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We present a theoretical study of director fields in toroidal geometries with degenerate planar boundary conditions. We find
spontaneous chirality: despite the achiral nature of nematics the director configuration shows a handedness if the toroid is thick
enough. In the chiral state the director field displays a double twist, whereas in the achiral state there is only bend deformation. The
critical thickness increases as the difference between the twist and saddle-splay moduli grows. A positive saddle-splay modulus
prefers alignment along the short circle of the bounding torus, and hence promotes a chiral configuration. The chiral-achiral
transition mimics the order-disorder transition of the mean-field Ising model. The role of the magnetisation in the Ising model is
played by the degree of twist. The role of the temperature is played by the aspect ratio of the torus. Remarkably, an external field
does not break the chiral symmetry explicitly, but shifts the transition. In the case of toroidal cholesterics, we do find a preference
for one chirality over the other – the molecular chirality acts as a field in the Ising analogy.

1 Introduction

The confinement of liquid crystals in non-trivial geometries
forms a rich and interesting area of study because the pre-
ferred alignment at the curved bounding surface induces bulk
distortions of the liquid crystal – that is, the boundary condi-
tions matter. This results in a great diversity of assemblies
and mechanical phenomena1–5. Water droplets dispersed in a
nematic liquid crystal interact and assemble into chains due
to the presence of the anisotropic host fluid6–8, defect lines in
cholesteric liquid crystals can be knotted and linked around
colloidal particles9–12, and surface defects in spherical nematic
shells can abruptly migrate when the thickness inhomogeneity
of the shell is altered13,14. In the examples above spherical
droplets (or colloids), either filled with – or dispersed in – a liq-
uid crystal, create architectures arising from their coupling to
the orientational order of the liquid crystal. Nematic structures
where the bounding surface of the colloid or the liquid crystal
droplet is topologically different from a sphere have also been
studied15–17. Though there has been much interest in the inter-
play between order and toroidal geometries17–25, it was only
recently that experimental realisations of nematic liquid crystal
droplets with toroidal boundaries were reported26,27. Polarised
microscopy revealed a twisted nematic orientation in droplets
with planar degenerate (tangential) boundary conditions, de-
spite the achiral nature of nematics. This phenomenon, which
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we will identify as spontaneous chiral symmetry breaking ∗,
is subject of theoretical study in this article. The chirality of
nematic toroids is displayed by the the local average orien-
tation of the nematic molecules, called the director field and
indicated by the unit vector n. Motivated by experiment, we
will assume this director field to be aligned in the tangent plane
of the bounding torus. Fig. 1a shows an achiral nematic toroid
which has its fieldlines aligned along the azimuthal direction,
φ̂. In contrast, the chiral nematic toroids in Figs. 1b and 1c
show a right and left handedness, respectively, when following
the fieldlines anticlockwise (in the azimuthal direction). The

Fig. 1 Schematic of (a) achiral, (b) righthanded and (c) lefthanded
toroidal nematic liquid crystals. The black lines are director field
lines on the bounding torus.

origin of the chirality lies in two elastic effects of geometric
confinement. Firstly, there is a trade-off between bend and
twist deformations. Secondly, another type of director distor-
tion called saddle-splay couples the director to the curvature of
the boundary, and can consequently favour the chiral state.

These nematic toroids share similarites with polymer bun-
dles20,28–33. In fact, twisted DNA toroids have been analysed

∗Technically, it is spontaneous achiral symmetry breaking since the symmetry
is the lack of chirality. However, we will conform to the standard convention.
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with liquid crystal theory20,32,34. Under the appropriate solvent
conditions DNA condenses into toroids28,35. These efficient
packings of genetic material are interesting as vehicles in ther-
apeutic gene delivery; it has been argued20 that a twist in DNA
toroids, for which there are indications both in simulations36,37

and experiments38, would unfold more slowly and could there-
fore be beneficial for this delivery process. Thus, besides a
way to engineer complex structures, the theory of geometri-
cally confined liquid crystals may also provide understanding
of biological systems.

