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Polarised microscopy is shown to be a powerful alternative to light scattering for the determination of the viscoelasticity of
aligned nematic liquid crystals. We perform experiments in a wide range of temperatures by using an adapted version of the
recently introduced Differential Dynamic Microscopy technique, which enables us to extract scattering information directly from
the microscope images. A dynamic analysis of the images acquired in different geometries provides the splay, twist and bend
viscoelastic ratios. A static analysis allows a successful determination of the bend elastic constant. All our results are in excellent
agreement with those obtained with the far more time-consuming depolarised light scattering techniques. Remarkably, a sensible
extension of the investigated temperature-range is observed, owing to the lower sensitivity of microscopy to multiple scattered
light. Moreover, we show that the unique space-resolving capacities of our method enable us to investigate nematics in the
presence of spatial disorder, where traditional light scattering fails. Our findings demonstrate that the proposed scattering-with-
images approach provides a space-resolved probe of the local sample properties, applicable also to other optically anisotropic
soft materials.

1 Introduction

Devices based on nematic liquid crystals (LC) are very com-
mon and include displays for TV, computers and phones, op-
tical shutters and modulators, and 3D glasses for cinema or
television1–4. One of the most important properties for all
these devices is the characteristic time of collective reorien-
tation after the application of external fields, which sets the
time scale of the device. The relaxation of LC can be inter-
preted as a viscoelastic response to a distortion of the director
field and the reorientation time is mostly determined by the
so-called viscoelastic ratios, which quantify the importance of
the LC viscosity compared to its elasticity5. Nematics have
relatively low viscosities and even small external forces such
as thermal agitation can locally distort their order. One of the
classical means to study the lifetime of these thermally excited
orientational fluctuations is small-angle Depolarised Dynamic
Light Scattering (DDLS). DDLS exploits the fact that tem-
poral intensity fluctuations in the depolarised scattered light
are a direct consequence of the orientational fluctuations of
the LC director. By studying the lifetime of the scattering in-
tensity fluctuations, one can thus access the three viscoelastic
ratios that correspond to splay, twist and bend deformations
of the LC director, provided that suitable scattering geome-
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tries are used5,6. Small-angle DDLS measurements are quite
demanding, requiring very clean sample cells and optical sur-
faces to minimise the unwanted scattered light (stray light). In
addition, measurements at several scattering angles are often
necessary, which increases substantially the overall measure-
ment time to achieve the sample characterisation. Another
possible - although scantily explored - route for the charac-
terisation of the LC viscoelasticity exploits the fact that the
director fluctuations can be easily visualised in real space by
means of depolarised microscopy and recorded with a pixel
detector (camera) for subsequent analysis. This idea was orig-
inally used in Ref.7, where spatial Fourier transforms of mi-
croscope images of nematic LC were analysed in time to ex-
tract the twist viscoelastic ratio. While the latter was found
to be in agreement with previous DDLS measurements, no in-
formation about the bend and splay viscoelastic rations could
be retrieved, leaving the full potential of dynamic microscopy
experiments still unexpressed. A particularly promising tech-
nique for the full characterisation of the LC viscoelasticity is
represented by the recently introduced Differential Dynamic
Microscopy (DDM)8. In its simplest implementation, DDM
allows performing Dynamic Light Scattering (DLS) experi-
ments with a camera-equipped microscope, by recording a
short movie of the sample and processing it through a com-
bination of subtraction of images acquired at different times
and a spatial Fourier analysis. The sample dynamics is then
recovered by looking at the increase of the square amplitude
of each Fourier mode as the time separation between the two
subtracted images is made larger, which provides the inter-
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mediate scattering function for the corresponding wave vec-
tor9. This approach has been successfully demonstrated with
a variety of samples including colloids and bacteria, both in
bright field8–10, phase contrast11–13, and fluorescence wide-
field14 or confocal15 microscopy. We shall prove here that
DDM in combination with properly oriented polarisers - here-
inafter named polarised differential dynamic microscopy or
pDDM - allows performing DDLS experiments with a micro-
scope and permits the full characterisation of LC viscoelastic
ratios in nematics. To this aim we first develop a theoretical
description of dynamic microscopy experiments with optically
anisotropic samples. We then succeed in measuring experi-
mentally the three viscoelastic ratios in a nematic LC sample
with suitable alignment, thereby demonstrating pDDM as a
powerful tool for the rapid characterisation of nematics. The
use of pDDM for the extraction of the elastic constants neces-
sitates alignment-dependent theoretical expressions describ-
ing the effect of the light propagation in a distorted medium
on the image intensity. Even though deriving such expres-
sions is beyond the aim of this work, we adapt recent results
developed in Ref.16, primarily for the description of electro-
convection patterns, for one of the experimental geometries
used in this study. As a result we could extract the bend elas-
tic constant at various temperatures and find it to be in ex-
cellent agreement with literature data. We also show that our
imaging-based approach allows extracting the viscoelastic pa-
rameters in a heterogeneous planar nematic, by means of a
space-resolved experiment that would be practically impossi-
ble with DDLS. Our results suggest a routine use of micro-
scopes for the determination of the viscoelastic properties of
various optically anisotropic fluids, such as for instance ly-
otropic liquid crystals made of anisotropic macromolecules or
colloids17–20.

2 Nematodynamics

The relaxation of orientational fluctuations of the director is
usually described in the framework of nematodynamics the-
ory5,21. The elastic cost of deformation of the nematic order
is expressed by the free-energy volume density

f =
1
2

n

K11 (— · n̂)2 +K22 [n̂ · (—⇥ n̂)]2 +K33 [n̂⇥ (—⇥ n̂)]2
o

(1)
where the unit vector n̂(~r) = n̂0 + d~n(~r) provides the local
orientation of the director. In fact, Eq. 1 defines the three
elastic constants K11, K22 and K33 that are associated to splay,
twist and bend deformations, respectively.

