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The formation of flexoelectric stripe patterns (flexodomains) was studied under the influence of external electric and magnetic
fields in a nematic liquid crystal. The critical voltage and wave vector of flexodomains were investigated in different geometries
by both experiments and simulations. It is demonstrated that altering the orientation of the magnetic field with respect to the di-
rector, the critical voltage and wave number behave substantially differently. In the geometry of the twist Freedericksz transition,
a non-monotonic behavior as a function of the magnetic field was found.

1 Introduction

Nematic liquid crystals are anisotropic fluids with uniaxial ori-
entational order, but without discrete translational symmetry1.
They typically consist of elongated molecules that fluctuate
around the local axis of symmetry described by a unit vector
called the director (n). The practical importance of nematic
liquid crystals originates from their controllability by external
electric and magnetic fields. In display applications, an elec-
tric field is used to switch the director, which can adjust the
optical properties of a device2.

The majority of display modes utilizes the Freedericksz
transition: an external field-induced director reorientation, where
the driving torques originate from the anisotropies of the di-
electric constant (εa) and/or the diamagnetic susceptibility (χa)3.
The value of εa (χa) is given by the difference of the dielectric
constants (diamagnetic susceptibilities) measured in an elec-
tric field (magnetic field) parallel to and perpendicular to the
director: εa = ε∥− ε⊥ (χa = χ∥− χ⊥). If εa > 0 (χa > 0), the
director tends to be parallel to the applied electric (magnetic)
field. Otherwise, the perpendicular configuration is more fa-
vorable. If a destabilizing field is precisely perpendicular to
(or, for negative anisotropies, parallel to) the initial homoge-
neous director, the torques vanish and the reorientation starts
only above a well-defined threshold field, due to small fluctu-
ations.

In the electric Freedericksz transition, the dielectric inter-
action dominates, which is described by a free energy con-
tribution quadratic in the magnitude of the electric field. In
addition, the director may be coupled linearly with the elec-

a Institute for Solid State Physics and Optics, Wigner Research Centre for
Physics, Hungarian Academy of Sciences, Budapest, Hungary
∗ E-mail: salamon.peter@wigner.mta.hu
b Institute for Experimental Physics, Otto-von-Guericke Universität, Univer-
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tric field via the flexoelectric interaction4,5. Flexoelectricity
means that a polarization is induced by a splay or bend defor-
mation of the director n, defined as:

Pfl = e1n(∇n)+ e3(∇×n)×n, (1)

where e1 and e3 are the splay and bend flexoelectric coeffi-
cients, respectively. The usual order of magnitude for e1 and
e3 is pC/m, though giant (a few nC/m) values6,7 were also re-
ported for e3 of bent-core8–14 liquid crystals.

Nematics are excellent materials to study spontaneous pat-
tern formation15, as nonlinearities in their physical proper-
ties provide a rich source of patterns, and external electro-
magnetic fields can serve as control parameters. For example,
applying an electric field on a planar nematic layer can induce
instabilities that result in different types of periodic director
deformations.

In the present paper, we focus on a particular pattern, the
so-called flexodomains (FDs), which represent an equilibrium
director modulation caused by flexoelectricity16,17. They ap-
pear as stripes parallel to the initial director n0. The first the-
oretical model of FDs only considered the one elastic con-
stant approximation16, but this already gave a good qualita-
tive explanation of the phenomenon. Recently, a detailed the-
oretical description of FDs was developed18,19 that also ac-
counted for unequal elastic constants and for the dynamic be-
havior of FDs exposed to sinusoidal voltage excitation18. Fur-
thermore, it recognized the similarity between FDs and splay-
twist domains of the periodic Freedericksz transition; the latter
were observed in polymeric liquid crystals with large elastic
anisotropy20.

Recently, nonlinear field effects and defect dynamics were
also investigated in flexodomains21,22 in a bent-core compound.
Moreover, flexoelectric patterns were studied in special ge-
ometries, such as twisted nematic (TN) cells using rod-like
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compounds23 and lately in bent-core nematic liquid crystals24,25,
where the voltage-polarity dependent orientation of the flexo-
electric stripes indicated that those domains are localized near
the electrodes due to an electric field gradient.

In this work, we study how an additional magnetic field
affects the formation of flexodomains. In order to give a com-
plete answer, we performed experiments and developed a the-
oretical description, including magnetic fields applied in dif-
ferent geometries. Since flexodomains appear as an electric
field-induced equilibrium deformation, similar to the electric
Freedericksz transition, it is a plausible idea to compare the
characteristics of these two phenomena in the presence of ap-
plied magnetic fields. In the present paper, we also make this
comparison using our findings on flexodomains in magnetic
fields.

The practical importance of flexodomains lies in the fact
that they offer a method to determine the flexoelectric param-
eter e∗ = |e1 − e3| that is otherwise only measurable by com-
plicated or unreliable techniques. Classical measuring meth-
ods deduce flexoelectric parameters from the electro-optical
response and require precise knowledge of the voltage applied
on the liquid crystal5. Since the optical response originating
from flexoelectricity is linearly coupled to the electric field,
very low frequency or DC voltages should be applied in order
to avoid the damping of the optical response by the viscosities
of the liquid crystal. Unfortunately, under such conditions, an
internal voltage attenuation at the aligning layers and ionic ef-
fects26–36 are unavoidable, resulting in erroneous voltage data.
The main advantage of using FDs for determining e∗ is that
the flexoelectric parameter can be calculated solely from the
critical wave number, regardless of the value of the critical
voltage. Indeed, analysis of FDs using the sophisticated theo-
retical description18 has been successfully employed recently
for measuring e∗ in a rod-like nematic37. It should be noted,
however, that the applicability of this method is limited; only
a few compounds exhibit flexodomains, as the flexoelectric
instability requires a special combination of material param-
eters18. If the dielectric torque acting on the director is too
large, the flexoelectric pattern formation is suppressed. Thus,
an important requirement is a small |εa|. We will show that the
limits of applicability might be extended if a magnetic field is
also applied.