The organisation of this article is as follows. In section 2 we
will discuss our calculational method which involves a single
variational Ansatz only for the director fields of both chiral
and achiral toroidal nematics. In section 3 we will consider its
energetics in relation to the slenderness, elastic anisotropies,
cholesteric pitch and external fields, and discuss the achiral-
chiral transition in the light of the mean field treatment of the
Ising model. Finally, we conclude in section 4.

2 Toroidal director fields

2.1 Free energy of a nematic toroid

We will study the general case in which the director lies in the
tangent plane of the boundary assuming that the anchoring is
strong so that the only energy arises from elastic deformations
captured by the Frank free energy functional39,40:

F [n (x)] =
1

2

∫
dV
(
K1 (∇ · n)2

+ K2 (n · ∇ × n)
2
+ K3 (n×∇× n)

2
)

−K24

∫
dS · (n∇ · n+ n×∇× n) ,

(1)

where dS = ν dS is the area element, with ν the unit normal
vector (outward pointing) and where dV is the volume element.
Due to the anisotropic nature of the nematic liquid crystal,
this expression contains three bulk elastic moduli, K1, K2,
K3, rather than a single one for fully rotationally symmetric
systems. In addition, there is a surface elastic constant K24.
K1, K2, K3 and K24 measure the magnitude of splay, twist,
bend and saddle-splay distortions, respectively. We now pro-
vide a geometrical interpretation of the saddle-splay distortions.
Firstly, observe that under perfect planar anchoring conditions
n · ν = 0 and so the first term in the saddle-splay energy does
not contribute:

F24 = −K24

∫
dS ν · (n×∇× n) . (2)

This remaining term in the saddle-splay energy is often rewrit-
ten as

F24 = K24

∫
dS ν · (n · ∇)n. (3)

because

(n×∇× n)a = εabcnbεcpq∂pnq (4)
= (δapδbq − δaqδbp)nb∂pnq
= −nb∂bna (5)

where in the last line one uses that 0 = ∂a (1) = ∂a (nbnb) =
2nb∂anb. In other words, the bend is precisely the curvature
of the integral curves of n. Employing the product rule of
differention 0 = ∂a (νbnb) = νb∂anb + nb∂aνb yields

F24 = −K24

∫
dS n · (n · ∇)ν. (6)

Upon writing n = n1e1 + n2e2, with e1 and e1 two or-
thonormal basis vectors in the plane of the surface, one obtains

F24 = K24

∫
dS niLijnj , (7)

where we note that i, j = 1, 2 (rather than running till 3). Thus
the nematic director couples to the extrinsic curvature tensor41,
defined as

Lij = −ei · (ej · ∇)ν. (8)

If e1 and e2 are in the directions of principal curvatures, κ1
and κ2, respectively, one finds

F24 = K24

∫
dS
(
κ1n

2
1 + κ2n

2
2

)
. (9)

We conclude that the saddle-splay term favours alignment of
the director along the direction with the smallest principal
curvature if K24 > 0. The controversial surface energy density
K13n∇ · n is sometimes incorporated in eq. (1), but is in our
case irrelevant, because the normal vector is perpendicular to
n, and so n · ν = 0.

We will consider a nematic liquid crystal confined in a han-
dle body bounded by a torus given by the following implicit
equation for the cartesian coordinates x, y, and z:(

R1 −
√
x2 + y2

)2
+ z2 ≤ R2

2. (10)

Here, R1 and R2 are the large and small radii, respectively, of
the circles that characterise the outer surface: a torus obtained
by revolving a circle of radius R2 around the z-axis (Fig. 2).
We can conveniently parametrise this solid torus by the coor-
dinates r ∈ [0, R2], φ ∈ [0, 2π) and ψ ∈ [0, 2π) (illustrated in
Fig. 2):

x = (R1 + r cosψ) cosφ, (11)
y = (R1 + r cosψ) sinφ, (12)
z = r sinψ. (13)
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Fig. 2 Left panel: Schematic of the boundary of the geometry
specified eq. (10) including graphical definitions of φ and R1. The
torus characterised by a large (red) and a small (blue) circle. The
large circle, or centerline, has radius R1. Right panel: Schematic of a
cut including graphical definitions of r, ψ and R2.