Nematodynamics uses Eq. 1 as a starting point to write
equations that account for conservation of linear and angular
momentum, suitably complemented by the constitutive equa-
tions for the material5,21. Exact solutions of such equations
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Fig. 1 Cartesian reference system (ê1, ê2, ê3 = n̂0) used to
decompose the director fluctuations in mode 1 and mode 2. The
wave vector ~Q of the fluctuations (not shown) and the director n̂0
form a plane. The unit vector ê2 is perpendicular to that plane. With
this choice ~Q lies in the (n̂0, ê1) plane and can be seen as the sum of
~Qk and ~Q?. (a) Mode 1 corresponds to bend and splay distortions of
the director. (b) Mode 2 accounts for bend and twist. The vector
d~n(~r) (not shown) is oriented along ê1 for mode 1 (a) and along ê2
for mode 2 (b).

can be obtained by their linearization for small fluctuations of
velocity (d~v) and direction (d~n) around the equilibrium solu-
tion (~v = 0 and n̂ = n̂0). By introducing the Fourier trans-
form d~n(~Q) =

R

d~n(~r)exp
⇣

�i~Q ·~r
⌘

d~r and by choosing an
orthonormal reference system (ê1, ê2, ê3 = n̂0), such that for
each wave vector ~Q the unit vector ê2 is perpendicular to ~Q
and ê1 is perpendicular to ê2 , the free energy density in Eq. 1
assumes the particularly useful diagonal form

F =
1

2V Â
Q

Â
n=1,2

�

�

�

dnn(~Q)
�

�

�

2⇣
Knn Q2

? +K33Q2
k

⌘

(2)

in the reciprocal space. For each ~Q = ~Qk+~Q? = Qkn̂0 +Q?ê1
fluctuations of the nematic director are accordingly decom-
posed in two collective normal modes (n = 1,2), defined by
the relative orientation of n̂0 and ~Q, and schematically de-
picted in Fig. 1. Mode 1 describes director fluctuations d~n
perpendicular to n̂0 in the

⇣

n̂0,~Q
⌘

plane, which are due to
splay and bend deformations. Fluctuations perpendicular to
the

⇣

n̂0,~Q
⌘

plane define mode 2, which is a combination of
twist and bend deformations. Relaxation of the modes occurs
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exponentially with a rate

Gn(~Q) =
Knn Q2

? +K33Q2
k

hn(~Q)
(3)

where hn(~Q) denotes two Q-dependent viscosities defined in
terms of the Leslie viscosities5 ai (i = 1,2,3,4,5,6) as

h1(~Q) = g1 �

⇣

Q2
?a3 �Q2

ka2

⌘2

Q4
?hb +Q2

?Q2
k (a1 +a3 +a4 +a5)+Q4

khc

(4)
and

h2(~Q) = g1 �
a2

2 Q2
k

Q2
?ha +Q2

khc
(5)

where g1 = a3 �a2, ha = a4/2, hb = (a2 + a4 + a6)/2,
and hc = (�a2 +a4 +a5)/2.

These rather complex expressions can be simplified in some
limit cases. For the cases of interest in the present work, one
has:

h1(~Q) !

8

<

:

hsplay
.
= g1 �

a2
3

hb
, Q? � Qk

hbend
.
= g1 �

a2
2

hc
, Q? ⌧ Qk

(6)

h2(~Q) !
(

htwist
.
= g1 , Q? � Qk

hbend
.
= g1 �

a2
2

hc
, Q? ⌧ Qk

(7)

which define hsplay, htwist , hbend , and in turn result in the fol-
lowing expressions for the relaxation rates of the two modes:

G1(~Q) !
(

Gsplay
.
= K11

hsplay
Q2
? , Q? � Qk

Gbend
.
= K33

hbend
Q2
k , Q? ⌧ Qk

(8)

G2(~Q) !
(

Gtwist
.
= K22

htwist
Q2
? , Q? � Qk

Gbend
.
= K33

hbend
Q2
k , Q? ⌧ Qk

(9)

For each of the three deformations, the viscoelastic ratio is
thus in the form K/h where K is a deformation-dependent
elastic constant (measured in newton) and h is the correspond-
ing viscosity (measured in Pa s). In the next paragraph we will
show how it is possible to exploit the limits in Eqs. 8 and 9 in
DDM experiments.

3 Dynamic microscopy of fluctuating nematics

In this paragraph we first briefly recall the working principles
of bright-field DDM, as introduced in Refs.8 and9. In addi-
tion, we describe DDM in the presence of polarising elements,
which is the essence of the pDDM method. Our description
includes the outline of novel experimental geometries that is
used here for the characterisation of the viscoelasticity of ne-
matics.

Bright-field DDM

DDM is a near-field (or deep-Fresnel) scattering technique22

that allows to recover scattering information about the sam-
ple by analysing sequences of images (movies) acquired close
to the sample (deep-Fresnel regime) rather than in the sample
far-field (Figure 2). The main idea of DDM is to extract from
microscope images a signal that is proportional to the den-
sity fluctuations within the sample. In this way, by means of
Fourier transform analysis, it is possible to quantify relevant
statistical quantities such as the static and the dynamic struc-
ture factor, for comparison with suitable theoretical models or
with analogous quantities extracted from far-field scattering
experiments9.

In bright-field DDM experiments such task is easily tack-
led for weakly scattering samples i.e. whenever the intensity
of the transmitted beam I0 = E⇤

0 E0 is way larger than the in-
tensity of the scattered light Is = E⇤

s Es, where E0 and Es are
the incident and scattered fields, respectively. Indeed, fulfil-
ment of the heterodyne condition Is ⌧ I0 guarantees that the
intensity of each microscope image can be written as

I(x,y, t) = |E0 +Es(x,y, t)| 2 ' I0 +2Re[E⇤
0 Es(t)] (10)

where the homodyne term Is has been neglected and where
Re[...] is the real part of the argument. Eq.10 shows that a
measure of the intensity I(x,y, t) enables one accessing the real
part of the fluctuating scattering field Es(x,y, t), a consequence
of the intrinsic interferometric nature of the method. This fact
can be exploited if an effective procedure for removing the
transmitted light intensity I0 is found. Among the possible
choices9, a very common one is to calculate the algebraic dif-
ference between two images acquired at different times t0 and
t0 +Dt to obtain the difference image

d(x,y, t0,Dt) .
= I(x,y, t0 +Dt)�I(x,y, t0)'2Re{E⇤

0 [Es(t0 +Dt)�Es(t0)]} .
(11)

For stationary ergodic samples the dependence on the refer-
ence time t0 can be neglected since all the images obtained
by subtracting pairs separated in time by the same value of Dt
are statistically equivalent. This allows to average the spatial
Fourier power spectra of all difference images with the same
Dt to obtain the image structure function

D(qx,qy,Dt) =

⌧

�

�

�

�

Z

dqxdqx exp [�i(xqx + yqy)d(x,y, t0,Dt)]
�

�

�

�

�

t0

.

