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Cu-Catalyzed Transannulation Reaction of 

Pyridotriazoles with Terminal Alkynes under 

Aerobic Conditions: Efficient Synthesis of 

Indolizines
†
 

V. Helan, A. V. Gulevich and V. Gevorgyan* 

The Cu(I)-catalyzed denitrogenative transannulation reaction of pyridotriazoles with terminal 

alkynes en route to indolizines was developed. Compared to the previously reported Rh-

catalyzed transannulation reaction, this Cu-catalyzed method features aerobic conditions and 

much broader scope of pyridotriazoles and alkynes. 

 

Transition-metal-catalyzed denitrogenative transannulation of 

pyridotriazoles represent an efficient method for the synthesis 

of fused nitrogen-containing heterocycles.1 This method is 

based on the ability of pyridotriazole 1 to exist in the 

equilibrium with diazo-form A,2,3 which can be trapped with 

Rh(II) to form the reactive pyridyl carbene intermediate B, 

capable to react with terminal alkynes1a to produce valuable 

indolizines 3 (Scheme 1).4,5 However, this transannulation 

reaction has several shortcomings.  
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Scheme 1 Metal-catalyzed transannulation reactions of pyridotriazoles with 

terminal alkynes. 

 Thus, Cl substituent at C-7 position (AG, activating group) 

and electronwithdrawing ester group (EWG) at C-3 position of 

pyridotriazoles were requisite to facilitate the formation of a 

sufficient amount of an open-form of triazole A even at room 

temperature and subsequently generate indolizines 3.2,3,6 In 

addition, the reaction was limited to aryl alkynes only (eq. 1).1a 

Herein, we report the first general and efficient Cu-catalyzed 

transannulation of pyridotriazoles 1 with terminal alkynes 2 to 

form indolizines 3 (eq. 2). This newly developed method 

features several important advantages over the previously 

reported Rh-catalyzed protocol.1a Thus, it is highly practical as 

it employs cheap Cu-catalyst and efficiently operates un-der 

aerobic conditions. It is also more general demonstrating a 

much broader reaction scope, as unactivated pyridotriazoles 1 

and aliphatic alkynes 2 now became competent reaction 

partners (eq. 2). 

 The abovementioned transannulation reaction of 

pyridotriazoles 1 (eq. 1),1 as well as the further developed and 

widely used transannulation reactions of N-sulfonyl 1,2,3- 

triazoles,7 require the use of Rh-catalyst,8 which is one of the 

Table 1 Optimization of the Cu-transannulation reaction conditions.a 

 
Entry Catalyst, mol % T (°C) Yield[b] 

1 CuCl, 15% 100  N.R. 

2 CuOTf•0.5C6H6, 15% 100  38% 

3 Cu(OTf)2, 15% 100  25% 
4 Cu(MeCN)4PF6 , 15% 100  50% 

5c Cu(MeCN)4PF6, 15% 120 96% 

6c Cu(MeCN)4PF6, 15% 130 99% 
7d,e Cu(MeCN)4PF6, 15% 130 99% 

8 No catalyst 100 N.R. 

9 Rh2(hfb)4, 1% 100 N.R.f 

aTriazole (1 equiv), Alkyne (3 equiv), Cu cat. (15 mol %), toluene (1M) in a 
Wheaton V-vial capped with a mininert syringe valve. bGC/MS yields are 

given. c1.2 equiv of alkyne was used. d In air with 1.2 equiv of alkyne. e 

Lower catalyst loading led to decreased reaction yields.11 fPolymerization of 

the alkyne was observed; hfb = heptafluorobutyrate.
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Table 2 Scope of the Cu-catalyzed transannulation reaction of pyridotriazoles with alkynes.a  

 

Entry Product Yield, % Entry Product Yield, % Entry Product Yield, % 

1 
 

70% 9 

 

78% 17 

 

82% 

2 

 

74% 10 

 

75% 18 

 

66% 

3 

 

65% 11 

 

33% 19 
 

77% 

4 

 

70% 12 

 

67% 20 

 

80% 

5 

 

48% 13 
 

68% 21 
 

67% 

6 

 

57% 14 
 

82% 22 

 

50% 

7 

 

60% 15 

 

83% 23 

 

41% 

8 

 

94% 16 

 

53% 24 
 

54% 

a Isolated yields. 
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most expensive and rare metals used in catalysis. Naturally, the 

development of alternative catalysts for transannulation 

reactions of triazoles would dramatically increase a synthetic 

applicability of this methodology.9 Accordingly, aiming at the 

discovery of a cheaper catalyst and at expanding the scope of 

transannulation reactions of pyridotriazoles, we turned our 

attention to potential employment of copper catalysts.10 To 

ensure sufficient amounts of an open-form A of the unactivated 

pyridotriazole, we tested the potential transannulation reaction 

at elevated temperatures.3 Thus, we tested various copper 

catalysts in the reaction of unactivated pyridotriazole 1a with 

phenylacetylene 2a (Table 1). While CuCl was found to be 

inefficient (entry 1), the use of Cu(I) and Cu(II) triflates led to 

the formation of the corresponding indolizine 3a in moderate 

yield (entries 2, 3).11 Delightfully, more electrophilic 

Cu(MeCN)4PF6 catalyst turned out to be even more efficient for 

the formation of 3a (entry 4). Finally, after optimization of 

temperature (entries 5, 6), virtually quantitative yield of 1a was 

achieved (entry 7). Moreover, we were pleased to find that this 

reaction works equally efficient under aerobic conditions (entry 

9). As expected, under thermal conditions no reaction occurred 

(entry 8). Moreover, it was found that Rh2(hfb)4 is not a capable 

catalyst for this reaction (entry 9). 

