Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemicalscience

Journal Name

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Highly Enantioselective Access to Diketopiperazines via Cinchona Alkaloid Catalyzed Michael Additions

Alejandro Cabanillas,^a Christopher D. Davies,^b Louise Male,^a and Nigel S. Simpkins^a*

Michael addition reactions of triketopiperazine (TKP) derivatives to enones, mediated by a cinchona alkaloid-derived catalyst, deliver products in high yield and enantiomeric ratio (er). Use of unsaturated ester, nitrile or sulfone partners gives bridged hydroxy-diketopiperazine (DKP) products resulting from a novel Michael addition-ring closure.

Introduction

Diketopiperazines (DKPs) have acquired the status of privileged structures for medicinal chemistry, for example tadalafil (or cialis[®], **1**) is a potent PDE5 inhibitor used for treating male erectile dysfunction, Figure 1.¹

Figure 1. Structures of significant bioactive DKPs

The DKP structure is also prevalent in many types of peptide antibiotics, including the clinically significant compound bicyclomycin (2), which has an interesting [4.2.2] ether-bridged core.²

Many other important natural product families incorporate DKP motifs, for example the bicyclo[2.2.2]diazaoctane core structure features in the fungal metabolite stephacidin A (3), which displays potent and selective antitumour activity.³ The

extensive studies of the synthesis and medicinal chemistry of DKPs and their occurrence in bioactive natural products have been described in a comprehensive review by Borthwick.⁴

Despite this background, access to enantiomerically pure DKPs has relied very heavily on chiral pool materials and, with the exception of studies aimed at stephacidins and related natural products, reports of stereocontrolled access to α , α -disubstituted systems are scarce.⁵

Herein, we describe highly enantioselective access to α, α disubstituted DKPs, including bridged products related to **2** and **3**, by means of asymmetric Michael additions mediated by cinchona alkaloid catalysts.⁶ To date this field of organocatalysis has largely been limited to doubly activated Michael donors, such as malonates, β -diketones, and similarly acidic substrates,⁷ and the use of amidic donors has been scarcely explored.⁸ Key to our new chemistry is the finding that the under-explored triketopiperazine (TKP) motif provides exceptional activation for deprotonation, whilst also enabling facile access to DKP products through nucleophilic addition.⁹

Results and discussion

Both the doubly activated α -carboxymethyl TKP **4a**, and the parent system **4b**, were readily prepared using an established approach.^{9b,10} Mindful of the challenge of engaging masked glycine **4b** in this type of chemistry, initial screening focused

on the doubly activated TKP **4a**, using a limited range of alkaloid catalysts **5a-e**, and with MVK as Michael acceptor, Table 1.

Table 1. Initial catalyst screening using TKP 4a

^a Minutes. ^bIsolated yield after chromatography. ^cDetermined by HPLC analysis. ^dReaction conducted using 1 mol % catalyst.

All of the catalysts explored gave good levels of conversion to the desired Michael adduct **6a** within only 20 minutes at room temperature, with isolated yields being very high. Natural alkaloids quinidine (**5a**) and quinine (**5b**) gave interesting levels of enantioselection, with the modified thiourea system (**5c**) being slightly less selective.¹¹ The catalyst systems **5d** and **5e**, developed by the Deng group, having a free quinoline phenol and an alkylated C-9 secondary alcohol, immediately displayed exciting levels of selectivity, especially in CH₂Cl₂ at 0°C.¹² As anticipated, pseudoenantiomeric catalysts **5d** and **5e** gave opposite enantiomers of the product **6a**, in this case with very high selectivity. The use of only 1 mol% of catalyst **5d** was still adequate to effect smooth conversion to product **6a** without erosion of enantioselectivity (entry 9).¹³

When these partly optimised conditions were explored with alternative Michael acceptors, and then with the parent TKP **4b**, we found some slight further tailoring of the conditions was

required. In particular, TKP **4b** showed a tendency towards double Michael addition, which could be controlled simply by reducing the reaction temperature to -20 °C. The use of this lower temperature in turn extended reaction times, particularly with β -substituted Michael acceptors, and required us to maintain catalyst loading at 10 mol %. Table 2 shows the results obtained with TKPs **4a** and **4b** with a range of acceptors, including MVK, acrolein and various enones.