(12)
The image structure function is studied for each~q as a function
of Dt by fitting the trend of the the experimental data points
with the theoretical expression

D(~q,Dt) = A(~q) [1�g(~q,Dt]+B(~q) (13)
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Fig. 2 In a DDM experiment (a) light impinging on the sample is
scattered at various angles and is collected by the objective lens.
Two-dimensional microscope images of the sample are Fourier
analysed and information equivalent to a traditional far-field
scattering experiment (b) is recovered. A generic scattered ray
(wave propagating) with polar angle q and azimuthal angle f
(dashed line), which corresponds to the point (q ,f) in the far-field
scattering pattern (b), is collected by the lens in a DDM experiment
(a) and contributes to the images. The contribution of each scattered
ray (wave) can be isolated by means of a two dimensional Fourier
analysis, which is based on the two-dimensional projection ~q
(defined in Eq. 12) of the wave vector ~Q transferred during the
scattering process (c). The length ks of the scattered wave vector~ks
may differ in general from the length ki of the incident wave vector
~ki (inelastic scattering).

where B(~q) is a background term that accounts for the noise
of the detection chain, A(~q) = T (~q)I(~q), I(~q) is the inten-
sity scattered by the sample and T (~q) is a transfer function
that depends on the microscope9. It is particularly relevant
that g(~q,Dt), the so-called intermediate scattering function,
is the quantity normally accessible in DLS experiments and
this provides the link between DDM and DLS9. For most of
the systems previously analysed with DDM8–12,14,15 the im-
age structure function bore a circular symmetry (like in Fig.2a
and b), such that an azimuthal average for q =

q

q2
x +q2

y was
performed. The structure function D(q,Dt) was thus typically

studied as a function of Dt by fitting the trend of the experi-
mental data points with the theoretical expression

D(q,Dt) = A(q) [1�g(q,Dt]+B(q). (14)

It is worth noting that the wave vector~q accessible in DDM
experiments is a two-dimensional projection of the wave vec-
tor ~Q =~ki �~ks transferred during a scattering process, where
~ki and ~ks are the incident and the scattered wave vector, re-
spectively (see Fig. 2c). As a consequence of the small wave
vectors accessible in DDM experiments, typically well below
10 µm�1, the difference between~q and ~Q is usually negligible,
as is common practice for camera-based far-field small angle
elastic scattering experiments23,24.

DDM with polarising elements (pDDM)

Orientational fluctuations of the nematic director can change
the polarisation state of incident light. The two modes decom-
posing the fluctuations of the nematic director introduced in
Eq.2 can be easily probed in a scattering experiment, where
a nematic liquid crystal slab is illuminated by a plane wave
with wave vector ~ki and polarisation direction î. The scat-
tered light is then collected in a direction specified by the
wave vector ~k f and polarisation direction f̂ . The polarisa-
tion directions î and f̂ are usually selected by use of linear
polarising elements placed before and after the LC sample, re-
spectively. The scattering differential cross section sd in such
experiments is given by

sd(~Q) = const. Â
n=1,2

(in fz + iz fn)2

Knn Q2
? +K33Q2

k
(15)

where in = î · ên , iz = î · n̂0, fn = f̂ · ên , fz = f̂ · n̂0. The dynam-
ics is described by the intermediate scattering function, which
is given by

g(~Q,Dt) = g1(~Q)exp
h

�G1(~Q)Dt
i

+g2(~Q)exp
h

�G2(~Q)Dt
i

(16)
where the relaxation rates Gn(~Q) have been already defined
in Eq.3 and where g1(~Q)+ g2(~Q) = 1, with g1(~Q) and g2(~Q)
depending on sd(~Q). The presence of the term (in fz + iz fn)2

in Eq. 15 shows that the relative contribution of each mode
to the scattered light can be suppressed by a careful choice of
the orientation of the director and of the polarising elements.
As recently reviewed in Ref.6, several far field scattering ge-
ometries have been proposed and reported in literature to take
advantage of this possibility. One of the main advantages of
pDDM is that we can exploit known results from light scat-
tering theory and we do not need ad hoc calculations, at least
if we want to extract dynamic information. In principle, the
investigation with DDM of the depolarised scattering of light
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from orientational fluctuations of the director requires thus a
simple strategy: equipping the microscope with two linear po-
larising elements and performing a DDM analysis without re-
sorting to an azimuthal averaging of the image structure func-
tion in the Fourier space. However, the ostensible simplicity
of the experimental strategy can be misleading. Indeed, va-
lidity of Eq.10 is based on the assumption that the transmis-
sion of light through the sample remains large enough that the
homodyne term Is = E⇤

s Es can be safely neglected. An im-
mediate consequence of such requirement is that typical ge-
ometries employed in DDLS experiments, where the sample
is sandwiched between crossed polarisers and the signal of
interest is a small intensity contribution superimposed to an
ideally zero background, can not be used directly with DDM.
Indeed, under these conditions the homodyne term is domi-
nant, Eq.10 becomes a bad approximation and the easy con-
nection between DDM and far-field scattering experiments is
lost. However, this difficulty can be overcome by identifying
experimental geometries with orientation of the director and
of the polarising elements that allow for the presence of a suf-
ficiently intense transmitted beam. This problem is somehow
similar to the one encountered in Ref.25, where the dynam-
ics of randomly oriented colloidal particles was studied with
near-field scattering. However, in the present case, it is possi-
ble to take advantage of well established procedures to fix the
alignment of the director at the cell surfaces, as sketched in
Fig.3.

We have thus decided to first study LC samples with
homeotropic and (homogeneous) planar alignment of the di-
rector at the cell surfaces (Fig 3a1 and a2), which represent
two cases often encountered in the literature. The general
scheme of our pDDM experiments is sketched in Fig. 3 where
we describe the common features of all the experiments that
we have conducted. The specific features of each experimen-
tal geometry can be instead appreciated by inspecting Figs.
4, 5, 6 and 7, where we have dropped the objective lens and
the microscope image to focus the attention on the recon-
structed scattering pattern A(qx,qy) = D(qx,qy,Dt ! •) and
its symmetries. For all these geometries we will also specify
the correct relations between the amplitude Q of the three-
dimensional wave vector of the fluctuations and the ampli-
tude q of the two-dimensional wave vector associated with
the image Fourier transform. We note that light scattering
from liquid crystals is in general inelastic (ks 6= ki ) with
Dq = |ki � ks|max = k0Dm , where Dm = |me �mo| is the differ-
ence between the extraordinary and ordinary refractive indices
of the sample and k0 is the incident wave vector in vacuum.