 Having in hands the optimized conditions, we investigated 

the scope of this Cu–catalyzed transannulation reaction of 

pyridotriazoles with terminal alkynes (Table 2). A variety of 

aryl alkynes bearing electron-neutral, electron withdrawing, and 

electron donating substituents at ortho-, meta- and para-

position produced the corresponding indolizines 3 in high 

yields upon the reaction with pyridotriazole 1a (Table 2, entries 

1-10).12 Heteroaromatic alkynes, such as 3-thienyl acetylene, 

and enyne led to indolizines 3k-l in reasonable yields (entries 

11,12).  We were pleased to find that in contrast to the 

previously reported Rh-catalyzed reaction, aliphatic alkynes 

were also competent reactants. Thus, benzyl-, n-butyl, and c-

hexyl acetylenes reacted smoothly to produce the 

corresponding indolizines in good yields (entries 13-15). To our 

delight, functional groups including benzyloxy- and N-

phthalimido were perfectly tolerated under the reaction 

conditions (entries 16,17). Moreover, while our group 

previously reported the Rh-catalyzed transannulation reaction 

of pyridotriazoles with nitriles,1a the Cu-catalyzed 

transannulation showed strong preference for the alkyne- over 

the nitrile group. Thus, the reaction of pyridotriazole 1a with 5-

hexynenitrile furnished indolizine 3r with nitrile group stayed 

intact (entry 18). Notably, pyridotriazoles which did not contain 

electron withdrawing groups at C-3 position were found to be 

reactive substrates as well. Hence, the indolizines derived from 

3-phenyl and 3-methyl pyridotriazoles were produced in 

reasonable yields (entries 19-23). Remarkably, even a non-

substituted pyridotriazole (R1 = H) reacted with 

phenylacetylene to form indolizine 3x in moderate yield. 

Noteworthy, trialkylsilyl-substituted alkynes were either 

unstable (TMS, TES) or stayed intact (TIPS) under the reaction 

conditions.  

 We envision two alternative pathways for this Cu-catalyzed 

transannulation reaction (Scheme 2). First, the copper catalyst 

can react with the terminal alkyne 2 to form copper acetylide 4, 

which would react with α-imino diazo compound A to generate 

the Cu-carbene complex C (path a). Alternatively, the copper  

carbene C can be formed via the reaction of alkyne 2 with 

copper carbene B, which is produced from the diazo compound 

A and Cu-catalyst (path b). Next, migratory insertion of the 

alkynyl group at the carbene C-atom of C would form the 

propargyl intermediate D.13 The latter would undergo 

cyclization via a nucleophilic attack of the pyridine nitrogen at 

the triple bond activated by electrophilic Cu-species14 to 

produce a triazolyl-copper intermediate G. Also, one cannot 

exclude formation of propargylic (E) or allenic (F) 

intermediates upon protiodemetalation of D. 

Cycloisomerization of E and F would form intermediate G.15 A 

subsequent protiodemetalation of G would lead to the 

indolizine 3. 

 
Scheme 2 Proposed mechanism for the Cu-catalyzed transannulation reaction of 

pyridotriazoles with alkynes. 

 

 In order to verify a potential involvement of the Cu-

acetylide 4 in this transformation, we performed several test-

experiments. First, it was found that the reaction of 

pyridotriazole 1a with 4 did not produce indolizine 3a (Scheme 
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3, entry 1). However, the reaction of 1a with 4 can be catalyzed 

by both Cu(MeCN)4PF6 (entry 2)16 and HPF6(aq.) (entry 3). This 

observation suggests that the presence of electrophilic Cu-

species is required to activate the alkyne during the cyclization 

of D into G,17,18 and potentially to shift the equilibrium of the 

pyridotriazole towards the reactive α-imino diazo compound 

A.19 Although more detailed studies are required to elucidate 

 
Scheme 3 The reactions of Cu-acetylide with triazole 1a. 

the exact mechanism for this transformation, based on literature 

data20,21 and the mentioned above observations, it is believed 

that the reaction most likely proceeds via the path a (Scheme 

2). 

Conclusions 

We have developed practical and efficient copper-catalyzed 

denitrogenative transannulation reaction of pyridotriazoles with 

terminal alkynes into indolizines. Compared to the known Rh-

catalyzed transannulation reaction, this newly developed 

method features not only the use of cheap Cu-catalyst and 

aerobic conditions, but also much broader scope of 

multisubstituted indolizines that now can be accessed from 

unactivated pyridotriazoles and diverse terminal alkynes. 
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