Entry	ТКР	R'	R	6 [%] ^a	er ^b
				• [/•]	
1	4a	Н	Me	6a 99	99:1
2	4a	Н	Н	6b 99	99:1°
3	4a	Н	Et	6c 90	97:3
4	4a	Н	cy-C ₆ H ₁₁	6d 99	97:3
5	4a	Н	Ph	6e 98	99:1
6	4a	Н	<i>p</i> -C ₆ H ₄ Br	6f 98	99:1
7	4a	Н	p-C ₆ H ₄ OMe	6g 87	99:1
8	4 b	Н	Me	6h 80	93:7
9	4 b	Н	Et	6i 86	96:4
10	4 b	Н	cy-C ₆ H ₁₁	6j 99	90:10
11	4 b	Н	p-C ₆ H ₄ OMe	6k 93	88:12
12	4b	Ph	Ph	61 98	99:1 ^d
13	4b	Ph	o-C ₆ H ₄ Br	6m 91	88:12 ^d

^aIsolated yield after chromatography. ^bDetermined by HPLC analysis. ^cHPLC carried out on derived compound **8**, see Scheme 1. ^dIsolated as a single diastereomer.

Addition reactions with TKP **4a** gave excellent levels of asymmetric induction, with $er \ge 97:3$ (entries 1–7). The high selectivity observed for both aromatic and aliphatic enones, and for acrolein, is particularly notable. High yields were also obtained in reactions of TKP **4b**, although levels of enantioselection proved more mixed. The lower figures appear to be due to variable erosion of er in the configurationally unstable TKP products rather than inherently lower levels of asymmetric induction. Thus, re-exposure of isolated TKP **6i** to the catalyst **2d**, under the usual conditions, led to erosion of er from 96:4 to 89:11. This problem should be overcome by more closely monitoring individual reactions, or perhaps by use of more hindered catalysts.

Notwithstanding these issues, the *er* values for MVK and EVK (entries 8 and 9) are good, and entry 12, involving chalcone as acceptor, demonstrates that excellent selectivities are still possible from the simple TKP **4b**. Notably, both chalcone products **6l** and **6m** were isolated as single diastereoisomers, and no minor isomers could be detected in the ¹H NMR spectra of the crude materials.

Chemical Science

Journal Name

To our knowledge, these are the first enone Michael additions using a simple, non-benzylic, amidic donor,¹⁴ and are unusual in giving masked α -amino acid products retaining an α -hydrogen.

Following crystallisation, the absolute and relative configuration of adduct **6m**, generated from reaction of TKP **4b** and *ortho*-bromo chalcone, was determined by X-ray crystallography, Figure 2.¹⁵

Figure 2. The structure of one of the two crystallographically independent molecules of **6m**, with ellipsoids drawn at the 50 % probability level.

Interestingly, in the crystal there are two independent molecules of **6m** having different conformations around the newly formed C–C bond (only one is shown, see ESI for the other one).

From the data available to date, we confidently expect that the absolute configuration of the other products **6** is analogous, i.e. (*S*) at the newly formed asymmetric centre at C-6 on the TKP ring.¹⁶

This outcome is in accord with the stereochemical model proposed by Deng, in which the catalyst serves to organize both of the Michael addition partners in an extended array.¹² This involves activation of the donor by enolate formation through the quinuclidine amine function, and a developing hydrogenbonded association between the Michael acceptor and the quinoline phenol, Figure 3.

Figure 3. Model for 5d-catalyzed Michael addition leading to 6m

Application of the Deng model for chalcone systems requires a seemingly counter-intuitive placement of the β -phenyl substituent (R') *endo* with respect to the TKP ring (albeit a planar, all-sp² ring). That this arrangement is plausible is supported by the finding that one of the crystal structure conformations of **6m** (Fig. 1) exhibits precisely the local conformation about the newly formed C–C bond, as shown in Fig. 2. This arrangement apparently tolerates substitution of the α -hydrogen, Y = H, with an α -CO₂Me function, this possibly further organising the transition state by an additional hydrogen bond to the quinoline phenol.^{12e}

The TKP ring in these chiral products is expected to be electrophilic at C-3, this carbonyl function being both part of an imide, *and* part of an α -dicarbonyl.⁹ Thus, we anticipate that varied manipulations of these compounds will be possible to give DKPs of various kinds, and by way of preliminary demonstration of this potential, we have transformed **6b** into the ether bridged DKP **8**, via diol **7**, Scheme 1.