Planar alignment – Geometry P1In this geometry the po-
lariser and the analyser are crossed and the director forms an
angle p/8 with the polariser (Fig.4). This choice for the angle
guarantees not only a fairly intense transmitted beam intensity

 !
Δt!q2!

…
!

…
!

a)! b)!

f)! e)!

c)!

d)!

…

n̂0 n̂0
a1)! a2)!

Δt!

t!

Γ D

Fig. 3 Sketch of the pDDM experimental and data analysis
procedure. a) The sample is confined between two glass slides
whose surfaces are treated in order to promote the planar (a1) or the
homeotropic (a2) alignement of the director. b) The sample cell is
positioned on the microscope stage between two polarising
elements. The polarisers are mutually oriented according to the
modes to be probed (see text). c) A stack of digital images of the
sample is acquired with a fixed frame rate. d) For each Dt, the 2D
image structure function D(~q,Dt) is calculated by averaging the
Fourier power spectrum of the difference of images separated in
time by the same time delay Dt. e) The fit of D(~q,Dt) as a function
of Dt allows estimating the q-dependent amplitudes A, the rates G
and the camera noise B (see Eqs. 13 and 16). f) The linear fit of
each G as a function of q2 in selected geometry-dependent directions
allows estimating the corresponding viscoelastic ratio, according to
Eq. 3.

but also the linearity between the change in intensity and the
(small) local orientational fluctuation of the director. As cus-
tomarily done in optics, the linearly polarised incident light
can be decomposed in two components, one with polarisa-
tion direction of the electric field perpendicular to the director
(ordinary light) and the other one parallel to it (extraordinary
light). A similar decomposition can be made for the scattered
light where both the elastic and inelastic scattering processes
contribute to the scattering pattern. However, if the scattering
pattern is analysed in the two directions (bow-ties in Fig.4a)
that are parallel (centre in Fig.4b,c) and perpendicular (right
in Fig.4b,c) to the director, the contribution of polarised scat-
tering is negligible. Use of Eq. 15 with the proper reference
system allows to estimate the contribution of the two modes
by recalling that the scattering of each mode is proportional to
(in fz + iz fn)2, with n = 1,2.

• for director orientation modulations with wave vector
~q parallel to n̂0 the suitable reference system is drawn
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n̂0

n̂0

~Q

~Q

~ks

~ks

~q
~kiî f̂

î f̂~ki

~q θ"
~Q~ks ~q

~kiî f̂

θ"
~Q~ks

î f̂~ki

~q

a) 

c) 

n̂0

Fig. 4 (a) Sketch of a pDDM experiment in the P1 geometry.
Unpolarised light crosses a linearly polarising element (polariser)
and interacts with the nematic sample, whose director is placed at
p/8 with respect to the polariser axis. Both the transmitted beam
and the scattered light encounter a second polarising element
(analyser), perpendicular to the first one. Microscope images (not
shown) are acquired and processed as described in the text to
recover information equivalent to a traditional far-field scattering
experiment. If the scattering pattern is analysed along the direction
parallel (blue online) or perpendicular (red online) to the director,
the contribution of polarised scattering is negligible. (b) For ~q k n̂0
(corresponding reference system on the left) the two combinations
of interest are: incident ordinary light and scattered extraordinary
light (centre); incident extraordinary light and scattered ordinary
light (right). (c) For ~q ? n̂0 (corresponding reference system on the
left) the two combinations of interest are: incident extraordinary
light and scattered ordinary light (centre); incident ordinary light
and scattered extraordinary light (right).

on the left side of Panel b in Fig.4. In this direc-
tion, only mode 2 can be thus probed. Indeed, for or-
dinary incident light and extraordinary scattered light
(Fig.4, Panel b, centre) one has i1 = iz = f1 = f2 =
0, which implies (i1 fz + iz f1)

2 = 0 and (i2 fz + iz f2)
2 =

1�
⇣

q
nek0

⌘2
, whereas for extraordinary incident light and

ordinary scattered light (Fig.4, Panel b, right) one has
i1 = i2 = f1 = fz = 0, which leads to (i1 fz + iz f1)

2 = 0

and (i2 fz + iz f2)
2 = 1. Considering that Qk = q and

Q? ' Dq, we have the following expression for the re-
laxation rate of mode 2:

G2(q) =
K22Dq2 +K33q2

g1 �
a2

2 q2

Dq2ha+q2hc

(17)

which can be expanded for q ⌧ Dq
p

ha/hc to give

G2(q) ' K22

g1
Dq2 +

K33

g1

✓

1+
K22a2

2
K33g1ha

◆

q2 (18)

The rate G2(q) has a rather complex dependence on q.
The intercept for q ! 0 provides the twist viscoelastic
ratio. The bend ratio can be extracted only for large q
(q � Dq

p

ha/hc) where

G2(q) ' K33

hbend
q2 (19)

It appears that, in the absence of prior information about
the value of

p

ha/hc, it is not easy to know a priori
whether the bend viscoelastic ratio in Eq. 19 is experi-
mentally accessible or one rather accesses the more com-
plex combination in Eq. 18.

• for ~q perpendicular to n̂0 the reference system is de-
picted on the left side of Panel c in Fig.4. Both for
extraordinary incident light and ordinary scattered light
(Fig.4, panel c, centre) and ordinary incident light and
extraordinary scattered light (Fig.4, panel c, right) one
has (i1 fz + iz f1)

2 = q2/
�

Dq2 +q2� and (i2 fz + iz f2)
2 =

Dq2/
�

Dq2 +q2�, which implies that both modes show-
up in the scattering intensity. In addition, we have Qk = 0
and Q? =

p

Dq2 +q2, which leads to

G1(q) =
K11

hsplay

�

q2 +Dq2� (20)

G2(q) =
K22

htwist

�

q2 +Dq2� (21)

for the relaxation rates of the two modes. For q ⌧
(K11/K22)Dq the scattering from mode 2 dominates over
mode 1 and the splay and twist contributions can be eas-
ily separated via double-exponential fitting of the struc-
ture function by using Eq. 16 or, when this is not possi-
ble, by inspecting the low-q and the high-q limits of the
systems dynamics, where a single exponential behaviour
is a good approximation. It has to be mentioned that for
low-q the scattering is due to twist fluctuations as ex-
pected also from the fact that refractive index modula-
tions with ~q ' 0 are characterised by ~Q parallel to the
z-axis. Modulations of this kind can only be originated
by twist deformation of the LC director, which thereby
act as a Bragg diffraction grating with transmission coef-
ficient peaked around Q ' Dq.
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Fig. 5 Sketch of a pDDM experiment in the P2 geometry.
Unpolarised light crosses the polariser and interacts with the
nematic sample, whose director is parallel to the polariser axis. The
analyser is oriented parallel to the polariser. In the inset we draw the
reference system used for mode decomposition (left) and the
scattering diagram (right) describing elastic scattering processes
with ~q k n̂0.