2 Experimental conditions

Our experimental investigations were performed on a typical
rod-like nematic liquid crystal 4-n-octyloxyphenyl 4-n-methyl-
oxybenzoate (1OO8∗). The chemical structure of 1OO8 can
be seen in Fig. 1.

∗The same compound was abbreviated as 1/8 by Kochowska et al. 38. Here we
rather follow the alternative nomenclature used by others 37,39,40.

O

O O

OCH3

C 8H17

Fig. 1 The chemical structure of the rod-like molecule
4-n-octyloxyphenyl 4-n-methyloxybenzoate (1OO8).

1OO8 only shows the nematic mesophase below a clearing
point (TNI) of 76.7 ◦C. In heating, it melts from the crystalline
phase to nematic at 63.5◦C; the nematic phase can be super-
cooled down to 53 ◦C.

Several material parameters of 1OO8 were determined as
a function of temperature in a previous work37. Here, we will
use the bulk elastic constants (K11,K22,K33), the dielectric,
and the diamagnetic susceptibility anisotropies in our calcula-
tions. Our measurements were performed at 53 ◦C, so we used
the material parameters of 1OO8 corresponding to the same
temperature in our simulations, namely: K11 = 8.54 pN, K22 =
3.83 pN, K33 = 10.6 pN, εa =−0.48, and χa = 9.65×10−7.

The compound 1OO8 was studied in a sandwich cell with
ITO electrodes coated with rubbed polyimide layers for planar
alignment. The electrode area was 5 mm x 5 mm. The thick-
ness of the empty cell (d = 19.5 µm) was measured by inter-
ferometry using an Ocean Optics spectrophotometer. During
the experiments, the sample was held in a custom-made heat
stage that provided a constant temperature with a precision
better than 0.1 ◦C. The heat stage was placed between the two
poles of an electromagnet capable of producing a maximum
homogeneous magnetic inductance of B = 1 T at the sample
position. The magnetic inductance was measured by an Al-
phalab 100 Gaussmeter. The magnetic field lay in the plane of
the liquid crystal cell due to mechanical constraints. By rotat-
ing and fixing the stage, the angle between the magnetic field
and the rubbing direction could be adjusted. Our measure-
ments were performed in three geometries where this angle
was set to 0◦, 45◦, and 90◦, henceforth denoted as the par-
allel (||), the oblique, and the perpendicular (⊥) geometries,
respectively (Fig. 2).

n

cell

B

n

B

n

B

parallel oblique perpendicular

x

y

z
cell

y

z

x

cell

x

y
z

Fig. 2 (Color online) The schematics of the measurement
geometries referred to as parallel, oblique, and perpendicular. The
plane of the sandwich cell lies in the plane of the figure (x-y plane),
the observation direction and the electric field are parallel to the
z-axis.
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DC voltage (U) was applied to the cell using the func-
tion generator output of a TiePie Handyscope HS3 device via
a high-voltage amplifier. The sample was observed using a
Questar QM100 long range microscope in transmission mode
with white light illumination. The electric field-induced pat-
terns were visualized by the shadowgraph technique41, with-
out using any polarizers in the present case. The micrographs
were recorded by a Foculus FO323B digital camera.

In each geometry, for a given value of magnetic field, volt-
age scans with 0.2 V steps were performed on a predefined
voltage interval. After each voltage step, the DC driving was
kept constant for 5 seconds before recording the image.

3 Theoretical model

In order to understand the physics of flexoelectric pattern for-
mation in the presence of external magnetic field, one has to
calculate the director distortions under the joint action of elec-
tric and magnetic fields.

A planar cell filled with a nematic liquid crystal is con-
sidered in a three-dimensional Cartesian coordinate system.
The x-axis coincides with the rubbing direction, and the cell
lies in the x-y plane. We assume strong anchoring of the di-
rector and no pretilt at the boundaries. The general director
field n = n(x,y,z) is represented by the tilt angle θ and the
azimuthal (twist) angle ϕ :

n = (cosθ cosϕ ,cosθ sinϕ ,sinθ) . (2)

Then, the initial homogeneous orientation n0 corresponds to
θ = ϕ = 0, and both θ and ϕ should remain zero at the bound-
aries, even in the distorted state.

A homogeneous magnetic inductance B = (B||,B⊥,0) par-
allel to, and a homogeneous electric field

E = (0,0,Ez) (3)

perpendicular to the cell plane are considered. Naturally, the
assumption on the homogeneity of the electric field is appro-
priate until the variation in the z-component of the director
remains very small inside the cell, which is valid if U .Uc.

Since flexodomains represent an equilibrium deformation,
the final state can be calculated by minimizing the free energy.
In our case, the density of free energy ( f ) is given by the sum
of the elastic ( felast ), dielectric ( felectr), flexoelectric ( f f lexo),
and magnetic ( fmagn) contributions:

f = felast + fdiel + f f lexo + fmagn (4)

felast =
1
2

K11(∇n)2+
1
2

K22(n(∇×n))2+
1
2

K33(n×(∇×n))2

(5)

fdiel =−1
2

ε0εa(nE)2 (6)

f f lexo =−e1nE(∇n)+ e3(n× (∇×n))E (7)

fmagn =−1
2

χa

µ0
(nB)2. (8)

The Frank elastic constants K11, K22, and K33 correspond to
the splay, twist, and bend director deformations, respectively.
The permittivity and permeability of vacuum are denoted by ε0
and µ0, respectively. For the minimization of the free energy
the Euler-Lagrange formalism is used.