Scheme 1. Conversion of Michael adduct 6b into bridged DKP 8

The use of NaBH₄ enabled reduction of the aldehyde in adduct **6b** with concomitant regioselective TKP reduction, to give **7**, which then underwent *N*-acyliminium cyclisation using TMSOTf to give **8**.¹⁷ This sequence was used to convert **6b** into an adduct more suitable for *er* determination, and the product **8** proved to be highly enantiomerically enriched (>96:4 *er*). This compound has a distinctive 4-atom ether-bridged DKP reminiscent of that present in the antibiotic bicyclomycin (**2**).² We also established that reduction of TKPs to the corresponding DKPs could be achieved in very high overall yield by a two-step process involving initial reduction by L-selectride, then treatment with Et₃SiH BF₃-OEt₂, Scheme 2.

Scheme 2. Regioselective reduction of TKP 6l to give DKP 10

The initial reduction proved highly regioselective for the C-3 TKP C=O function, even in the presence of a side-chain ketone. The hydroxy DKP **9** is an obvious precursor to an *N*-acyliminium type of intermediate, with many possibilities for further transformation.

In this case reduction under standard conditions gave DKP **10**, the *er* of which (99:1) was found to be essentially the same as the starting TKP. This result is particularly significant for manipulation of these systems, since it demonstrates the possibility of converting a configurationally labile TKP into a less acidic, and so more configurationally stable, DKP product. We subsequently extended our Michael addition studies to include other types of acceptor, including vinyl sulfone, acrylonitrile and acrylate esters. Reactions conducted using TKPs **4a** and **4b** with these partners provided bicyclic hydroxy DKP products **11** directly, via a novel Michael–ring-closure process,¹⁸ Table 3.

Table 3. Enantioselective Michael-ring-closure of TKPs 4

Entry	TKP	cat.	Х	11 [%] ^a	er ^b
1	4a	5d	CO ₂ Me	11a 98	87:13
2	4a	5d	CN	11b 99	95:5
3	4a	5d	SO_2Ph	11c 97	97:3
4	4b	5d	CO ₂ Me	11d 89	83:17
5	4b	5d	CN	11e 98	91:9
6	4b	5d	SO_2Ph	11f 82	93:7
7	4a	5c	CN	11b 88	7:93°
8	4b	5c	CN	11e 82	1:99 ^c

^aIsolated yield of single diastereomer after chromatography.

^bDetermined by HPLC analysis. ^cenantiomeric structure to that shown.

The greater nucleophilicity of the intermediate anions or enolates involved in these reactions, compared to those involving enones, is presumably the origin of the observed aldol-like ring-closure. Remarkably, this process delivers bridged DKP products **11** as single diastereomers, with the creation of three new stereogenic centres, and with extraordinary efficiency and very good selectivity, especially in the cases involving vinyl sulfone.¹⁹ In the case of the nitriles **11b** and **11e** it was found that the thiourea catalyst **5c** also gives excellent results (entries 7 and 8).

These DKPs possess the bicyclo[2.2.2]diazaoctane core structure of stephacidin and related natural products, and the relative configuration at C-6 (stephacidin numbering – see **3**) is also correct for the majority of this family of alkaloids. The potential of this new process to deliver intermediates capable of further elaboration towards bioactive relatives of naturally occurring alkaloids is clear.

Conclusions

In conclusion, we have demonstrated the utility of the TKP motif in asymmetric cinchona alkaloid-catalyzed Michael additions to access various significant types of chiral DKP with high selectivities. We anticipate that this approach will enable the synthesis of many types of non-racemic TKPs, DKPs and derived structures, particularly those with fully substituted asymmetric centres, and further study of these systems is the subject of ongoing research in our laboratories.

Acknowledgements

We acknowledge the University of Birmingham, and AstraZeneca for support of AC. The NMR and HPLC instruments used in this research were obtained through Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF).

We also thank Neil Sumner of AstraZeneca for assistance with chromatographic *er* determination.