Planar alignment – Geometry P2In this configuration the
polariser, the analyser and the director are all parallel to each
other (Fig. 5). By contrast with the previous case, scattering
is elastic here and Q ' q. Along the direction described by
the bow-tie region in Fig. 5 (inset) the dynamics is due to
mode 1 and in particular to bend fluctuations of the director.
Indeed, (i1 fz + iz f1)

2 = q2/(nek0)2 and (i2 fz + iz f2)
2 = 0 and

the relaxation rate is given by

G1(q) =
K33

hbend
q2 (22)

which, at variance with geometry P1, allows for an unam-
biguous determination of the bend viscoelastic ratio. In prac-
tice, a combination of P1 and P2 experiments allows always a
full characterisation of the splay, twist and bend viscoelastic
ratios, even though for some samples P2 experiments could
prove unnecessary. For this geometry, a detailed theoretical
treatment of the deep Fresnel diffraction from periodic mod-
ulations of the nematic LC was presented recently16. In par-
ticular, we can make use of the expression for the intensity I
given in Eq. 48 of Ref.16 to write:

A(q) = 2I2
0 (bq)2 |d̃n1(Q)|2 cos2

✓

q2

2ko
z0
◆

(23)

where b = 1� (mo/me)2, z0 is the observation distance and
|d̃n1(Q)|2 is the 3D power spectrum of the director fluctua-
tions within the scattering plane (mode 1). For q� p/h (about
0.06µm�1 for a sample thickness h = 50 µm) one can safely

assume that Q' q and application of the equipartition theorem
to Eq. 23 gives the simple result

A(q) = 2I2
0V b 2 kBT

K33
(24)

where V = L2h is the probed sample volume, L is the length
of the image side. Finally, even though the analysis in Ref.16

does not account for the effects of limited coherence of the
light source and of the transfer function of the objective, such
effects can be safely neglected at small enough q9, which en-
ables us to make use of Eq. 24 to extract the bend elastic con-
stant K33 from our pDDM images acquired in the P2 geometry.
We note here that in contrast to the case of non-absorbing col-
loidal particles, periodic modulations of the director in the P2
geometry do not behave as a simple phase grating, as it can
be appreciated from Eq. 23 that contains a cos2 term instead
of the usual sin2 term9. Quite interestingly, this shows that
the birefringence of LC brings in additional ingredients to the
problem of deep Fresnel scattering and in turn to the descrip-
tion of Differential Dynamic microscopy experiments. While
these ingredients do not affect the determination of the LC dy-
namics, they need to be carefully accounted for when static
scattering information is of interest.

Homeotropic alignment – Geometry H1If the sample is
placed between parallel polarisers (Fig 6) the intense, lin-
early polarised transmitted beam interferes only with scattered
light with the same polarisation. Splay fluctuations with wave
vector ~Q ' ~q parallel to the polarising elements behave as a
diffraction grating with wavelength 2p/q and in fact, only
polarised scattering due to splay fluctuations is probed. In-
deed, one has for the two modes (i1 fz + iz f1)

2 = q2/(nok0)2

and (i2 fz + iz f2)
2 = 0, with ~Q ' ~Q?. The relaxation rate of

such fluctuations is thus given by

G1(q) =
K11

hsplay
q2 (25)

Interestingly, the removal of both polarising elements leaves
the situation unchanged. Indeed, unpolarised light is the inco-
herent sum of different polarisation states but for each one of
them only light produced by scattering processes that main-
tain the original polarisation can interfere with the transmitted
beam. This leads to the advantage that the scattering pattern
becomes azimuthally symmetric, and that in turn azimuthal
averaging of the data can be performed to increase the statisti-
cal accuracy of the results (Fig. 6)

Homeotropic alignment– Geometry H2In this geometry,
the polariser is not perpendicular to the analyser but it is ro-
tated by an angle b (for instance, for the experiments reported
here we used b = 30o) with respect to that condition (Fig 7).
This configuration guarantees the fulfilment of the heterodyne
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Fig. 6 Sketch of a pDDM experiment in the H1 geometry. In the
configuration shown in the upper part of the main figure,
unpolarised light crosses the polariser and interacts with the nematic
sample, whose director is parallel to the optical axis. The analyser is
oriented parallel to the polariser. In the configuration shown in the
lower part of the figure all the polarising elements are removed. In
the inset we draw the reference system used for mode
decomposition (left) and the scattering diagram (right) describing
elastic scattering processes with ~q ? n̂0.

condition and the validity of Eq. 10. With respect to H1 geom-
etry, here we have an additional depolarised scattering contri-
bution. Indeed, similar to geometry P1, the incident light can
be considered as the sum of two components, one with polari-
sation parallel to the polariser and the other one perpendicular
to it. Because of the presence of the analyser both components
can now interfere with the transmitted beam.

• for director modulations with wave vector along the po-
lariser direction, mode 1 is probed and, in analogy with
geometry H1, splay-induced polarised scattering is ob-
served. Indeed, one has (i1 fz + iz f1)

2 = q2/(nok0)2 and
(i2 fz + iz f2)

2 = 0, with ~Q ' ~Q?. The relaxation rate of
such fluctuations is

G1(q) =
K11

hsplay
q2 (26)

• in the direction perpendicular to the polariser, de-

1

2
z 

n̂0 î

θ"
~Q~ks

~q
~ki f̂î

θ"
~Q~ks

~q
~ki f̂

a) 

b) 

n̂0

Fig. 7 (a) Sketch of a pDDM experiment in the H2 geometry.
Unpolarised light crosses the polariser and interacts with the
nematic sample, whose director director is parallel to the optical
axis. The analyser is oriented at b = 30o with respect to the
polariser. If the scattering pattern is analysed along the direction
parallel (blue online) to the polariser the contribution of depolarised
scattering is negligible and only polarised scattering is of interest. If
the scattering pattern is analysed along the direction perpendicular
(red online) to the polariser the only relevant contribution comes
from depolarised scattering. (b) Reference system used for mode
decomposition (left), the scattering diagram (centre) describing
elastic scattering processes within the plane of the analyser and the
scattering diagram (left) describing elastic scattering process within
the plane perpendicular to the analyser.