The metric reads:

gµν =

1 0 0

0 (R1 + r cosψ)
2

0
0 0 r2

 , (14)

with µ, ν ∈ {r, φ, ψ}. It follows that dS = ν
√
g dψ dφ and

dV =
√
g dr dψ dφ, where g = det gµν .

For a torus the φ and ψ directions are the principal directions.
The curvature along the ψ direction is everywhere negative
(measured with respect to the outward pointing normal) and
the smallest of the two, so when K24 > 0, the director tends to
wind along the small circle with radius R2.

2.2 Double twist

To minimise the Frank energy we formulate a variational
Ansatz built on several simplifying assumptions20. We consider
a director field which has no radial component (i.e. nr = 0),
is tangential to the centerline (r = 0), and is independent of
φ. Furthermore, since we expect the splay (K1) distortions to
be unimportant, we first take the field to be divergence free
(i.e.∇ · n = 0). Recalling that in curvilinear coordinates the
divergence is ∇ · n = 1√

g∂µ
(√
gnµ

)
, we write :

nψ =
f (r)R1√

gφφ
(15)

where the other terms in
√
g play no role as they are indepen-

dent of ψ. The φ-component of the director follows from the
normalisation condition. For the radial dependence of f (r) we
make the simplest choice:

f (r) =
ωr

R2
(16)

and obtain

nψ = ω
ξr/R2

ξ + r
R2

cosψ
, (17)

where we have introduced ξ ≡ R1/R2, the slenderness or
aspect ratio of the torus. The variational parameter ω governs
the chirality of the toroidal director field. If ω = 0 the director
field corresponds to the axial configuration (Fig 1a). The sign
of ω determines the chirality: right handed when ω > 0 (Fig.
1c) and left handed when ω < 0 (Fig. 1b). The magnitude of ω
determines the degree of twist. Note that the direction of twist
is in the radial direction, as illustrated in Fig. 3. Therefore the

Fig. 3 Schematic of the Ansatz for the director fieldlines (ω = 0.6
and ξ = 3), displaying a twist when going radially outward,
including a graphical definition of α.

toroidal nematic is doubly twisted, resembling the cylindrical
building blocks of the blue phases39,40. It may be useful to
relate ω with a quantity at the surface, say the angle, α, that
the director makes with φ̂. For the Ansatz, this angle will be
different depending on whether one measures at the inner or
outer part of the torus, but for large ξ we find

ω ≈ nψ
∣∣∣∣
r=R2

= sinα. (18)

3 Chiral symmetry breaking

3.1 Results for divergence-free field

Since ω only determines the chirality of the double-twisted
configuration but not the amount of twist, the free energy is
invariant under reversal of the sign of ω, i.e. F (−ω) = F (ω).
This mirror symmetry allows us to write down a Landau-like
expansion in which F only contains even powers of ω,

F = a0 ({Ki}, ξ) + a2 ({Ki}, ξ)ω2 + a4 ({Ki}, ξ)ω4

+O
(
ω6
)

(19)

where {Ki} is the set of elastic constants †. If the coefficient
a2 > 0, the achiral nematic toroid (ωeq = 0) corresponds to

†Explicitly: {Ki} = {K1,K2,K3,K24}
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the minimum of F provided that a4 > 0. In contrast, the mir-
ror symmetry is broken spontaneously whenever a2 < 0 (and
a4 > 0). The achiral-chiral critical transition at a2 = 0 belongs
to the universality class of the mean-field Ising model. There-
fore, we can immediately infer that the value of the critical
exponent β in ωeq ∼ (−a2)β is 1