Notes and references

^a School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK

^b AstraZeneca, Innovative Medicines, Alderley Park, SK10 4TG UK Experimental procedures, analytical data and NMR spectra, X-ray data. Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- c) A. Daugan, P. Grondin, C. Ruault, A-C. Le Monnier de Gouville, H. Coste, J. M. Linget, J. Kirilovsky, F. Hyafil, and R. Labaudinière, J. Med. Chem., 2003, 46, 4533.
- 2 R. M. Williams and C. A. Durham, *Chem. Rev.*, 1988, **88**, 511.
- a) J. F. Qian-Cutrone, S. Huang, Y. Z. Shu, D. Vyas, C. Fairchild,
 A. Menendez, K. Krampitz, R. Dalterio, S. E. Klohr, and Q. Gao, J.
 Am. Chem. Soc., 2002, 124, 14556. b) C. F. Nising, Chem. Soc.
 Rev., 2010, 39, 591. c) K. A. Miller and R. M. Williams, Chem.
 Soc. Rev., 2009, 38, 3160.
- 4 a) A. D. Borthwick, *Chem. Rev.*, 2012, **112**, 3641. b) See also J. F. González, I. Ortín, E. de la Cuesta and J. Carlos Menéndez, *Chem. Soc. Rev.*, 2012, **41**, 6902.
- 5 M. Pichowicz, N. S. Simpkins, A. J. Blake and C. Wilson, *Tetrahedron*, 2008, **64**, 3713, and references therein.
- a) U. Scheffler and R. Mahrwald, *Chem. Eur. J.*, 2013, 19, 14346.
 b) C. Palomo, M. Oiarbide, and R. López, *Chem. Soc. Rev.*, 2009, 38, 632. c) H. Pellissier, *Adv. Synth. Catal.*, 2012, 354, 237. d) T. Marcelli and H. Hiemstra, *Synthesis*, 2010, 1229. e) S. J. Connon, *Synlett*, 2009, 354.
- 7 a) L. Hong and R. Wang, *Adv. Synth. Catal.*, 2013, 355, 1023. b)
 B. Qiao, Y. An, Q. Liu, W. Yang, H. Liu, J. Shen, L. Yan, and Z. Jiang, *Org. Lett.*, 2013, 15, 2358. c) A-N. R. Alba, X. Company. G. Valero, A. Moyano, and R. Rios, *Chem. Eur. J.*, 2010, 16, 5354. d)
 J. Alemán, A. Milelli, S. Cabrera, E. Reyes, and K. A. Jørgensen,

Journal Name

Chem. Eur. J., 2008, 14, 10958. e) R. A. Mosey, J. S. Fisk, and J. J. Tepe, Tetrahedron: Asymmetry, 2008, 19, 2755. See also vinylogous Michael additions of unsaturated butyrolactams: f) A. R. Choudhury and S. Mukerjee, Org. Biomol. Chem., 2012, 10, 7313. g) Y. Yang, S. Dong, X. Liu, L. Lin, and X. Feng, Chem. Commun., 2012, 48, 5040. h) J-L. Zhu, Y. Zhang, C. Liu, A-M. Zheng, and W. Wang, J. Org. Chem., 2012, 77, 9813. i) D. A. Alonso, S. Kitagaki, N. Utsumi, and C. F. Barbas III, Angew. Chem. Int Ed., 2008, 47, 4588. j) For additions of 5-aryl-1,3-dioxolan-4-ones, see P. S. Hynes, D. Stranges, P. A. Stupple, A. Guarna, and D. J. Dixon, Org. Lett., 2007, 9, 2107. k) N. W. Polaske, R. Dubey, G. S. Nichol, and B. Olenyuk, Tetrahedron:Asymmetry, 2009, 20, 2742.