polarised scattering is sensitive to mode 2 and
(i1 fz + iz f1)

2 = 0, (i2 fz + iz f2)
2 = q2/(nok0)2 with ~Q '

~Q?. Twist fluctuations with wave vector ~Q '~q act thus
as a diffraction grating with wavelength 2p/q and the re-
laxation rate of such fluctuations is thus given by

G2(q) =
K22

htwist
q2. (27)

It appears that a combination of P1 and P2 measurements al-
ways allows for a complete characterisation of the LC vis-
coelasticity, with geometry P1 being sufficient under some cir-
cumstances. By contrast, measurements on a homeotropically
aligned LC can not provide access to the bend viscoelastic ra-
tio.
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4 Experimental

For our experiments we use the thermotropic liquid crys-
tal 4-hexyl-4’-cynanobiphenyl (6CB, Sigma-Aldrich), whose
nematic phase is in the temperature range 14.5 � 28.8oC.
We consider two samples that are confined in cells made of
optical-quality glass windows and that differ only in the align-
ment of the LC molecules at the cell surface. To that purpose
the cell surfaces in contact with the LC sample are treated
so as to favour either parallel (planar or P) or perpendicular
(homeotropic or H) alignment. H alignment is obtained by
depositing a layer of polyimide (polymer 0626 from Nissan
Chemistry Industries) with spin coating (3000 rpm for 2 min-
utes), whereas for P alignment, spin coating of a 0.5% wa-
ter solution of polyvinyl-alcohol (3000 rpm for 2 minutes)
is followed by rubbing. By using Mylar® spacers, the cell
thickness is set to h = 50 ± 3 µm, as checked with optical
Fabry-Perot interferometry in reflection. The cell is then filled
with 6CB in the isotropic phase at T = 40oC and sealed with
epoxy glue. The sample is subsequently cooled at a low rate
from the isotropic to the nematic phase and eventually kept
for at least one hour at 10oC (or 12oC for some of the ex-
periments) below the nematic-isotropic transition temperature
TNI = 28.8oC. Measurements are performed at different tem-
peratures in the nematic phase after careful thermalisation of
the sample. Thermalisation takes place inside an INSTEC-
HCS301I hot stage mounted on a NIKON Eclipse Ti-U micro-
scope, which is also used for the sample observation. At each
temperature, images of the fluctuations are acquired with a fast
camera (IDT M3), with the image pixel size corresponding to
dpix = 1.2 µm in real space (magnification 10⇥). A typical
dataset consists of a sequence of 8000 images, acquired with
a sampling rate of 2500 images/s and an exposure time of 400
µs. The total measurement time is thus 3.2 s for each temper-
ature and geometry. The acquired images are stored on disk
for subsequent pDDM analysis, which is performed by using
MATLAB ®. In contrast with bright field DDM experiments,
the 2D structure functions of LC do not bear in general an az-
imuthal symmetry, as it can be appreciated in Figs. 4,5,6,7. As
a consequence, instead of azimuthally averaging the data with
the same q but different (qx,qy) over 2p , we limit the angular
size of the region over which the averaging is performed by us-
ing bow-tie shaped regions, as shown in Fig.8 (panels a and b)
and 11, for the planar and homeotropic samples, respectively.

5 Results and discussion

Planar alignment

At each temperature, data for planar samples are acquired first
in the P1 geometry (polariser ? analyser) and immediately
after in the P2 geometry (polariser k analyser) by rotating
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Fig. 8 (a) Reconstructed scattering pattern A(qx,qy) for the P1
geometry. The two shaded bow-tie areas, centred, respectively,
around a direction parallel (blue) and perpendicular (orange) to the
nematic director n̂0, indicate the regions where the azimuthal
averages are performed. (b) Reconstructed scattering pattern for the
P2 geometry. The red shaded area, oriented along the direction of
the nematic director, indicates the region used for the azimuthal
average. (c) Normalised structure functions for the P1 and P2
geometries at q = 1.0 µm�1. Blue circles (orange squares)
correspond to ~q parallel (perpendicular) to n̂0 in the P1 geometry.
Red triangles correspond to ~q parallel to n̂0 in the P2 geometry. The
dashed line is the best fitting single exponential curve for ~q k n̂0,
while the continuos blue line is the best fitting double exponential
curve for ~q ? n̂0. (d) q-dependent relaxation rates G obtained with
the P1 (circles, squares and diamonds) and the P2 (triangles)
geometries.

the sample and the polariser. According to the expectations
from theory (Section 3), the reconstructed scattering pattern
A(qx,qy) for the P1 (Fig.8a) and P2 (Fig.8b) geometries have
quite different symmetry properties. As far as the pDDM anal-
ysis is concerned, for the P1 geometry, the two shaded bow-tie
areas (angular width p/32) in Fig.8a indicate the two regions
used for azimuthal averaging, one (blue) with the scattering
wave vector ~q parallel to the director n̂0, whereas the other
(orange) with ~q perpendicular to n̂0. It can be noticed that the
two highlighted regions are rotated by p/8 with respect to the
image axes as a consequence of the fact that in this geometry
the director forms an angle p/8 with the polariser (Fig 4a).
By contrast, the scattering pattern for the P2 geometry is al-
most concentrated in direction parallel to the director (Fig.8b),
as scattering vanishes perpendicularly to it. The region used
for the pDDM analysis is highlighted in blue and has an an-
gular width of p/16. In Fig. 8c we plot three structure func-
tions measured at T �TNI = 0.2oC and for q = 1.0 µm�1 in
the P1 and in the P2 geometries. It appears that relaxation
of the director fluctuations when ~q is perpendicular to n̂0 (or-
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ange squares in Fig. 8c for the P1 geometry) are slower than
fluctuations in the parallel direction (blue circles for the P1
geometry and red triangles for the P2 geometry in Fig. 8c).
According to the theoretical expectation, the P2 geometry is
the easiest case to analyse. Indeed, a single mode (mode 1) of
pure bend is probed with a rate given by Eq. 22. Fitting the
structure function with a single exponential curve (red dashed
line in Fig. 8c) provides the rate G1, which is plotted as a
function of q2 in Fig. 8d (red triangles). For each temperature,
the obtained results are well fitted by a linear function, from
which the bend ratio K33/hbend can be extracted. Results for
different temperatures are reported in Fig. 9a (full red circles)
and are in excellent agreement with previous experiments on
the same sample with DDLS28. The situation is more com-
plex for the P1 geometry. For ~q parallel to n̂0, scattering is
originated only by mode 2 and thus the dynamics is again
well described by a single exponential function (blue circles
in Fig.8c,). The rate G2 extracted from the single exponential
fitting is plotted in Fig.8d (blue circles) as a function of q2. In
principle, this data should be fitted with Eq. 17. However, this
fit becomes very challenging because of the large number of
fitting parameters and the limited q-range of the experiments.
In addition, the possible use of the simpler expression in Eq.
19 to extract the bend ratio is based on prior knowledge of
ha,hc and Dq to ensure that the condition q � Dq

