff=2.5. 
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