The characteristic parameters of the flexodomains, namely
their threshold voltage Uc and the critical wave vector qc at
the onset of the flexoelectric instability, can be obtained via a
linear stability analysis with respect to periodic director defor-
mations. These detailed calculations will be performed below
for two special cases, the parallel and the perpendicular ge-
ometries of Fig. 2.

3.1 The parallel geometry

In the parallel geometry, the magnetic inductance is

B = (B||,0,0). (9)

Assuming χa > 0, no magnetic Freedericksz transition is
expected in this geometry; thus, the modulated director field
of flexodomains emerges from a homogeneous planar basic
state. The stripes of FDs are assumed to remain parallel to
the rubbing direction, qc = (0,q,0). Consequently, all vari-
ables depend only on the y- and z-coordinates. The free en-
ergy is minimized by solving the system of Euler-Lagrange
equations:

d
dy

(
∂ f

∂θ,y

)
+

d
dz

(
∂ f
∂θ,z

)
− ∂ f

∂θ
= 0, (10)

d
dy

(
∂ f

∂ϕ,y

)
+

d
dz

(
∂ f
∂ϕ,z

)
− ∂ f

∂ϕ
= 0, (11)

where spatial partial derivatives are denoted in the lower in-
dices by commas and the corresponding space coordinates.

Combining eqs. (2)-(11) results in a complicated system
of nonlinear partial differential equations that has to be fur-
ther processed as follows. Near the onset of flexodomains,
the director distortions are small and their periodic part char-
acterized by the wave number q can be separated from the z-
dependent amplitudes of the tilt (θ0(z)) and twist (ϕ0(z)) mod-
ulations via:

θ(y,z) = θ0(z)cos(qy) , (12)

ϕ(y,z) = ϕ0(z)sin(qy) . (13)

The director deformation profile of FDs in the middle of the
cell (z = 0) is visualized in Fig. 3. Using the above ansatz,
eqs. (10)-(11) can be linearized with respect to the small quan-
tities θ0 and ϕ0. After switching to the dimensionless space
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Fig. 3 (Color online) The director profile of flexodomains in the
middle of the cell (z = 0) in two views. The director is symbolized
by ellipses. The electric field is parallel to the z-direction.

variable ẑ = zπ/d and wave number q̂ = qd/π , straightfor-
ward calculations result in:

ϕ ′′
0 = 2

δK q̂
1−δK

θ ′
0 −

Ue∗ q̂
Kav (1−δK)π

θ0

+

((
B||
Bt

)2

+
(1+δK) q̂2

1−δK

)
ϕ0, (14)

θ ′′
0 = − 2

δK q̂
1+δK

ϕ ′
0 −

Ue∗ q̂
Kav (1+δK)π

ϕ0

+

((
B||
Bs

)2

−
(

U
Us

)2

+
(1−δK) q̂2

1+δK

)
θ0, (15)

where Kav = (K11 + K22)/2, and δK = (K11 − K22)/(K11 +
K22). In this final system of ordinary differential equations,
prime and double prime denote the first and second ẑ-derivatives,
respectively. In addition, the following scaling quantities are

introduced: Bs =
π
d

√
µ0K11

χa
, Bt =

π
d

√
µ0K22

χa
, and Us = π

√
K11
ε0εa

.
They are formally similar to the expressions for the threshold
magnetic inductances of the magnetic splay (Bs), the magnetic
twist (Bt ) transitions, and the threshold voltage Us of the elec-
tric splay Freedericksz transition. The applied voltage corre-
sponds to U = Ezd.

The cell is symmetric with respect to its midplane, there-
fore it is sufficient to perform the calculations for only one
half of the cell. For a given value of q̂ and U , the system
of eqs. (14)-(15) was numerically solved for ϕ0(ẑ) and θ0(ẑ)
in Matlab on the interval ẑ = [−π/2,0], which corresponds
to the lower half of the planar cell. Mixed boundary condi-
tions were used as follows: θ0(−π/2) = ϕ0(−π/2) = 0 and
θ ′

0(0) = ϕ ′
0(0) = 0.

For U <Uc||q̂ the homogeneous director field is stable, thus
ϕ0(ẑ) = θ0(ẑ) = 0. The critical voltage Uc||q̂ is identified by
the nonzero solutions of the director modulation amplitudes
ϕ0(ẑ) and θ0(ẑ), showing the emergence of the pattern. Since
our model is linearized, no quantitative information can be ob-
tained about the director field above the critical voltage.

Calculating Uc||q̂ as the function of q̂ yields a neutral curve
with a minimum corresponding to the actual critical voltage

Uc|| and wave number q̂c||. As an example, the Uc||q̂ vs. q̂ curve
is shown for B|| = 0 T (solid line), 0.25 T (dotted line), 0.375
T (dashed line), and 0.5 T (dash-dotted line) in Fig. 4. The red
crosses show Uc|| and q̂c|| for each value of the applied parallel
magnetic inductance. The calculations were performed with
the material parameters of 1OO8 listed in Sec. 2 and e∗ = 6.9
pC/m.

Fig. 4 (Color online) The critical voltages (Uc||q̂) of flexodomains
for different wave numbers in the case of B|| = 0 T (solid line), 0.25
T (dotted line), 0.375 T (dashed line), and 0.5 T (dash-dotted line).
For a given magnetic inductance, the red cross shows the smallest
critical voltage Uc|| at the critical wave number q̂c|| that should
actually be realized by the system.