p

ha/hc is
met. Literature data for ha and hc relative to our sample could
not be retrieved. However, data for 5CB26 and MBBA27 in
a T � TNI range similar to the one explored here shows that
p

ha/hc remains in the range 1�1.7. Based on this estimate,
we can expect the condition q � Dq

p

ha/hc to be met only
in a narrow range close to the critical temperature TNI , where
in principle it should be possible to extract the bend viscoelas-
tic ratio. In fact, even quite close to TNI , the approximation
of Eq. 17 with Eq. 19 is still not fully satisfactory, as it can
be appreciated in Fig. 8d, by comparing the rates obtained in
this condition (blue circles) with the ones obtained in the P2
geometry (red triangles). For ~q perpendicular to n̂0, the struc-
ture function is the sum of two exponential functions due to
the superposition of modes 1 and 2 (Eq. 16). A double ex-
ponential fit (continuous line ) thus provides the correspond-
ing relaxation rates G1(q) and G2(q) (diamonds and squares
in Fig.8d, respectively). For small q, where scattering from
mode 2 dominates, data for G1(q) appear quite noisy, as the
small amplitude of mode 1 translates into a large uncertainty
in determining G1(q). Nevertheless, data for both modes can
be well fitted to Eqs. 20 and 21 to extract the splay and twist
viscoelastic ratios, respectively and Dq. The results for differ-
ent temperatures are shown as orange down-triangles in Fig.9
b and c, respectively. Again the agreement with previous ex-
periments in Ref.28 is very good.

As a by-product of the analysis in the P1 geometry, the bire-
fringence Dm can be obtained from the experimentally deter-
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Fig. 9 Viscoelastic ratios of 6CB measured as a function of the
temperature difference from the transition temperature TNI . Full
symbols are obtained with pDDM in different geometries (P1
geometry - red circles, P2 geometry - orange down-triangles, H1
geometry - green diamonds, H2 geometry - blue up-triangles).
Empty symbols are literature data (from28) obtained with DDLS.

mined Dq, by using the relation Dq = k0Dm = (2p/l0)Dm,
where we used l0 = 580 nm for the peak wavelength of our
light source9. Results obtained in this way for Dm at different
temperatures are reported in Fig. 10a (black circles) together
with the literature data obtained with traditional refractometry
(red squares)27.
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Fig. 10 Experimentally determined birefringence (panel a) and bend
elastic constant (panel b) of 6CB as a function of the temperature
difference from the transition temperature TNI . Black circles are data
obtained with pDDM. Red squares are literature data from Ref. 27

Finally, by making use of Eq. 24 it is also possible to cal-
culate the bend elastic constant from the amplitude A(q) of
the structure functions for ~q parallel to n̂0 obtained for each
temperature in the P2 geometry. A reliable estimate of the
low-q limit A0 of the amplitude is obtained as the average of
A(q) over the interval [0.39,0.49]µm�1, where A(q) is essen-
tially flat. According to Eq. 24, the bend elastic constant K33
is estimated as K33 = 2I2

0V b 2kBT/A0. As shown in Fig.10,
the obtained values compare remarkably well with the litera-
ture data obtained by light scattering27. Most remarkably, we
are able to extend the existing data-range by almost a decade
with pDDM approaching further towards TNI . This is because
pDDM is less sensitive to multiple scattering as compared to
traditional light scattering methods. We note that in principle
the good result obtained for K33 could be extended also to the
other two elastic constants, provided that some expressions
analogous to Eq. 24 are available for the corresponding ge-
ometries. Given the complexity of the calculations involved,
the derivation of such expressions is well beyond the purpose

of the present article, but it should be a priority for further
developing the full potential of the method.

Homeotropic alignment

At each temperature we have performed measurements first in
the H1 geometry (no polarisers, Fig. 11b) and successively in
the H2 geometry (polariser and analyser mutually oriented at
60o). In H1 geometry (mode 1) the splay ratio can be obtained
by taking advantage of the azimuthal symmetry of the scatter-
ing pattern (Fig.11b) whereas both splay and twist ratios can
be extracted in H2 geometry (mode 1 and 2) by analysing the
dynamics in two perpendicular directions in the q-space.

a)! b)! c)!

Fig. 11 (a) Reconstructed scattering pattern for the H1 geometry
(parallel polarisers). The red shaded bow-tie area, oriented along the
direction of the axis of the polarising elements, indicates the region
where the azimuthal average is performed. (b) Reconstructed
scattering pattern for the H1 geometry (no polarisers). (c)
Reconstructed scattering pattern for the H2 geometry. The two
shaded bow-tie areas are oriented, respectively, along a direction
parallel (blue) and perpendicular (orange) to the axis of the polariser
and indicate the regions where the azimuthal averages are
performed.

The results are reported in Fig. 9b and c, where green di-
amonds are obtained in the H1 geometry, whereas blue up-
triangles in the H2 geometry. All the results are in excellent
agreement with both the literature data and the measurements
performed in the P1 geometry. We note that the quality of the
results obtained with the H1 geometry, where azimuthal aver-
aging of the structure functions over 2p was performed, is ap-
preciably higher than that obtained in other geometries. This
also shows that polarising elements are not always needed for
the characterisation of the viscoelastic behaviour of LC.