2 . To obtain the dependence
of the coefficients ai on the elastic constants and ξ, we need to
evaluate the integral in eq. (1). We find for the bend, twist and
saddle-splay energies:

F3

K3R1
= 2π2

(
ξ −

√
ξ2 − 1

)
/ξ

+ π2
ξ
(
1− 9ξ2 + 6ξ4 + 6ξ

√
ξ2 − 1− 6ξ3

√
ξ2 − 1

)
(ξ2 − 1)

3
2

ω2

+O
(
ω4
)
, (20)

F2

K2R1
= 4π2 ξ3

(ξ2 − 1)
3
2

ω2 +O
(
ω6
)
, (21)

F24

K24R1
= −4π2 ξ3

(ξ2 − 1)
3
2

ω2. (22)

Though the bend and twist energies are Taylor expansions in
ω, the saddle-splay energy is exact. The large ξ asymptotic
behavior of the elastic energy reads‡:

F

K3R1
≈ π2

ξ2
+ 4π2

(
k − 5

16ξ2

)
ω2 +

π2

2
ω4 +O

(
ω6
)
,

(23)

where k ≡ K2−K24

K3
is the elastic anisotropy in twist and saddle-

splay. The achiral configuration contains only bend energy. For
sufficiently thick toroids, bend distortions are exchanged with
twist and the mirror symmetry is indeed broken spontaneously
(Fig. 4). Interestingly, if K24 > 0 the saddle-splay deforma-
tions screen the cost of twist. If K24 < 0 on the other hand,
there is an extra penalty for twisting. Setting the coefficient of
the ω2 term equal to zero yields the phase boundary:

kc =
−1 + 9ξ2c − 6ξ4c − 6ξc

√
ξ2c − 1 + 6ξ3c

√
ξ2c − 1

4ξ2c

≈ 5

16ξ2c
if ξ � 1 (24)

Fig.5 shows the phase diagram as a function of ξ and k. It is
interesting to look at the critical behavior. The degree of twist
close to the transition is

αeq ≈ ωeq ≈ 2

(
5

16ξ2
− k
)1/2

(25)

‡The fourth order term in the bend energy for general ξ, that reduces to
π2

2
K3R2ξω4 in eq. 23, is not given in eq. (20), because it is too lengthy.

0.1 0.0 0.1
ω

-5e4

0.0

5e4

F−F0

K3R1

0.1 0.0 0.1
ω

-5e4

0.0

5e4

Fig. 4 Left panel: The free energy as a function of ω for ξ = 6
(dashed) and ξ = 5 (solid), when (K2 −K24) /K3 = 10−2. For
ξ = 5 the chiral symmetry is broken spontaneously: the minimum
values of the energy occurs for a nonzero ω. Right panel: The free
energy as a function of ω for q = 0 (dashed) and qR2 = 10−3

(solid), when ξ = 6, (K2 −K24) /K3 = 10−2 and K2/K3 = 0.3.
For qR2 = 10−3 the chiral symmetry is broken explicitly: the
minimum value of the energy occurs for a nonzero ω, because F
contains term linear in ω.

where we have used that sinαeq ≈ αeq for small αeq. Upon
expanding ξ = ξc + δξ (with δξ < 0) and k = kc + δk (with
δk < 0) around their critical values ξc and kc, respectively, we
obtain the following scaling relations:

αeq ≈
√
5

2

(
−δξ
ξ3c

)1/2

(26)

αeq ≈ 2 (−δk)1/2 (27)

while keeping k and ξ fixed, respectively. Eqs. 26 and 27
are analogues to meq ∼ (−t)1/2, relating the equilibrium
magnetisation, meq (in the ferromagnetic phase of the Ising
model in Landau theory), to the reduced temperature, t.