It can be clearly seen in Fig. 4 that both Uc|| and q̂c|| in-
crease with higher values of B||.

3.2 The perpendicular geometry

In the perpendicular geometry, the magnetic inductance is given
by:

B = (0,B⊥,0). (16)

The main difference to the parallel case is that here the
magnetic field does not stabilize the initial homogeneous pla-
nar configuration; instead it induces a twist Freedericksz tran-
sition.

As a consequence, in the absence of the electric field, the
director can be described solely by a ẑ-dependent twist an-
gle ψ = ψ(ẑ), i.e. n = (cosψ,sinψ,0). Determination of the
director profile via minimization of the free energy is a well-
known procedure; ψ(ẑ) can be obtained as the solution of the
second order nonlinear ordinary differential equation42:

ψ ′′ =−
(

B⊥
Bt

)2

cosψ sinψ (17)

with the boundary conditions: ψ0(−π/2) = 0 and ψ ′
0(0) = 0.
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Fig. 5 shows the resulting ψ(ẑ) profile inside the cell cal-
culated with the parameters of our particular material (1OO8)
for three different values of the applied magnetic inductance.

Fig. 5 (Color online) The twist angle ψ versus the cross section
direction z of the planar cell in the case of different perpendicularly
applied magnetic inductances.

For B⊥ < Bt , the twist angle naturally equals zero. Above
the Freedericksz threshold field, ψ increases and reaches its
maximum in the middle of the cell: ψm = ψ(0). At higher B⊥,
ψm approaches 90◦, but in the largest part of the cell, the twist
angle is still significantly below 90◦; even at B⊥/Bt = 2.78
that corresponds to our maximum inductance of B⊥ = 1 T.
Note that an electric field below the onset of FDs (i.e. U <
Uc||) does not affect the basic (homogeneous or twisted) state.

If B⊥ < Bt , the initial director configuration is homoge-
neous, thus the director modulation caused by the onset of
flexodomains can be described similarly to the parallel case,
using eq. (2). Above the Freedericksz threshold, however,
the periodic structure of FDs emerges from a twisted director
field, hence:

n = (cosθ cos(ψ +ϕ) ,cosθ sin(ψ +ϕ) ,sinθ) , (18)

where θ = θ (x,y,z) and ϕ = ϕ (x,y,z) now depend on all
space coordinates. The free energy minimization can be done
by the system of Euler-Lagrange equations:

d
dx

(
∂ f

∂θ,x

)
+

d
dy

(
∂ f

∂θ,y

)
+

d
dz

(
∂ f
∂θ,z

)
− ∂ f

∂θ
= 0, (19)

d
dx

(
∂ f

∂ϕ,x

)
+

d
dy

(
∂ f

∂ϕ,y

)
+

d
dz

(
∂ f
∂ϕ,z

)
− ∂ f

∂ϕ
= 0. (20)

In eqs. (19)-(20), additional terms appear compared to eqs.
(10)-(11) in the parallel case, due to the x-dependence of the
angles θ and ϕ . The combination of eqs. (3)-(8) and (16)-(20)
leads to lengthy expressions that must be linearized next in

order to have a chance to calculate the threshold parameters of
FDs.

In the perpendicular geometry we still assume that the flex-
oelectric instability results in unidirectional stripes, but in con-
trast to the parallel case, the stripes are allowed to run at an
angle β with respect to the initial planar director n0, i.e. qc =
(qsinβ ,qcosβ ,0). Hence the following ansatz is applied to
the θ and ϕ angles:

θ(x,y,z) = θ0(z)cos((qcosβ )y− (qsinβ )x) , (21)

ϕ(x,y,z) = ϕ0(z)sin((qcosβ )y− (qsinβ )x) . (22)

Switching again to dimensionless variables as in Sec. 3.1,
after straightforward calculations one obtains the system of
ordinary differential equations:

ϕ ′′
0 = q̂θ0

((
1− κ

1−δK

)
ψ ′ sin(β −ψ)

− e∗U cos(β −ψ)

(1−δK)Kavπ

)
+ϕ0

(
κ q̂2 sin2(β −ψ)

1−δK

+
(1+δK)q̂2 cos2(β −ψ)

1−δK
−
(

B⊥
Bt

)2

cos(2ψ)

)

+
2δKq̂θ ′

0 cos(β −ψ)

1−δK
(23)

θ ′′
0 = q̂ϕ0

(
(1−3δK −κ)ψ ′ sin(β −ψ)

1+δK

− e∗U cos(β −ψ)

(1+δK)Kavπ

)
+θ0

(
κ q̂2 sin2(β −ψ)

1+δK

+
(1−δK)q̂2 cos2(β −ψ)

1+δK
+

(2δK +κ −2)(ψ ′)2

1+δK

+

(
B⊥
Bs

)2

sin2(ψ)−
(

U
Us

)2
)

−
2δKq̂ϕ ′

0 cos(β −ψ)

1+δK
, (24)

where an additional constant κ = K33/Kav was introduced.
Below the twist Freedericksz threshold, the procedure to

find Uc⊥ and q̂c⊥ for different values of B⊥ is similar to that
discussed in Sec. 3.1, as β and ψ can be fixed to zero. If B⊥ >
Bt , however, ψ and ψ ′ have to be taken from the solution of
eq. (17). Calculating Uc⊥q̂β as the function of q̂ and β gives a
surface with a minimum that corresponds to the actual critical
voltage Uc⊥, wave number q̂c⊥, and stripe angle βc⊥.