Heterogeneous planar alignment

To explore the novel possibilities offered by this imaging-
based scattering method, a last set of experiments was per-
formed with a sample of 6CB confined in a cell whose glass
surfaces were kept untreated, to obtain a heterogeneous planar
alignment that occurs with many samples for which alignment
procedures are not available or known, such as for instance bi-
ological LC formers17. The alignment of the LC molecules at
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the surfaces is spontaneously planar but does not remain uni-
form across the cell width. This alignment is also known in
the literature as random planar alignment. Images acquired
between crossed polarisers under this condition have the typ-
ical Schlieren texture appearance (Fig. 12a). However, it is
still possible to identify small domains inside which the pla-
nar alignment is approximately uniform even though different
domains are characterised by different orientation of the direc-
tor.

a) b) 

c) 

Fig. 12 Portion of a heterogeneous planar sample of 6CB observed
between crossed (a) and parallel (b) polarisers. (c) Intensity
histogram (symbols) of the area enclosed in the red circle in panel
(a), centred around a point-like defect. The continuous line is the
best fitting curve of the form:
P(I) = (1/p)(I � Imin)

� 1
2 (Imax � I)�

1
2 , expected from theory. The

intensity range outlined in blue (orange) with dotted (continuous)
contour corresponds to regions where the nematic director is
approximately parallel (tilted by p/8+np/4, with n integer) with
respect to the polarising element. In panel (a) some representative
regions of interest are shown, corresponding to these orientations;
dotted blue squares were analysed with pDDM in the P1 geometry,
while orange squares in the P2 geometry. The corresponding
reconstructed scattering patterns are also shown close to each region
of interest.

To investigate the amount of quantitative information that
can be extracted in this condition we have prepared a sample
of 6CB with heterogeneous planar alignment that was charac-
terised at the fixed temperature T = 22.7±0.2oC. Two movies
of the same region (8000 images with 512x512 resolution)
were acquired, respectively, at 800 and 1000 frames per sec-
ond. The first movie was taken with the sample placed be-
tween perpendicular polarisers (Fig. 12a), while for the sec-
ond the polarisers were kept parallel (Fig. 12b). Such double
acquisition enabled us to identify proper sub-regions for the
pDDM analysis as follows. A point-like defect and the cor-
responding region of interest such as the one outlined with a
red circle in Fig. 12a is chosen under the assumption that the
orientation of the director around it is uniformly distributed.

The image intensity histogram of the region of interest sim-
ilar to the one in Fig. 12(a) is calculated and fitted with the
theoretical expression: P(I) = (1/p)(I � Imin)

� 1
2 (Imax � I)�

1
2

derived under the hypothesis of uniform distribution of the
director orientation to obtain a correspondence between in-
tensity levels in the image and director angle (modulo p/4).
Once such correspondence is obtained (Fig 12a) the analysis
proceeds differently according to the viscoelastic ratio of in-
terest.

0 2 4 6
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400

q2 (μm-2)

   
   

  Γ
 (1

/s
)

Fig. 13 q-dependent relaxation rates G obtained for a heterogeneous
planar sample of 6CB at T = 22.7±0.2oC. Different symbols
correspond to the different regions of interest in the sample, as
shown in Fig. 12. Circles, squares and diamonds correspond to
regions of interest equivalent to a P1 geometry experiment. Crosses
and empty triangles are equivalent to a P2 geometry experiment.
The shown fitting lines allow extracting the bend (dashed line) and
the splay (continuous line) ratios, whereas the extrapolated q = 0
limit of the P1 data provides an estimate of the twist ratio.

Splay and twistFor the determination of the splay and twist
viscoelastic ratios we select an intensity range at the centre
of the histogram and determine the corresponding regions in
the image, where the director is oriented at p/8 + np/4 (n
integer), with respect to the polarising elements. Inside these
regions small square regions of interest (ROI) (64⇥64 or 32⇥
32 or 16⇥16 pixels) are selected and a pDDM analysis is run
in parallel for all of them. The actual orientation of the director
within each ROI can be easily determined by exploiting the
asymmetry displayed by the 2D structure function, as shown
if Fig. 11a. The structure functions with ~q perpendicular to
n̂0 are analysed and fitted with a single exponential, since the
limited size of the square regions of interests prevents a double
exponential fit. Nevertheless, the twist and splay viscoelastic
ratios can be extracted from the the G(q) data in Fig. 13. The
results for the two ratios (K11/hsplay = (5.9±0.3)⇥10�11m2/s,
K22/htwist = (2.6±0.6)⇥10�11m2/s) are in fair agreement with
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those obtained with uniformly aligned samples, reported in
Fig. 9.

BendAn intensity range in the lower of the image histogram
is selected and the corresponding regions in the image are de-
termined, where the director is parallel or perpendicular to the
polarising elements. Since we are interested only in the re-
gions with the director parallel to the polarisers, we focus on
the regions where the intensity is larger and select small square
regions of interest (32⇥ 32 or 16⇥ 16 pixels) for the pDDM
analysis. The analysis proceeds in each region of interest by
using the same method used for the P2 geometry. The bend
ratio obtained from the slope of the G(q) curves in Fig. 13 is
K33/hbend = (1.3±0.3)10�10 m2/s,which is about 70% smaller
than the result obtained with homogeneously planar samples.
This discrepancy can be attributed to a large, unknown pre-tilt
angle at the surfaces, as independently verified with experi-
ments performed on homogenous planar samples confined be-
tween glass plates rubbed in opposite directions, or to an un-
avoidable twist29 due to the possibly different orientation of
the director on the two cell surfaces.

6 Conclusions

Our experiments demonstrate the versatile use of pDDM for
the characterisation of the dynamics of liquid crystals and, in
perspective, of other optically anisotropic fluids. It is worth
stressing that the differential algorithm provides a very effec-
tive solution to the stray light problem, which makes DDLS
measurements at small angles very challenging. Our method
could thus be used as a robust analytical tool that would func-
tion in harsh environments as those typically found in produc-
tion plants. More theoretical work will be needed to exploit
the full potential of the method, not only for the characterisa-
tion of the three viscoelastic ratios but also for the correspond-
ing elastic constant.
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A	
   new	
   microscopy	
   method	
   is	
   demonstrated	
  
for	
   the	
   characterisation	
   of	
   the	
   viscoelasticity	
  
of	
   nematic	
   liquid	
   crystals.	
   Both	
   aligned	
   and	
  
spatially	
   disordered	
   samples	
   are	
   studied	
  
successfully.	
  Several	
  other	
  heterogeneous	
  soft	
  
materials	
  could	
  be	
  studied	
  with	
  this	
  approach.	
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