3.2 Effects of external fields and cholesteric pitch

Due to the inversion symmetry of nematics, F [n] = F [−n],
an external magnetic field, H, couples quadratically to the
components of n rather than linearly as in spin systems. The
magnetic free energy contribution reads:

Fm = −χa
2

∫
dV (n ·H)

2
, (28)

where χa = χ‖ − χ⊥, the difference between the magnetic
susceptibilities parallel and perpendicular to n. Consequently,
there is no explicit chiral symmetry breaking due to H as is
the case in the Ising model. Rather, H shifts the location of
the critical transition in the phase diagram. For concreteness,
we will consider two different applied fields, namely a uniaxial
field H = Hz ẑ = Hz sin(ψ)r̂+Hz cos(ψ)ψ̂ and an azimuthal
field H = Hφφ̂, as if produced by a conducting wire going

4 | 1–8
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10-4 10-3 10-2 10-1 100

k

100

101

102

ξ

Fig. 5 Phase diagram as a function of the toroidal slenderness and
the elastic anisotropy in twist and saddle-splay constant,
k ≡ (K2 −K24) /K3. The twisted (yellow region) and axial (cyan
region) configuration are separated by a boundary line in the absence
of an external field (solid black), when H =

√
0.1K3/

(√
χaR2

)
φ̂

(dashed blue) and when H =
√
0.1K3/

(√
χaR2

)
ẑ (dash-dotted

red).

through the hole of the toroid. For H = Hz ẑ we find

Fm = −π2χaH
2
zR1R

2
2ξ

2
(
2ξ
(
ξ −

√
ξ2 − 1

)
− 1
)
ω2

≈ −π
2

4
χaH

2
zR1R

2
2ω

2 if ξ � 1. (29)

For a positive χa this energy contribution is negative, implying
that a larger area in the phase diagram is occupied by the
twisted configuration. The new phase boundary (Fig. 5), which
is now a surface in the volume spanned by ξ, k and Hz instead
of a line, reads:

kc =
[
−1 + 9ξ2c − 6ξ4c − 6ξc

√
ξ2c − 1 + 6ξ3c

√
ξ2c − 1

−
χa (Hz)

2
c R

2
2

K3

(
ξ2c − 1

)
ξc

×
(
−2ξc + 2ξ3c +

√
ξ2c − 1− 2ξ2c

√
ξ2c − 1

)]
/
(
4ξ2c
)

≈ 5

16ξ2c
+
χa (Hz)

2
c R

2
2

16K3
if ξ � 1. (30)

In contrast, an azimuthal field favours the axial configuration,
contributing a postive ω2-term to the energy when χa > 0:

Fm = −π2χaH
2
φR1R

2
2

+
2π2

3
χaH

2
φR1R

2
2ξ
(
2ξ2

(
ξ −

√
ξ2 − 1

)
−
√
ξ2 − 1

)
ω2

≈ −π2χaH
2
φR1R

2
2 +

π2

2
χaH

2
φR1R

2
2ω

2 if ξ � 1. (31)

Consequently, this yields a shifted phase boundary (Fig. 5):

kc =
[
−1 + 9ξ2c − 6ξ4c − 6ξc

√
ξ2c − 1 + 6ξ3c

√
ξ2c − 1

−
2χa (Hφ)

2
c R

2
2

3K3

(
ξ2c − 1

)
×
(
1 + ξ2c − 2ξ4c + 2ξ3c

√
ξ2c − 1

)]
/
(
4ξ2c
)

≈ 5

16ξ2c
−
χa (Hφ)

2
c R

2
2

8K3
if ξ � 1. (32)

Similar results (eqs. (29) to (32)) hold for an applied electric
field E instead of a magnetic field; the analog of χa is the
dielectric anisotropy. There could however be another physical
mechanism at play in a nematic insulator, namely the flex-
oelectric effect39,42. Splay and bend deformations induce a
polarisation