As an example, Uc⊥q̂β is plotted as the function of q̂ and
β for B⊥ = 0.7 T in Fig. 6. The calculations were performed
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using the material parameters of 1OO8 presented in Sec. 2
and e∗ = 6.8 pC/m. The minimum is clearly seen at around the
middle of the surface.
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Fig. 6 (Color online) The critical voltages (Uc⊥q̂β ) of flexodomains
for different wave numbers q̂ and stripe angles β in the case of B⊥ =
0.7 T. The minimum of the surface in the center corresponds to the
actual threshold of the flexoelectric instability.

4 Experimental results

4.1 Parallel geometry

Snapshots of flexodomains taken at B|| = 0 T (U = 23 V) and
B|| = 1 T (U = 52.6 V) are presented in Fig. 7a and c. The
micrographs were captured slightly above the threshold volt-
ages (Uc||) of the patterns in the parallel geometry, covering
an area of 106 µm× 106 µm. The two-dimensional Fourier
transforms (amplitude spectra) of the images Fig. 7a and c are
shown in Fig. 7b and d, respectively.

It can immediately be seen in Fig. 7 that the dimension-
less wave number q̂ of FDs is significantly larger at B|| = 1 T
than at zero magnetic field, however, the direction of the wave
vector remains the same as expected. The threshold voltage
is also larger at the higher B||. In order to precisely determine
the threshold parameters Uc|| and q̂c||, the emergence of the
pattern has to be followed as the function of the applied volt-
age. The proper analysis of this process needs a definition of a
quantity that can be used to indicate the presence of a pattern.
In our case, this quantity was assigned to the maximal Fourier
amplitude (CFFT ) in a broad region in that part of the Fourier
space where the peaks for FDs were expected. The value of
CFFT is essentially a measure of contrast that is expected to be
minimal in the homogeneous initial state, and to increase with
the emergence of the pattern.

q̂x
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Fig. 7 (Color online) Micrographs of flexodomains taken at (a)
B|| = 0 T (U = 23 V) and (c) B|| = 1 T (U = 52.6 V) in the parallel
geometry. The images cover an area of 106 µm×106 µm. The
magnetic field and the rubbing direction lie parallel to the horizontal
direction. The two dimensional Fourier transforms of (a) and (c) are
shown in (b) and (d), respectively.

The measured voltage dependence of CFFT is shown in
Fig. 8 for different values of B||. We note that here CFFT is
background corrected, which means that the maximal Fourier
amplitude of the snapshot taken in the homogeneous initial
state is subtracted from all measured values.

The threshold behavior can be observed in Fig. 8 for all
different values of B||. Below the appearance of the patterns,
the contrast equals the background value, thus CFFT = 0. At
higher voltages, the emergence of FDs is indicated by an in-
crease in the contrast. The critical voltages Uc|| (versus B||)
were determined by extrapolation of the lines fitted on the
linear parts of the CFFT (U) functions for each value of B||
(dashed lines in Fig. 8).

The q̂ data were obtained by fitting the peaks in the Fourier
transforms of micrographs with 2D Gaussian surfaces for each
applied voltage. The fitted centres of the Gaussians were used
to acquire the values of q̂. In Fig. 9, the wave numbers of
FDs are plotted as the function of the reduced voltage U/Uc||
for several values of B||. The data show that the wave number
increases linearly with the applied voltage above the threshold.
Therefore, the critical wave number q̂c|| should be determined
by extrapolation to U/Uc|| = 1. The extrapolating dashed lines
in Fig. 9 were fitted to the data points lying in the range 1.02<
U/Uc|| < 1.06, which is approximately the same interval as the
one used in the extrapolation to determine Uc|| (see Fig. 8).

Applying the procedure presented above on a number of
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Fig. 8 (Color online) The voltage dependence of the pattern contrast
(symbols) based on the maximal Fourier amplitude (CFFT ) for
different applied magnetic inductances in the parallel geometry. The
dashed lines indicate the linear extrapolation.

different B|| values, the magnetic field dependence of the thresh-
old parameters can be determined. Figs. 10a and b depict how
B|| affects Uc|| and q̂c||, respectively. The solid symbols show
the experimentally obtained data.

In order to see how the experimental results match our
theoretical considerations, the threshold parameters Uc|| and
q̂c|| were determined by the simulation technique described
in Sec. 3.1 using the material parameters of 1OO8 listed in
Sec. 2. Only the parameter e∗, i.e. the difference of flexo-
electric coefficients, was determined by fitting our theoretical
model to the measured value of q̂c|| at B|| = 0. Our method
gave e∗ = 6.9 pC/m, which was used in the simulations of
the parallel geometry. The open symbols in Fig. 10a and b
show the magnetic inductance dependence of the critical volt-
age and the wave number obtained from the simulation (the
connecting lines are used to guide the eye).