- 8 B. Tan, G. Hernández-Torres, and C. F. Barbas III, Angew. Chem. Int. Ed., 2012, **51**, 5381.
- 9 TKP synthesis: a) P. D. Bailey, N. Bannister, M. Bernad, S. Blanchard, and A. N. Boa, J. Chem. Soc., Perkin Trans. 1, 2001, 3245. b) S. Makino, E. Nakanishi, and T. Tsuji, Synlett, 2003, 817.
 c) S. R. Safir, J. J. Hlavka, and J. H. Williams, J. Org. Chem., 1953, 18, 106. d) M. Mulliez and J. Royer, Tetrahedron, 1984, 40, 5143. The only significant strand of research, of which we are aware, involves the unsaturated TKP motif as a feature in gliocladin C, and in intermediates towards epipolythio-dioxopiperazine alkaloids, see e) J. E. DeLorbe, D. Horne, R. Jove, S. M. Mennen, S. Nam, F-L. Zhang, and L. E. Overman, J. Am. Chem. Soc., 2013, 135, 4117. f) S. Y. Jabri and L. E. Overman, J. Am. Chem. Soc., 2013, 135, 4231. See also A. Coste, J. Kim, T. C. Adams, and M. Movassaghi, Chem. Sci., 2013, 4, 3191.
- 10 We adopted oxalyl dibenzotriazole for TKP synthesis, as opposed to the less easily prepared diimidazole reagent employed in reference 9b, see A. R. Katritzky, J. R. Levell, and D. M. P. Pleynet, *Synthesis*, 1998, 153.
- a) B. Vakulya, S. Varga, A. Csámpai, and T. Soós, *Org. Lett.*, 2005, 7, 1967. b) B-J. Li, L. Jiang, M. Liu, Y-C. Chen, L-S. Ding, and Y. Wu, *Synlett*, 2005, 603.
- a) B. Wang, F. Wu, Y. Wang, X. Liu, and L. Deng, J. Am. Chem. Soc., 2007, 129, 768. b) H. Li, J. Song, and L. Deng, Tetrahedron, 2009, 65, 3139. c) F. Wu, R. Hong, J. Khan, X. Liu, and L. Deng, Angew. Chem. Int. Ed., 2006, 45, 4301. d) F. Wu, H. Li, R. Hong, and L. Deng, Angew. Chem. Int. Ed., 2006, 45, 947. e) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, and L. Deng, Angew. Chem. Int. Ed., 2005, 44, 105. f) H. Li, Y. Wang, L. Tang, and L. Deng, J. Am. Chem. Soc., 2004, 126, 9906.
- 13 F. Giacalone, M. Gruttadauria, P. Agrigento, and R. Noto, *Chem. Soc. Rev.*, 2012, **41**, 2406.
- For additions of β-ketoamides, see a) M. del Mar Sanchez Duque,
 O. Baslé, N. Isambert, A. Gaudel-Siri, Y. Génisson, J-C.
 Plaquevent, J. Rodriguez, and T. Constantieux, *Org. Lett.*, 2011,
 13, 3296. b) X. Dai, X. Wu, H. Fang, L. Nie, J. Chen, H. Deng, W.
 Cao, and G. Zhao, *Tetrahedron*, 2011, 67, 3034. c) W. Raimondi,
 M. del Mar Sanchez Duque, S. Goudedranche, A. Quintard, T.
 Constantieux, X. Bugaut, D. Bonne, and J. Rodriguez, *Synthesis*,
 2013, 45, 1659. For additions of succinimidyl esters, see d) P.
 Jacubec, D. M. Cockfield, P. S. Hynes, E. Cleator, and D. J. Dixon, *Tetrahedron: Asymmetry*, 2011, 22, 1147.

CCDC 977363 contains the supplementary crystallographic data for 15 TKP 6m. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via The ESI www.ccdc.cam.ac.uk/data_request/cif. includes a summary of the data and labelled views of both independent molecules for 6m. The absolute stereochemistry for 6m was determined following the refinement of the Flack parameter = -0.027 (3).

16 All of the products obtained using catalyst 5d show negative specific optical rotations. We have also been able to determine the absolute configurations of 6l and a dioxolane acetal derived from MVK adduct 6h by X-ray crystallography (see ESI for details, the CCDC deposition numbers are 977364 and 977365 respectively).

17 For analogous bridge formation, see a) Y. Sato, C. Shin, S. Sumiya, Y. Nakajima, and J. Yoshimura, *Bull. Chem. Soc. Jpn.*, 1984, **57**, 1265. For use of TMSOTf in triggering cationic cyclisations from hydroxy-DKPs, see b) F. C. Frebault and N. S. Simpkins, *Tetrahedron*, 2010, **66**, 6585. c) F. Frebault, N. S. Simpkins, and A. Fenwick, *J. Am. Chem. Soc.*, 2009, **131**, 4214.

- a) Review of organocatalytic cyclization and cycloaddition reactions, see A. Moyano and R. Rios, *Chem. Rev.*, 2011, **111**, 4703. b) For a related process with anthrones, see J. Shen, T. T. Nguyen, Y-P. Goh, W. Ye, X. Fu, J. Xu, and C-H. Tan, *J. Am. Chem. Soc.*, 2006, **128**, 13692.
- 19 The absolute and relative stereochemistry shown is based on an X-ray determination of **11d** (see ESI for details; CCDC deposition number 1017592). The absolute stereochemistry is consistent with that of Michael adducts from enones in Table 2.