P = e1n∇ · n+ e3n×∇× n, (33)

where e1 and e3 are called the flexoelectric coefficients. Note
that the first term in eq. 33 is irrelevant for the divergence-free
Ansatz. A coupling of P with E

FP = −
∫
dVP ·E (34)

could potentially lead to a shift of the transition. In the particuar
case when E = Ez ẑ = Ez sin(ψ)r̂ + Ez cos(ψ)ψ̂, however,
the ω2 contribution from eq. (34) vanishes, thus not yielding
such a shift.

If we now consider toroidal cholesterics rather than nematics,
the chiral symmetry is broken explicitly (Fig. 4). A cholesteric
pitch of 2π/q gives a contribution to the free energy of:

Fcn = K2 q

∫
dV n · ∇ × n. (35)

Substituting eq. 17 yields

Fcn = −8π2K2 q R1R2 ξ
(
ξ −

√
ξ2 − 1

)
ω +O

(
ω3
)

≈ −4π2K2 q R1R2 ω +O
(
ω3
)

if ξ � 1. (36)

Therefore, at the critical line in the phase diagram spanned by
k and ξ, the degree of twist or surface angle scales (for large ξ)
with the helicity of the cholesteric as

αeq ≈ (2K2R2 q/K3)
1/3 ∼ q1/3. (37)
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This is the analog scaling relation of meq ∼ H1/3 in the mean-
field Ising model.

3.3 Results for the two-parameter Ansatz

Motivated by experiments26, we can introduce an extra varia-
tional paramer γ to allow for splay deformations, in addition
to ω:

nψ = ω
ξr/R2

ξ + γ r
R2

cosψ
. (38)

(Note that eqn 17 is recovered by setting γ = 1 in eqn 38.) In
subsection 3.1 analytical results for γ = 1 were presented. In
this subsection we will slightly improve these results by finding
the optimal value of γ numerically. First, we discretise the
azimuthally symmetric director field in the r and ψ direction.
Next, we compute the Frank free energy density (eq. 1) by
taking finite differences43 of the discretised nematic field. After
summation over the volume elements the Frank free energy
will become a function of ω and γ for a given set of elastic
constants and a given aspect ratio. Because of the normalisation
condition on n, the allowed values for ω and γ are constrained
to the open diamond-like interval for which −ξ < γ < ξ and
|γ|−ξ
ξ < ω < ξ−|γ|

ξ holds.
The minima of the energy surface can be found by employ-

ing the conjugate gradient method. We have looked at the
difference between the γ = 1 case and the case where the
value of γ is chosen to minimise the energy. This was done
for various choices of k. We have chosen the material prop-
erties of 5CB, i.e. K1 = 0.64K3 and K2 = 0.3K3

40. The
value for of K24 has not been so accurately determined, but
previous measurements26,44–48 seem to suggest thatK24 ≈ K2,
corresponding to k ≈ 0.

We are interested in how the phase boundary changes by
introducing the variational parameter γ. Therefore, the twist
angle α, evaluated at the surface of the torus at ψ = π

2 , versus
the slenderness ξ is shown in the top panel of Fig. 6. For the
particular choices of k there are two noticeable differences
between the single-parameter Ansatz and the two-parameter
Ansatz. Firstly, for small values of ξ, α is changed significantly.
Secondly, for larger values of ξ we see that if there is a chiral-
achiral phase transition, ξc is shifted by a small amount. In the
bottom panel of Fig. 6 we further investigate how introducing γ
influences the phase boundary, by plotting the phase boundary
as a function of the toroidal slenderness ξ and elastic anisotropy
k for both γ as a variational parameter (solid) and for γ = 1
(dashed). Observe that, for both the small ξ and small k regime,
the difference is significant.