It is seen in Fig. 10 that the theoretical Uc||(B) dependence
is nicely reproduced experimentally; Uc|| increases monotoni-
cally with B||, but the measured threshold voltages are system-
atically larger than the theoretical ones. This deviation can be
attributed to the ionic conductivity of the liquid crystal and
to the structure of the cell. Though in many situations liquid
crystals can be considered insulators, the finite conductivity
of nematics becomes important if a low frequency AC volt-
age is applied onto the material43. The effect is even more
apparent when a DC voltage is used. Common liquid crys-
tals, such as 1OO8, exhibit electrolytic conductivity where the
charge carriers are ionic impurities. If the applied electric field
changes very slowly or is constant in time, ions with oppo-
site charges have time to reach the opposite electrodes, where
they can accumulate, forming a Debye layer. This screening

Fig. 9 (Color online) The wave number of flexodomains as a
function of the reduced voltage (symbols) for different applied
magnetic inductances in the parallel geometry. The dashed lines
indicate the linear extrapolation.

may reduce the electric field in the cell. However, if the total
number of charge carriers is sufficiently low, this effect is neg-
ligible. In typical liquid crystal test cells, the ITO electrodes
are coated with electrically insulating polyimide layers. The
thickness of these are approximately 100− 120 nm that can
provide barriers strong enough to stop ions and minimize the
charge transfer from the electrodes28. In the static case, the
voltage U applied on the cell should be larger than that on the
liquid crystal itself (ULC), because of the voltage drop at the
polyimide and the Debye layers. The internal voltage attenu-
ation may be estimated by ULC/U = RLC/(Rb +RLC), where
RLC and Rb are the resistances of the liquid crystal and of the
boundary layers, respectively. This simple model can explain
why systematically larger critical voltages were obtained in
the experiments compared to the simulations.

Another peculiarity seen in Figs. 10a is that the difference
between the experimental and calculated critical voltages is
larger at lower applied voltages. This effect is consistent with
the above model. Increasing the applied DC voltage decreases
the effective number of charge carriers and thus increases RLC,
while Rp might be regarded as voltage independent. Conse-
quently, the internal attenuation reduces; the ratio ULC/U ap-
proaches 1 when the applied voltage increases.

Besides the critical voltage, the wave number q̂c|| also shows
a significant increase with the applied magnetic field (see Figs. 7
and 10). This tendency is the consequence of the monotoni-
cally increasing Uc||(B||); higher voltages may allow higher
wave numbers. The simulation results agree very well with
the experimental data. It should be noted that the calculated
magnetic field dependence of q̂c|| in Fig. 10b is not a fit; the
material parameters used were not varied in order to achieve
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Fig. 10 (Color online) The magnetic inductance dependence of (a)
the critical voltage and (b) the wave number in the parallel
geometry. The solid (connected open) symbols were obtained by
experiments (by numerical simulations).

a better match with the measured results. This implies that a
fine tuning of the elastic constants and the other parameters
may result in even better agreement.

4.2 The oblique geometry

In Figs. 11a, b, c and d, micrographs of FDs of the oblique
geometry can be seen that were taken at Bobl = 0 T (U =
23 V), Bobl = 0.3 T (U = 27.6 V), Bobl = 0.6 T (U = 38.8
V) and Bobl = 1 T (U = 54.8 V), respectively. The images
were recorded slightly above the threshold voltages of flex-
odomains, and they cover an area of 106 µm× 106 µm, sim-
ilarly to the ones presented in the previous subsection of the
parallel geometry. In Figs. 11a-d, one can clearly identify the
most spectacular feature of the oblique geometry: not only the
wave number of the FD stripes is influenced by the magnetic
field, but the direction of the wave vector as well.

In the oblique geometry, the threshold voltages Ucobl and
the critical wave numbers q̂cobl were determined following the

(a) (b)

(c) (d)

Fig. 11 Micrographs of flexodomains taken at (a) Bobl = 0 T
(U = 23 V), (b) Bobl = 0.3 T (U = 27.6 V), (c) Bobl = 0.6 T
(U = 38.8 V) and (d) Bobl = 1 T (U = 54.8 V) in the oblique
geometry. The images cover an area of 106 µm×106 µm. The
magnetic field lies in the horizontal direction. The rubbing direction
is at an angle of 45◦ with respect to the horizontal direction (parallel
to the stripes in (a)).

procedure presented in Sec. 4.1 in conjunction with Figs. 8
and 9. In contrast to the parallel case, the angle βobl between
n0 and the flexoelectric stripes had to be measured too.

The dependence of the stripe direction βobl on the reduced
voltage U/Ucobl is plotted in Fig. 12 for different magnetic in-
ductances. At nonzero values of Bobl , the angle βobl shows
a decreasing tendency by increasing U/Ucobl . Therefore the
stripe direction angle at the onset of the flexoelectric patterns
(βcobl) can be determined by extrapolation (see the dashed
lines in Fig. 12), analogously to the determination of q̂cobl .

The magnetic inductance dependence of the threshold pa-
rameters Ucobl and q̂cobl can be seen in Fig. 13a. The critical
voltage increases with Bobl ; q̂cobl exhibits a similar character.
The tendency of increasing critical voltage and wave number
at high magnetic fields is similar to that found in the parallel
geometry and is due to the stabilizing magnetic torques.

The stripe angle βcobl at the threshold versus the magnetic
inductance is shown in Fig. 13b. The data indicate that βcobl
increases with Bobl monotonically from zero and it approaches
45◦ at high fields.

In the oblique geometry, a pure magnetic field induces a
thresholdless, homogeneous twist deformation. Therefore, for
Bobl ̸= 0, a twisted structure forms the basic state of the flexo-
electric instability at U =Ucobl . For high magnetic fields, the
director realigns to be parallel to Bobl , i.e. the maximal rota-
tion angle is 45◦. Fig. 13b clearly shows that βcobl follows the
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Fig. 12 (Color online) The angle of FD stripes with respect to the
rubbing direction as the function of the reduced voltage (symbols)
for different applied magnetic inductances in the oblique geometry.
The dashed lines indicate the linear extrapolation.

director rotation and saturates approaching the same 45◦ an-
gle; thus, at large magnetic fields, the FD stripes are parallel
to the (average) director, just as in the case of Bobl = 0.

4.3 The perpendicular geometry

Micrographs of flexodomains of the perpendicular geometry
recorded slightly above their critical voltage at B⊥ = 0 T (U =
24 V), B⊥ = 0.2 T (U = 22.4 V), B⊥ = 0.35 T (U = 18.4
V), B⊥ = 0.5 T (U = 31.6 V), B⊥ = 0.75 T (U = 45.6 V)
and B⊥ = 1 T (U = 56 V) are shown in Figs. 14a, b, c, d,
e, and f, respectively. All images cover an area of 106 µm×
106 µm (the same as in Figs. 7 and 11). The direction of the
rubbing (n0) and that of the magnetic field (B⊥) correspond to
the vertical and the horizontal directions, respectively.

One can observe in Figs. 14a-c that the distance between
stripes increases, but the orientation of flexodomains remains
parallel to the rubbing direction. In contrast, in Figs. 14d-f, the
wave number of the pattern increases and the stripes become
oblique, gradually approaching to be horizontal.

The critical parameters Uc⊥, q̂c⊥, and βc⊥ versus B⊥ were
determined by following the same procedure presented in the
previous subsections. The experimental values of the critical
voltage, wave number and stripe angle can be seen as the func-
tion of B⊥ in Figs. 15a, b, and c, respectively (solid symbols).

The threshold parameters Uc⊥, q̂c⊥, and βc⊥ were also de-
termined by the simulation technique described in Sec. 3.2.
The same material constants were used as for the parallel ge-
ometry, except e∗. A slightly different value of e∗ = 6.8 pC/m
was used here (instead of 6.9 pC/m), in order to fit the exper-
imental value of the critical wave number in the perpendic-
ular geometry at zero magnetic field, which differed slightly

Fig. 13 (Color online) The magnetic inductance dependence of (a)
the critical voltage, wave number and (b) FD stripe angle with
respect to the rubbing direction in the oblique geometry.

from that measured earlier in the parallel geometry. The open
symbols in Figs. 15a, b, and c show the magnetic inductance
dependence of the critical voltage, wave number, and stripe
angle obtained from the simulations (the connecting lines are
just guides for the eye).

It is clear from Fig. 15 that the characteristics of the flex-
oelectric patterns are different below and above the threshold
magnetic inductance (Bt = 0.36 T) of the twist Freedericksz
transition. Nevertheless, for both B⊥ ranges, the theoretical
curves nicely reproduce the experimental dependence. In the
range B⊥/Bt < 1, Uc⊥ and q̂c⊥ decreases with increasing mag-
netic field, while the direction of the FD stripes remains par-
allel n0, thus βc⊥ is essentially zero. It is important to note
that close to Bt , both Uc⊥ and q̂c⊥ are far below their val-
ues at B⊥ = 0. This decrease becomes clear if we invoke the
structure of flexodomains. The periodic director deformation
of FDs involves both tilt and twist components, as it was de-
scribed by eqs. (12)-(13). The torque exerted by a bias mag-
netic field applied perpendicular to the initial director helps
to twist the director and thus reduces the threshold voltage of
FDs, even if it is still too low to induce a homogeneous twist
deformation by itself.
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(a) (b)

(c) (d)

(e) (f )

Fig. 14 Micrographs of flexodomains taken at (a) B⊥ = 0 T
(U = 24 V), (b) B⊥ = 0.2 T (U = 22.4 V), (c) B⊥ = 0.35 T
(U = 18.4 V), (d) B⊥ = 0.5 T (U = 31.6 V), (e) B⊥ = 0.75 T
(U = 45.6 V) and (f) B⊥ = 1 T (and U = 56 V) in the perpendicular
geometry. The images cover an area of 106 µm×106 µm. The
magnetic field and the rubbing direction lie parallel to the horizontal
and the vertical directions, respectively.

Above the Freedericksz threshold, both Uc⊥ and q̂c⊥ in-
crease with B⊥. Furthermore, the orientation of the stripes
changes gradually from the rubbing direction towards a state
where they are more parallel to the magnetic field. Therefore,
βc⊥ increases from zero and approaches 90◦ at high values
of B⊥. In order to see how the critical rotation angle βc⊥ of
FDs is related to the twist deformed basic state of the director
field, we included the maximal twist angle ψm as the function
of B⊥ in Fig. 15c (solid line). It is clearly seen that ψm is al-
ways larger than βc⊥, as expected. The difference between the
stripe angle and the maximal twist angle is relatively small, in
spite of the fact that the ψ(ẑ) profile is not flat, even at B⊥ = 1
T. This leads to the conclusion that the flexoelectric domains
in our system are localized in the middle of the cell. As a
consequence, the twist deformation of the director is directly
visualized by the rotation of the FD stripes.

Though the numerically obtained Uc⊥(B⊥) curves exhibit

Fig. 15 (Color online) The magnetic inductance dependence of (a)
the critical voltage, (b) wave number and (c) FD stripe angle with
respect to the rubbing direction in the perpendicular geometry. The
solid (connected open) symbols were obtained by experiments
(numerical simulations).

a similar B-dependence as the experimental ones, the latter
values are slightly, though systematically higher, just as it was
found in the parallel geometry. The explanation given for the
voltage deviation in Sec. 4.1 applies here as well. In con-
trast to the threshold voltages, the measured and calculated
q̂c⊥(B⊥) curves match almost perfectly, despite the fact that
the B-dependent values were not obtained by a fit (no free pa-
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rameters were varied in the simulations).
Similarly, a good agreement can be seen between the cal-

culated and the measured βc⊥(B⊥) dependence as well, though
the threshold of the twist Freedericksz transition seems to be
less sharp in the experiment. This is most likely due to ex-
perimental imperfections, e.g. a slight misalignment of the
magnetic field direction.