4 Conclusions

We have investigated spontaneous chiral symmetry breaking
in toroidal nematic liquid crystals. As in the case of nematic

tactoids49,50, the two ingredients for this macroscopic chiral-
ity are orientational order of achiral microscopic constituents
and a curved confining boundary. This phenomenon occurs
when both the aspect ratio of the toroid and K2−K24

K3
are small.

The critical behavior of this structural transition belongs to the
same universality class as the ferromagnet-paramagnet phase
transition in the Ising model in dimensions above the upper crit-
ical dimension. The analogues of the magnetisation, reduced
temperature and external field are the degree of twist (or sur-
face angle), slenderness or K2−K24

K3
, and (cholesteric) helicity

in liquid crystal toroids, respectively. Critical exponents are
collected in Table 1.

Thus, the helicity rather than an external field breaks the
chiral symmetry explicitly. Remarkably, since an external
field couples quadratically to the director field, it induces a
shift of the phase boundary. An azimuthally aligned field
favours the mirror symmetric director configuration, whereas a
homogeneous field in the z-direction favours the doubly twisted
configuration.

A minimization of the elastic energy analogous to the one
presented in this article for toroidal droplets, has also been
carried out for spherical droplets51. The analytical results
reproduce qualitatively the twisted textures observed experi-
mentally in spherical bipolar droplets52. In this case, detailed
measurements of the dependence of the twist angle on the elas-
tic moduli were carried out by changing temperature which
in turn affects the elastic moduli. The measured exponent β
was 0.75 ± 0.1 for 8 CB and 0.76 ± 0.1 for 8 OCB53, rather
than the 1

2 exponent we calculated in our mean field energy
minimizations that entirely neglect thermal fluctuations.

Table 1 Dictionary of the critical behavior of the structural transition
in liquid crystal toroids and the thermal phase transition in the
mean-field Ising model.

Liquid crystal toroid Mean-field Ising model Exponent

αeq ∼ (−δξ)β meq ∼ (−t)β β = 1/2

αeq ∼ (−δk)β

αeq ∼ q1/δ meq ∼ H1/δ δ = 3
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Fig. 6 Top panel: Twist angle α (in units of π) at ψ = π/2 versus
the slenderness ξ for k = 0.012 (green), k = 0.006 (red), k = 0
(blue), k = −0.006 (magenta) and k = −0.012 (cyan). The dashed
lines represent α for γ = 1, the solid lines represent α found for the
optimal γ. Bottom panel: The phase boundary as a function of the
toroidal slenderness ξ and elastic anisotropy k for γ as a variational
parameter(solid) and for γ = 1 (dashed). The inset zooms in on the
phase boundary for small ξ.
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I. Muševič, Phys. Rev. E, 2011, 84, 031703.

13 T. Lopez-Leon, V. Koning, K. B. S. Devaiah, V. Vitelli and A. Fernandez-
Nieves, Nature Physics, 2011, 7, 391–394.

14 V. Koning, T. Lopez-Leon, A. Fernandez-Nieves and V. Vitelli, Soft Matter,
2013, 9, 4993–5003.

15 B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky
and I. I. Smalyukh, Nature, 2013, 493, 200–205.

16 Q. Liu, B. Senyuk, M. Tasinkevych and I. I. Smalyukh, Proceedings of the
National Academy of Sciences, 2013, 110, 9231–9236.

17 M. Cavallaro Jr, M. A. Gharbi, D. A. Beller, S. Copar, Z. Shi, R. D. Kamien,
S. Yang, T. Baumgart and K. J. Stebe, Soft Matter, 2013, 9, 9099–9102.

18 J. Stelzer and R. Bernhard, arXiv:cond-mat/0012394, 2000.
19 M. Bowick, D. R. Nelson and A. Travesset, Phys. Rev. E, 2004, 69, 041102.
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A structural transition between achiral (a) and chiral (b,c)
nematic toroids occurs upon changing the slenderness or elastic
constants.
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