We note here that the vertical dashed line in Figs. 15a-c is
not an experimental value of the threshold of the twist Freeder-
icksz transition; it was calculated from the material parameters
of 1OO8 listed in Sec. 2, which were taken from independent
measurements37.

5 Discussion

We showed in the previous sections that the presence of an ad-
ditional magnetic field has a significant influence on the for-
mation of flexodomains in a nematic liquid crystal. It is well
known that a magnetic field affects the electric Freedericksz
transitions as well in certain geometries. This is not surprising
as, depending on its direction, the torque exerted by the mag-
netic field either stabilizes or destabilizes the initial state. In
the following, we discuss these analogies in more detail.

Let us start with the magnetic field applied along n0. Here,
the critical voltage Uc|| of FDs was found to increase mono-
tonically with B||. Qualitatively similar behavior is expected
in the same geometry for the homogeneous splay Freedericksz
transition, assuming that the nematic compound exhibits posi-
tive dielectric and magnetic susceptibility anisotropies. There,
the magnetic field has a stabilizing effect: it tends to sup-
press the director tilt and twist as well. Our findings point
out that this stabilizing effect works similarly in the case of
flexodomains, where director deformation is induced by flex-
oelectricity, acting against the negative dielectric anisotropy
that stabilizes the homogeneous planar state.

The perpendicular geometry has some more interesting as-
pects. Our results show that the critical properties of FDs ex-
hibit a completely different nature in the two distinct mag-
netic field ranges separated by the twist Freedericksz thresh-
old field. For B⊥ < Bt , the critical voltage was found to de-
crease with B⊥, while for B⊥ > Bt an opposite tendency was
detected. Comparing this with the splay Freedericksz transi-
tion of a nematic with εa > 0, we do not find an analogy, in
contrast to the parallel geometry. The threshold voltage for
the homogeneous director reorientation is not affected by the
magnetic field at all if B⊥ < Bt

44. This is due to the fact that
the electric splay Freedericksz distortion involves only the tilt
of the director, while in FDs tilt and twist are both present.
A magnetic inductance below Bt cannot create twist, but may
alter twist if it is already present.

Measurements in the oblique and perpendicular geome-
tries showed that the direction of the FD stripes rotate if there

is a twist deformation in the sample. This unambiguously
proves that the FDs observed are of bulk origin, just as it
was assumed in the first theoretical interpretation16. Thus,
our findings are in contrast to some recent results of flexoelec-
tric pattern formation in bent-core nematic compounds using
twisted cells24,25, where the patterns were found to be local-
ized near the electrodes and changed their direction upon re-
versal of the voltage polarity. Despite of similarities in their
appearance, we assume that those patterns are flexodomains
of another type with a different, not yet fully explored for-
mation mechanism, where surface effects (e.g. anchoring and
ion blocking strength, surface polarization, large electric field
gradients near Debye layers) as well as differences in mate-
rial parameters (ion concentration, elastic constants, etc.) may
play an important role.

In Sec. 1 we already pointed out the advantages of using
flexodomains in determining e∗, as well as the main drawback
of this technique: only a few compounds possess the com-
bination of the material parameters required for the appear-
ance of flexodomains18. For example, in compounds with
large positive dielectric anisotropy, FDs cannot be seen be-
cause their threshold voltage would be larger than that of the
electric Freedericksz transition. However, we showed that ap-
plying a magnetic field in the perpendicular geometry substan-
tially decreases Uc⊥, while the electric Freedericksz threshold
remains unaffected by B⊥ < Bt . Therefore, our results opens a
perspective to enlarge the number of nematics that may show
FDs. Namely, we think that the application of a proper B⊥
will allow to observe FDs in compounds where no flexoelec-
tric pattern formation can be seen in the absence of a magnetic
field. Proving this will be the subject of further studies.
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Sprunt, J.T. Gleeson, and A. Jákli, Phys. Rev. Lett., 97,
157802 (2006).

7 J. Harden, R. Teeling, J.T. Gleeson, S. Sprunt, and A. Jákli,
Phys. Rev. E, 78, 031702 (2008).

8 P. Sathyanarayana, S. Radhika, B. K. Sadashiva, and S.
Dhara, Soft Matter, 8, 2322 (2012).

9 W. Weissflog, U. Baumeister, M-G. Tamba, G. Pelzl, H.
Kresse, R. Friedemann, G. Hempel, R. Kurz, M. Roos, K.
Merzweiler, A. Jákli, C. Zhang, N. Diorio, R. Stannarius,
A. Eremin, and U. Kornek, Soft Matter, 8, 2671 (2012).

10 A. Eremin and A. Jákli, Soft Matter, 9, 615 (2013).
11 N. Avci, V. Borshch, D. D. Sarkar, R. Deb, G. Venkatesh,

T. Turiv, S. V. Shiyanovskii, N. V. S. Rao, and Oleg D.
Lavrentovich, Soft Matter, 9, 1066 (2013).

12 S. Chakraborty, J. T. Gleeson, A. Jákli, and S. Sprunt, Soft
Matter, 9, 1817 (2013).

13 F. Vita, I. F. Placentino, C. Ferrero, G. Singh, E. T. Samul-
ski, and O. Francescangeli Soft Matter, 9, 6475 (2013).

14 J-H. Lee, T-H. Yoon, and E-J. Choi, Soft Matter, 8, 2370
(2012).
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(e) (f) 

(a) (b) 
(c) 

(d) 

(e) 
(f) 

Flexoelectric patterns were studied under the influence of magnetic fields applied in 

different geometries in a nematic fluid. 
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